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ABSTRACT 

Hoare Type Theory is a recently proposed type system for reasoning about programs that contain non-effectful higher-order functions and effectful operations. It integrates Hoare logic into a typed lambda calculus by encapsulating effectful operations as monads of the type of Hoare triples, which specifies the precondition, the type of the result value, and the postcondi-tion of operations. However, in previous work, the number of updated locations is defined in the assertion statically; therefore, we cannot update multiple locations if the number of the locations is given at runtime. In this thesis, Hoare Type Theory is extended to allow typing such programs, by changing the notion of update in the assertion logic. The new system can type programs that deal with adjacent multiple locations of runtime-defined length, which can be considered as arrays. 
論文要旨 

ホーア型理論 (Hoare Type Theory) は、副作用のない高階関数と副作用のある処理とを含む

プログラムの正当性を論証するための、近年提案された型システムである。この論理では

副作用のある処理をモナドとして扱うことでホーア論理を型付きラムダ計算に組み込んで

おり、それらのモナドの型はその処理の事前条件・結果の型・事後条件を示すホーア式と

なっている。しかしこれまでの提案では、プログラム内で更新されるロケーションの数は

表明によって静的に決められており、ロケーションの数が動的に変化する場合を扱うこと

はできなかった。この論文では、更新されるロケーションの数が動的に決められるように、

表明におけるロケーションの更新の扱いが変更される。新しい型システムでは、動的に数

が決まる連続したロケーションを配列として扱えるようになる。 
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1 Introduction Functional programming and imperative programming are two of the most important pro-gramming paradigms. In functional programming, computation is performed by evaluating functions and treat-ment of states is intentionally avoided. Because evaluation of a function does not depend on or affect states, any function evaluates to the same value for the same argument. This property is called referential transparency and it establishes independence between functions. Thus, when we check correctness of a program, we do not have to pay attention to relationships or interac-tions between functions in the program; check of correctness of the whole program can be done by simply checking each of the functions in the program. Lambda calculus is a popular system that embodies basic ideas of the functional program-ming paradigm. The lambda calculus that contains formal definitions for type checking is called typed lambda calculus. A variety of typed lambda calculi has been studied for decades. The most basic one is the simply typed lambda calculus [5], which gives simple types of functions to the untyped lambda calculus. System F [7, 19] adds polymorphism to the simply typed lambda calculus by using universal quantification over types. Dependent types [6, 8] are types that depend on values, which can be considered attributes that qualify the types. In imperative programming, on the other hand, computation is mainly performed by execut-ing statements that change the state. A change of a state is called a side effect or simply an effect. The result of execution of a statement depends on the state, so conditions about the state between each statement must be examined to check correctness of a program. Hoare logic [9] is a classic system for reasoning about imperative programs. The main fea-ture of Hoare logic is the Hoare triple, which comprises a precondition, a postcondition and a statement. A Hoare triple states that if the precondition is satisfied before the statement is executed and if the execution terminates, then the postcondition is satisfied after the execution. In Hoare logic, correctness of a program is checked by ensuring consistency of all the pre- and postconditions, which are expressed as logical propositions and are called assertions. Part of 
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the logic that formally defines the way to ensure consistency of assertions is called the asser-tion logic. Hoare Type Theory (HTT) [14, 15, 16] is a type theory which integrates Hoare logic into a dependently typed lambda calculus. In HTT, effectful computations are encapsulated into monads [13, 21, 22] so that they can appear in non-effectful terms. Those monads have the type of Hoare triples, which is made up of the precondition, the postcondition and the type of the result of the effectful computation. We can combine higher-order functions from the lamb-da calculus with Turing-complete imperative programs and check correctness of the combined programs using the assertion logic, whereas higher-order functions typically cannot appear in Hoare logic. Use of HTT for practical applications, however, has not been studied well. Mutable arrays, for instance, are one of the most basic data structures that are used in imperative programming, but HTT cannot effectively handle arrays. One reason for this is that it lacks the way to allocate arrays. Allocation of arrays is difficult because the alloc command, which is the primitive computation that allocates a heap location, is not defined to allocate multiple locations. We need a way to allocate multiple adjacent loca-tions, which can be used as an array. Another reason comes from the limitation in the assertion logic. In the assertion logic of the original HTT [14], the notion of heap updates is represented by the update construct adapted from [4]; each instance of updates is represented by a corresponding instance of the update construct. Although multiple updates to the same location can be contracted to one invocation of the update construct, those to different locations cannot. Therefore, the number of updated locations in a program is determined statically as specified in the assertion for the entire pro-gram, making it impossible to type-check such a program that the number of updated locations is determined at runtime. In this thesis, the original HTT is extended in order to make it possible to handle arrays by changing the semantics of the alloc command and redefining treatment of heaps in the asser-
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tion logic. Changes in this thesis can be summarized as follows: 
 The update construct is no longer used in the assertion logic and assertions about heaps are expressed by propositions that relate states of each location between effects. 
 The changed alloc command allocates multiple adjacent locations whose exact number is not known at the type checking. 
 The terms are enriched with the new le and lt comparison operators (standing for “less-equal” and “less-than” respectively), which are not formally defined in the pre-vious work [14, 15, 16] but useful for judgment of termination of a loop. The rest of this thesis is organized as follows. In Section 2, the syntax and its intuitive se-mantics of the extended HTT are described. Section 3 describes the judgments used in type checking. Section 4 shows lemmas and theorems on the type system. Section 5 defines the operational semantics of HTT and shows soundness of the type system. Section 6 gives two example programs that deal with arrays. Section 7 discusses related and future work about HTT. Finally, Section 8 concludes the thesis. 

Types 𝐴, 𝐵, 𝐶 ∷= α | bool | nat | unit | Π𝑥: 𝐴. 𝐵 | {𝑃}𝑥: 𝐴{𝑄} Primitive propositions 𝑝 ∷= ⊤ | ⊥ | id(𝑀, 𝑁) | seleq(ℎ, 𝑀, 𝑁) Propositions 𝑃, 𝑄, 𝑅, 𝐼 ∷= 𝑝 | 𝑃 ∧ 𝑄 | 𝑃 ∨ 𝑄 | 𝑃 ⊃ 𝑄 | ￢𝑃 |  ∀𝑥: 𝐴. 𝑃 | ∃𝑥: 𝐴. 𝑃 |  ∀α: type. 𝑃 | ∃α: type. 𝑃 | ∀ℎ: heap. 𝑃 | ∃ℎ: heap. 𝑃 Elimination terms 𝐾, 𝐿 ∷= 𝑥 | 𝐾 𝑀 | 𝑀 ∶ 𝐴 Introduction terms 𝑀, 𝑁, 𝑂 ∷= 𝐾 | () | λ𝑥. 𝑀 | dia 𝐸 | true | false | zero | succ 𝑀 | 𝑀 + 𝑁 | 𝑀 × 𝑁 |  eq(𝑀, 𝑁) | le(𝑀, 𝑁) | lt(𝑀, 𝑁)  Commands 𝑐 ∷= 𝑥 = alloc 𝑀 | 𝑥 = [𝑀] | [𝑀] = 𝑁 |  𝑥 = if(𝑀, 𝐸ଵ, 𝐸ଶ) | 𝑥 = loopூ (𝑀, 𝑦. 𝑁, 𝑦. 𝐹) |   𝑥 = fix(𝑓. 𝑦. 𝐹, 𝑀)  Computations 𝐸, 𝐹 ∷= 𝑀 | let dia 𝑥 = 𝐾 in 𝐸 | 𝑐; 𝐸 Variable contexts Δ ∷= ∙  | Δ, 𝑥: 𝐴 | Δ, α Heap contexts Ψ ∷= ∙  | Ψ, ℎ Proposition contexts Γ ∷= ∙  | Γ, 𝑃 Here α represents a type variable and h represents a heap variable. 
Figure 1: Syntax of Hoare Type Theory 



 

4  

2 Syntax The syntax of HTT is defined as in Figure 1, following [14] with a few changes. The primitive types of HTT consist of natural numbers, Booleans and unit. HTT has no loca-tion type because natural numbers are used to represent heap locations. The other types are the dependent function type and the computation type. In the computation type {𝑃}𝑥: 𝐴{𝑄}, P is the precondition, A is the type of the result of the computation, and Q is the postcondition, where A and Q may depend on the variable 𝑥, which represents the result value. The precondi-tion is a condition which must be satisfied to ensure the computation does not get stuck. The postcondition is a condition which is always satisfied after the computation terminates. The primitive propositions include the id and seleq predicates. The proposition id(𝑀, 𝑁) asserts equality of two terms M and N of type A. The proposition seleq(ℎ, 𝑀, 𝑁) asserts that the location M of the heap h contains the term N of type A. Non-primitive propositions may contain universal and existential quantifications over types, values and heaps. Quantification on types is adopted from [15] to allow asserting about locations whose content types and values are unknown. To this end, types and variable contexts are also extended with type variables. However, the type variables are not used to achieve polymorphism in this thesis because it is beyond the scope of this thesis. The following notations are defined to simplify propositions, in the same way as in [15]: 𝑀 ∈ ℎ ≔ ∃α: type. ∃𝑣: α. seleq(ℎ, 𝑀, 𝑣) 𝑀 ∉ ℎ ≔ ￢(𝑀 ∈ ℎ) 𝑃 ⇔ 𝑄 ≔ (𝑃 ⊃ 𝑄) ∧ (𝑄 ⊃ 𝑃) seleq(ℎ, 𝑀, −) ≔ ∃𝑥: 𝐴. seleq(ℎ, 𝑀, 𝑥) share(ℎଵ, ℎଶ, 𝑀) ≔ ∀α: type. ∀𝑣: α. seleq(ℎଵ, 𝑀, 𝑣) ⇔ seleq(ℎଶ, 𝑀, 𝑣) hid(ℎଵ, ℎଶ) ≔ ∀𝑥: nat. share(ℎଵ, ℎଶ, 𝑥) 𝑀 ∈ ℎ denotes that the location M is allocated in the heap h. share(ℎଵ, ℎଶ, 𝑀) denotes that the content of the location M is the same between the two heaps ℎଵ and ℎଶ. hid(ℎଵ, ℎଶ) denotes that the two heaps are identical. 
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A heap, semantically, is a finite partial function which maps a natural number to a pair of a value and its type. Syntactically, however, heaps only appear in the form of heap variables, which each denote the whole state of a heap at a particular moment between effects. This is one of the differences from [14], which had a special construct (upd) to denote update of a heap. In this thesis, such a construct is not used. Instead, the seleq predicate, adopted from [15], is defined as a primitive proposition and is used to assert the content of a location at a particu-lar moment. Terms include primitive values such as true and (), and some arithmetic operations. The comparison operations eq, lt and le evaluates to true or false according to whether their first operand is equal to, less than and either equal to or less than their second operand respectively. The term dia 𝐸 is an encapsulated computation. Terms are divided into two categories, i.e. elimination terms (or elim terms) and introduction terms (or intro terms), which correspond to the two forms of the typing judgments for terms. This approach is due to Watkins et al [23]. Computations are the effectful part of HTT. Computations that can be separated by semico-lons are especially called commands. 
 The command 𝑥 = alloc 𝑀 allocates adjacent M heap locations and binds the varia-ble 𝑥 to the first location. 
 𝑥 = [𝑀] looks up the content of the location M and [𝑀] = 𝑁 updates the content of the location to N, where A is the type of the content value. 
 The conditional command 𝑥 = if(𝑀, 𝐸ଵ, 𝐸ଶ) binds 𝑥 to the result of the computation 𝐸ଵ or 𝐸ଶ according to the value of the Boolean term M. 
 The loop command 𝑥 = loopூ (𝑀, 𝑦. 𝑁, 𝑦. 𝐹) executes the computation F while the Boolean term N evaluates to true. Each time before N is evaluated or F is computed, the free variable 𝑦 in N or F is replaced with the loop counter. The initial loop counter is M and the result of F becomes the next loop counter after each iteration. When N evaluates to false, 𝑥 is bound to the then loop counter. The proposition I expresses the loop inva-riant which denotes the effect of the loop and the type A is the type of the loop counter, 
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which is also the type of the result of F. 
 The fixpoint command 𝑥 = fix(𝑓. 𝑦. 𝐹, 𝑀)  applies the fixpoint of the equation 𝑓 = λ𝑦. dia 𝐹 to M and binds 𝑥 to the result of it. The type A is the type of the fixpoint. 
 In the computation let dia 𝑥 = 𝐾 in 𝐸, the term K must evaluate to an encapsulated computation, which is subsequently executed. The result of the computation is bound to the variable 𝑥 and then the computation E is executed. 3 Type System The basic structure of the type system is described in this section, though most part of it re-mains the same as in [14]. The full definition of the type system is presented in the appendix. The type system contains several kinds of judgments. Some judgments synthesize the ca-

nonical form of the expression on which the judgment is performed. The canonical form is the semantically equivalent expression which is in the normal and eta-long form, that is, beta reduction and eta expansion are fully performed on all its subterms. The intention of introduc-ing the canonical form is that terms that are syntactically different but semantically equivalent are canonicalized to the same form (except for alpha-equivalence), so that in the assertion logic semantic equivalence of terms can be checked by simply comparing the syntactic structures of their canonical forms (after proper alpha-conversions). In the judgments, the synthesized canonical forms are given in brackets and usually denoted by primed variables. Judgments on well-formedness of expressions are in the following forms: ⊢ Δ ctx Δ ⊢ 𝐴 ⇐ type [𝐴ᇱ] Δ ⊢ 𝑃 ⇐ prop [𝑃ᇱ] The type checking judgments have the following forms: Δ ⊢ 𝐾 ⇒ 𝐴 [𝑁ᇱ] Δ ⊢ 𝑀 ⇐ 𝐴 [𝑀ᇱ] Δ; 𝑃 ⊢ 𝐸 ⇒ 𝑥: 𝐴. 𝑄 [𝐸ᇱ] Δ; 𝑃 ⊢ 𝐸 ⇐ 𝑥: 𝐴. 𝑄 [𝐸ᇱ] 
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The other judgment is the sequent, which is used in the assertion logic: Δ; Ψ; Γଵ ⊢ Γଶ 
3.1 Hereditary and monadic substitutions The process of canonicalization of a term includes repeated beta reduction of the subterms. To achieve this, a special substitution operation is used, which is called hereditary substitution. Hereditary substitution differs from the normal substitution operation in that if substitution makes a new redex it is immediately reduced by recursively applying hereditary substitution. To ensure that hereditary substitution terminates despite recursion, the type of the substituted term is used as a metric. If the metric does not satisfy the specific conditions, hereditary subs-titution fails, and so does the whole type checking. A hereditary substitution is denoted as [𝑥 ↦ 𝑀]ௌ∗ (𝑋), where 𝑆 is the type of 𝑀 which is used as the metric, and 𝑋 is an expression in which substitution is performed. * is one of a, k, m, e, and p, and specifies the syntactic category of 𝑋: a for types, k for elim terms, m for intro terms, e for computations, and p for propositions. Precisely, 𝑆 is not a type, but the shape of a type, which can be taken as an abstract structure of the type. Using the shape of types (rather than types themselves) as the metric makes simpler the definition of and proofs about hereditary substitutions. The shape of a type 𝐴 is formally denoted as 𝐴ି, but is often written simply as 𝐴 if not ambiguous. While testing the metrics in the substitution, it is required to check if a shape is a syntactic subexpression of another shape. This check can obviously be done inductively in finite time. It is denoted as 𝑆ଵ ≼ 𝑆ଶ that 𝑆ଵ is a subexpression of 𝑆ଶ, and 𝑆ଵ ≺ 𝑆ଶ that 𝑆ଵ is a proper subex-pression of 𝑆ଶ. As beta reduction on terms is calculated by term substitution, beta reduction on computa-tions is calculated by a proper substitution operation adopted from [18], which is called mo-

nadic substitution. The monadic substitution 〈𝑥: 𝐴 ↦ 𝐸〉𝐹 denotes substitution of the free variable 𝑥 in the computation 𝐹 with the result of computation 𝐸. Monadic substitution also has a hereditary version of it, which is denoted as 〈𝑥 ↦ 𝐸〉ௌ𝐹. 
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The rest of this subsection shows some properties of hereditary substitutions, following [14]. 
Theorem 1: Termination of hereditary substitutions 1. If [𝑥 ↦ 𝑀]ௌ୩(𝐾) = 𝑁ᇱ ∷ 𝑆ଵ, then 𝑆ଵ ≼ 𝑆. 2. [𝑥 ↦ 𝑀]ௌ∗ (𝑋) and 〈𝑥 ↦ 𝐸〉ௌ(𝐹) terminate in finite time, either in success or in failure. 
Proof: The first statement is by induction on K. The second is by nested induction on the structure of S and on that of X. The cases for the newly added operator terms le(𝑀, 𝑁) and lt(𝑀, 𝑁) are analogous to that of eq(𝑀, 𝑁). 
Lemma 2: Hereditary substitutions and heads If [𝑥 ↦ 𝑀]ௌ୩(𝐾) exists, then it is an elim term 𝐾ᇱ iff head(𝐾) ≠ 𝑥 and otherwise it is an intro term 𝑀ᇱ ∷ 𝑆ᇱ, where the head of an elim term is defined as: head(𝑥) = 𝑥head(𝐾 𝑁) = head(𝐾) 
Proof: By induction on the structure of K. 
Lemma 3: Trivial hereditary substitutions If 𝑥 ∉ FV(𝑋), then [𝑥 ↦ 𝑀]ௌ∗ (𝑋) = 𝑋. 
Proof: By induction on the structure of X. 
Lemma 4: Hereditary substitutions and primitive operations Assuming that [𝑥 ↦ 𝑀]ௌ୫(𝑁ଵ) and [𝑥 ↦ 𝑀]ௌ୫(𝑁ଶ) exist, the following equations hold: 1. [𝑥 ↦ 𝑀]ௌ୫൫plus(𝑁ଵ, 𝑁ଶ)൯ = plus൫[𝑥 ↦ 𝑀]ௌ୫(𝑁ଵ), [𝑥 ↦ 𝑀]ௌ୫(𝑁ଶ)൯ 2. [𝑥 ↦ 𝑀]ௌ୫൫times(𝑁ଵ, 𝑁ଶ)൯ = times൫[𝑥 ↦ 𝑀]ௌ୫(𝑁ଵ), [𝑥 ↦ 𝑀]ௌ୫(𝑁ଶ)൯ 3. [𝑥 ↦ 𝑀]ௌ୫൫equals(𝑁ଵ, 𝑁ଶ)൯ = equals൫[𝑥 ↦ 𝑀]ௌ୫(𝑁ଵ), [𝑥 ↦ 𝑀]ௌ୫(𝑁ଶ)൯ 4. [𝑥 ↦ 𝑀]ௌ୫൫lessequal(𝑁ଵ, 𝑁ଶ)൯ = lessequal൫[𝑥 ↦ 𝑀]ௌ୫(𝑁ଵ), [𝑥 ↦ 𝑀]ௌ୫(𝑁ଶ)൯ 5. [𝑥 ↦ 𝑀]ௌ୫൫lessthan(𝑁ଵ, 𝑁ଶ)൯ = lessthan൫[𝑥 ↦ 𝑀]ௌ୫(𝑁ଵ), [𝑥 ↦ 𝑀]ௌ୫(𝑁ଶ)൯ 
Proof: By induction on the structure of 𝑁ଵ and 𝑁ଶ. 
Lemma 5: Composition of hereditary substitutions 1. If  𝑦 ∉ FV(𝑀) , and  [𝑥 ↦ 𝑀]∗ (𝑋) = 𝑋 ,  [𝑦 ↦ 𝑀ଵ]∗ (𝑋) = 𝑋ଵ and  [𝑥 ↦ 𝑀]୫(𝑀ଵ) exist, 
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then [𝑥 ↦ 𝑀]∗ (𝑋ଵ) = [𝑦 ↦ [𝑥 ↦ 𝑀]୫(𝑀ଵ)]∗ (𝑋). 2. If  𝑦 ∉ FV(𝑀) , and  [𝑥 ↦ 𝑀]ୣ(𝐹) = 𝐹 ,  〈𝑦 ↦ 𝐸ଵ〉(𝐹) = 𝐹ଵ and  [𝑥 ↦ 𝑀]ୣ(𝐸ଵ) exist, then [𝑥 ↦ 𝑀]ୣ(𝐹ଵ) = 〈𝑦 ↦ [𝑥 ↦ 𝑀]ୣ(𝐸ଵ)〉(𝐹). 3. If 𝑥 ∉ FV(𝐹), and 〈𝑦 ↦ 𝐸ଵ〉(𝐹) = 𝐹ଵand 〈𝑥 ↦ 𝐸〉(𝐸ଵ) exist, then 〈𝑥 ↦ 𝐸〉(𝐹ଵ) = 〈𝑦 ↦ 〈𝑥 ↦ 𝐸〉(𝐸ଵ)〉(𝐹). 
Proof: By nested induction, first on the shapes 𝐴ି and 𝐵ି, then on the structure of the expres-sions in which substitution is performed. 
3.2 Terms The type checking judgment for intro terms has the form Δ ⊢ 𝐾 ⇒ 𝐴 [𝑁ᇱ] and infers the type 
A of the term K. The judgment for elim terms has the form Δ ⊢ 𝑀 ⇐ 𝐴 [𝑀ᇱ] and checks the term K against the given type A. The auxiliary functions plus, times, equals, lessequal and lessthan are used to compute canon-ical forms of corresponding primitive operation terms. The last two are the ones which were newly added in this thesis and have definitions analogous to that of equals. They are used in canonicalization of the newly added terms le and lt. Since locations in HTT are just natural numbers, the capability of natural number arithmetic directly defines the capability of pointer arithmetic. The natural number arithmetic of HTT includes addition, multiplication, and comparison, which are mostly enough for pointer arith-metic to deal with arrays. The arithmetic is also used in the assertion logic through canonicali-zation of terms. 
3.3 Computations The judgments for computations also have two forms: Δ; 𝑃 ⊢ 𝐸 ⇒ 𝑥: 𝐴. 𝑄 [𝐸ᇱ] and Δ; 𝑃 ⊢𝐸 ⇐ 𝑥: 𝐴. 𝑄 [𝐸ᇱ]. The former checks that the result type of the computation 𝐸 is 𝐴 and calcu-lates the strongest postcondition Q from the precondition P. The latter checks if Q is a valid postcondition for the computation E as well as if A is a valid result type of E. The assertion logic, which is described below, is used for the latter. That is, it is checked if the calculated strongest postcondition implies the given postcondition Q. In both the judgments, A and Q may depend 
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on the variable 𝑥, which denotes the result of the computation. The special heap variables mem and init are used in pre- and postconditions. In precondi-tions, mem denotes the heap just before the computation. In postconditions, init denotes the heap just before the computation and mem the heap just after the computation. As the notion of heaps is changed in this thesis, the strongest postconditions calculated by the typing rules are changed accordingly. For instance, the strongest postcondition of update is defined as:  sp([𝑀] = 𝑁) ≔ seleq(mem, 𝑀, 𝑁) ∧ ∀𝑛: nat. ¬id୬ୟ୲(𝑛, 𝑀) ⊃ share(init, mem, 𝑛). This states that the location M contains the term N of type A after the update and that any other location is not changed in the update. The major change in the definition of the computations from [14] is the definition of the al-

loc command. In [14], this command allocates a new heap location and initializes it with the given argument. Since an arbitrary unused location is selected for the new location, one cannot assume any ordering or continuity between locations allocated by multiple invocations of the command. Therefore, one cannot allocate adjacent locations, which we want to use as an array. In this thesis, on the other hand, the alloc command allocates multiple adjacent locations at a time and the number of the locations can be specified by the argument of the natural number type. This allows allocation of an array whose length is statically unknown. The contents of the newly allocated locations are initialized to the unit value. Since strong update is possible in this type system, the initial values and their types are not important. The strongest postcondition calculated by the type checking for the alloc command is de-fined as: sp(𝑥 = alloc 𝑀) ≔ ∀𝑛: nat. ൫𝑛 < 𝑥 ∨ 𝑥 + 𝑀 ≤ 𝑛 ⊃ share(init, mem, 𝑛)൯ ∧ ൫𝑥 ≤ 𝑛 ∧ 𝑛 < 𝑥 + 𝑀 ⊃ ¬indom(init, 𝑛) ∧ seleq୳୬୧୲(mem, 𝑛, ())൯. This states that 𝑀 locations, the first of which is 𝑥, are allocated and initialized to the unit value. The proposition share(init, mem, 𝑛) states that the location 𝑛 is not changed by the alloc com-mand, where 𝑛 is a location that is not any of the locations allocated. The proposition 
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¬indom(init, 𝑛) ∧ seleq୳୬୧୲(mem, 𝑛, ()) states that the location 𝑛 is not allocated before the command and that the location contains the unit value after the command, where 𝑛 is one of the locations allocated by the command. 
3.4 Assertion logic The assertion logic is a simple sequent calculus. Some derivation rules about heaps which were in [14] are removed in this thesis because they are no longer needed now that heap expressions are not used in the assertion logic. Instead, universal and existential quantifica-tions on types are adopted from [15]. Universal quantification on types is essential for the definition of the share expression because the expression is used to relate arbitrary locations, the type of whose content is unknown. Inequality of natural numbers can be expressed as the following in the assertion logic: 𝑀 ≤ 𝑁 ≔ ∃𝑥: nat. id୬ୟ୲(𝑀 + 𝑥, 𝑁) 𝑀 < 𝑁 ≔ succ 𝑀 ≤ 𝑁 Some mathematical properties about inequality are shown in the next section. 4 Properties This section shows basic properties of HTT. Most of the proofs for these properties can be done in the same manner as in [14], and thus are not given in detail. Especially, in case analysis, cases for the newly added operator terms le and lt are analogous to that of the term eq. At the last of this section are basic mathematical properties, which are not mentioned in [14], but should be worth mentioning to convince the reader that the logic is strong enough to validate the example programs shown in Section 6. 
Theorem 6: Relative decidability of type checking If validity of every assertion sequent is decidable, then all the typing judgments of HTT are decidable. 
Proof: By induction on the structure of the typing judgment. As stated in the theorem, decidability of the whole type system depends on the assumption that the assertion logic is decidable. Decidability of the assertion logic is still not established in 
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this thesis. 
Lemma 7: Context weakening and contraction Let Δ ⊢ 𝐽 be a judgment of HTT that depends on a variable context Δ, and Δ; Ψ ⊢ 𝐽 be a judg-ment that depends on a variable context Δ and a heap context Ψ. 1. If Δ ⊢ 𝐽 and Δ ⊢ 𝐴 ⇐ type [𝐴], then Δ, 𝑥: 𝐴 ⊢ 𝐽. 2. If Δ; Ψ ⊢ 𝐽, then Δ; Ψ, ℎ ⊢ 𝐽. 3. If Δ, 𝑥: 𝐴, Δଵ, 𝑦: 𝐴, Δଶ ⊢ 𝐽, then Δ, 𝑥: 𝐴, Δଵ, [𝑦 ↦ 𝑥]Δଶ ⊢ [𝑦 ↦ 𝑥]𝐽. 4. If Δ; Ψ, ℎ, Ψଵ, 𝑔, Ψଶ ⊢ 𝐽, then Δ; Ψ, ℎ, Ψଵ, Ψଶ ⊢ [𝑔 ↦ ℎ]𝐽. 
Proof: By straightforward induction on the derivation of J. 
Lemma 8: Closed canonical forms of primitive types 1. If ⊢ 𝑀 ⇐ nat [𝑀], then 𝑀 = succ zero for some natural number n. 2. If ⊢ 𝑀 ⇐ bool [𝑀], then 𝑀 = true or 𝑀 = false. 
Proof: By induction of the structure of M. 
Lemma 9: Properties of variable expansion 1. If Δ, 𝑥: 𝐴, Δଵ ⊢ 𝐾 ⇒ 𝐵 [𝐾], then [𝑥 ↦ expand(𝑥)]୩ (𝐾) exists, and (a) if [𝑥 ↦ expand(𝑥)]୩ (𝐾) = 𝐾ᇱ, then 𝐾ᇱ = 𝐾 (b) if [𝑥 ↦ expand(𝑥)]୩ (𝐾) = 𝑁ᇱ ∷ 𝑆, then 𝑁ᇱ = expand(𝐾) and 𝑆 = 𝐵ି. 2. If Δ, 𝑥: 𝐴, Δଵ ⊢ 𝑁 ⇐ 𝐵 [𝑁], then [𝑥 ↦ expand(𝑥)]୫(𝑁) = 𝑁. 3. If Δ, 𝑥: 𝐴, Δଵ; 𝑃 ⊢ 𝐸 ⇐ 𝑦: 𝐵. 𝑄 [𝐸], then [𝑥 ↦ expand(𝑥)]ୣ(𝐸) = 𝐸. 4. If Δ, 𝑥: 𝐴, Δଵ ⊢ 𝐵 ⇐ type [𝐵], then [𝑥 ↦ expand(𝑥)]ୟ (𝐵) = 𝐵. 5. If Δ, 𝑥: 𝐴, Δଵ; Ψ ⊢ 𝑃 ⇐ prop [𝑃], then [𝑥 ↦ expand(𝑥)]୮(𝑃) = 𝑃. 6. If Δ ⊢ 𝑀 ⇐ 𝐴 [𝑀], then [𝑥 ↦ 𝑀]୫൫expand(𝑥)൯ = 𝑀. 7. If Δ; 𝑃 ⊢ 𝐸 ⇐ 𝑥: 𝐴. 𝑄 [𝐸], then 〈𝑥 ↦ 𝐸〉൫expand(𝑥)൯ = 𝐸. 
Proof: By mutual nested induction on the structure of the type A and the substituted expres-sion. 
Lemma 10: Identity principles 1. If Δ; Ψ ⊢ 𝑃 ⇐ prop [𝑃], then Δ; Ψ; Γଵ, 𝑃 ⊢ 𝑃, Γଶ. 
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2. If  Δ; Ψ; Γଵ, id(𝑀, 𝑁) ⊢ [𝑥 ↦ 𝑀]୮ (𝑃), Γଶ and  [𝑥 ↦ 𝑁]୮ (𝑃) is well-formed and canonical, then Δ; Ψ; Γଵ, id(𝑀, 𝑁) ⊢ [𝑥 ↦ 𝑁]୮ (𝑃), Γଶ. 3. If Δ; Ψ; Γଵ, hid(ℎଵ, ℎଶ) ⊢ [ℎ ↦ ℎଵ]𝑃, Γଶ, then Δ; Ψ; Γଵ, hid(ℎଵ, ℎଶ) ⊢ [ℎ ↦ ℎଶ]𝑃, Γଶ. 4. If Δ ⊢ 𝐾 ⇒ 𝐴 [𝐾], then Δ ⊢ expand(𝐾) ⇐ 𝐴 [expand(𝐾)]. 
Proof: By simultaneous induction on the structures of 𝑃 and 𝐴. The difference from [14] is that 
seleq, not hid, is the primitive proposition that asserts on heaps. The case analysis for the statement 3 is slightly changed accordingly. Instead of proofing the case when 𝑃 = hid(ℎ, ℎᇱ), we need to prove the case when 𝑃 = seleq(ℎ, 𝑀, 𝑁). This case is easily shown by the defini-tion of hid(ℎଵ, ℎଶ). 
Lemma 11: Properties of computations If Δ; 𝑃 ⊢ 𝐸 ⇐ 𝑥: 𝐴. 𝑄 [𝐸ᇱ] and 1. if Δ; 𝑥: 𝐴; init, mem; 𝑄 ⊢ 𝑅, then Δ; 𝑃 ⊢ 𝐸 ⇐ 𝑥: 𝐴. 𝑅 [𝐸ᇱ]. 2. if Δ; init, mem; 𝑅 ⊢ 𝑃, then Δ; 𝑅 ⊢ 𝐸 ⇐ 𝑥: 𝐴. 𝑄 [𝐸ᇱ]. 3. if Δ; init, mem ⊢ 𝑅 ⇐ prop [𝑅], then Δ; 𝑅 ∘ 𝑃 ⊢ 𝐸 ⇐ 𝑥: 𝐴. (𝑅 ∘ 𝑄)[𝐸ᇱ]. 
Proof: The first statement is by simple deduction using the derivation rule for Δ; 𝑃 ⊢ 𝐸 ⇐𝑥: 𝐴. 𝑄 [𝐸ᇱ] and the cut rule. The second and third are by induction on the structure of 𝐸. 
Lemma 12: Canonical substitution principles Assuming Δ ⊢ 𝑀 ⇐ 𝐴 [𝑀] and ⊢ (Δ, 𝑥: 𝐴, Δଵ)ctx and that the context Δଵᇱ = [𝑥 ↦ 𝑀](Δଵ) ex-ists and is well-formed (i.e. ⊢ (Δ, Δଵᇱ ) ctx), the following statements hold: 1. If  Δ, 𝑥: 𝐴. Δଵ ⊢ 𝐾 ⇒ 𝐵 [𝐾] , then  [𝑥 ↦ 𝑀]୩ (𝐾) and  𝐵ᇱ = [𝑥 ↦ 𝑀]ୟ (𝐵) exist, 𝐵ᇱ is well-formed (i.e. Δ, Δଵᇱ ⊢ 𝐵ᇱ ⇐ type [𝐵ᇱ]) and (a) if [𝑥 ↦ 𝑀]୩ (𝐾) = 𝐾ᇱ, then Δ, Δଵᇱ ⊢ 𝐾ᇱ ⇐ 𝐵ᇱ [𝐾ᇱ] (b) if [𝑥 ↦ 𝑀]୩ (𝐾) = 𝑁ᇱ ∷ 𝑆, then Δ, Δଵᇱ ⊢ 𝑁ᇱ ⇐ 𝐵ᇱ [𝑁ᇱ] and 𝑆 = 𝐵ି. 2. If  Δ, 𝑥: 𝐴, Δଵ ⊢ 𝑁 ⇐ 𝐵 [𝑁] and if the type 𝐵ᇱ = [𝑥 ↦ 𝑀]ୟ (𝐵) exists and is well-formed (i.e. Δ, Δଵᇱ ⊢ 𝐵ᇱ ⇐ type [𝐵ᇱ]), then Δ, Δଵᇱ ⊢ [𝑥 ↦ 𝑀]୫(𝑁) ⇐ 𝐵ᇱ [[𝑥 ↦ 𝑀]୫(𝑁)]. 3. If  Δ, 𝑥: 𝐴, Δଵ; 𝑃 ⊢ 𝐸 ⇐ 𝑦: 𝐵. 𝑄 [𝐸] and  𝑦 ∉ FV(𝑀)  and if the propositions  𝑃ᇱ = [𝑥 ↦𝑀]୮(𝑃) and 𝑄ᇱ = [𝑥 ↦ 𝑀]୮(𝑄) and the type 𝐵ᇱ = [𝑥 ↦ 𝑀]ୟ (𝐵) exist and are well-formed, 
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then Δ, Δଵᇱ ; 𝑃ᇱ ⊢ [𝑥 ↦ 𝑀]ୣ(𝐸) ⇐ 𝑦: 𝐵ᇱ. 𝑄ᇱ [[𝑥 ↦ 𝑀]ୣ(𝐸)]. 4. If Δ, 𝑥: 𝐴, Δଵ ⊢ 𝐵 ⇐ type [𝐵], then Δ, Δଵᇱ ⊢ [𝑥 ↦ 𝑀]ୟ (𝐵) ⇐ type [[𝑥 ↦ 𝑀]ୟ (𝐵)]. 5. If Δ, 𝑥: 𝐴, Δଵ; Ψ ⊢ 𝑃 ⇐ prop [𝑃], then Δ, Δଵᇱ ; Ψ ⊢ [𝑥 ↦ 𝑀]୮(𝑃) ⇐ prop ൣ[𝑥 ↦ 𝑀]୮(𝑃)൧. 6. If  Δ, 𝑥: 𝐴, Δଵ; Ψ; Γଵ ⊢ Γଶ and the proposition context  Γଵᇱ = [𝑥 ↦ 𝑀](Γଵ) and  Γଶᇱ = [𝑥 ↦𝑀](Γଶ) exist and are well-formed, then Δ, Δଵᇱ ; Ψ; Γଵᇱ ⊢ Γଶᇱ. 7. If  Δ; 𝑃 ⊢ 𝐸 ⇐ 𝑥: 𝐴. 𝑄 [𝐸] and  Δ, 𝑥: 𝐴; 𝑄 ⊢ 𝐹 ⇐ 𝑦: 𝐵. 𝑅 [𝐹] where  𝑥 ∉ FV(𝐵) ∪ FV(𝑅) , thenΔ; 𝑃 ⊢ 〈𝑥 ↦ 𝐸〉(𝐹) ⇐ 𝑦: 𝐵. 𝑅 [〈𝑥 ↦ 𝐸〉(𝐹)]. 
Proof: By nested induction, first on the structure of the shape of 𝐴, and next on the derivation of the typing or sequent judgment in each case. 
Lemma 13: Idempotence of canonicalization 1. If Δ ⊢ 𝐾 ⇒ 𝐴 [𝐾ᇱ] where 𝐾ᇱ is an elim term, then Δ ⊢ 𝐾ᇱ ⇒ 𝐴 [𝐾ᇱ]. 2. If Δ ⊢ 𝐾 ⇒ 𝐴 [𝑁ᇱ] where 𝑁ᇱ is an intro term, then Δ ⊢ 𝑁ᇱ ⇐ 𝐴 [𝑁ᇱ]. 3. If Δ ⊢ 𝑁 ⇐ 𝐴 [𝑁ᇱ], then Δ ⊢ 𝑁ᇱ ⇐ 𝐴 [𝑁ᇱ]. 4. If Δ; 𝑃 ⊢ 𝐸 ⇐ 𝑥: 𝐴. 𝑄 [𝐸ᇱ], then Δ; 𝑃 ⊢ 𝐸ᇱ ⇐ 𝑥: 𝐴. 𝑄 [𝐸ᇱ]. 5. If Δ ⊢ 𝐴 ⇐ type [𝐴ᇱ], then Δ ⊢ 𝐴ᇱ ⇐ type [𝐴ᇱ]. 6. If Δ; Ψ ⊢ 𝑃 ⇐ prop [𝑃ᇱ], then Δ; Ψ ⊢ 𝑃ᇱ ⇐ prop [𝑃ᇱ]. 
Proof: By induction on the structure of the typing derivations. 
Lemma 14: General substitution principles Assuming Δ ⊢ 𝐴 ⇐ type [𝐴ᇱ] and Δ ⊢ 𝑀 ⇐ 𝐴ᇱ [𝑀ᇱ], the following statements hold: 1. If Δ, 𝑥: 𝐴ᇱ, Δଵ ⊢ 𝐾 ⇒ 𝐵 [𝑁ᇱ], then Δ, [𝑥 ↦ 𝑀ᇱ](Δଵ) ⊢ [𝑥 ↦ 𝑀: 𝐴]𝐾 ⇒ [𝑥 ↦ 𝑀ᇱ]ୟ (𝐵) [[𝑥 ↦ 𝑀ᇱ]୫(𝑁ᇱ)]. 2. If Δ, 𝑥: 𝐴ᇱ, Δଵ ⊢ 𝑁 ⇐ 𝐵 [𝑁ᇱ], then Δ, [𝑥 ↦ 𝑀ᇱ](Δଵ) ⊢ [𝑥 ↦ 𝑀: 𝐴]𝑁 ⇐ [𝑥 ↦ 𝑀ᇱ]ୟ (𝐵) [[𝑥 ↦ 𝑀ᇱ]୫(𝑁ᇱ)]. 3. If Δ, 𝑥: 𝐴ᇱ, Δଵ; 𝑃 ⊢ 𝐸 ⇐ 𝑦: 𝐵. 𝑄 [𝐸ᇱ] and 𝑦 ∉ FV(𝑀), then Δ, [𝑥 ↦ 𝑀ᇱ](Δଵ); [𝑥 ↦ 𝑀ᇱ]୮(𝑃) ⊢[𝑥 ↦ 𝑀: 𝐴]𝐸 ⇐ 𝑦: [𝑥 ↦ 𝑀ᇱ]ୟ (𝐵). [𝑥 ↦ 𝑀ᇱ]୮(𝑄) [[𝑥 ↦ 𝑀ᇱ]ୣ(𝐸ᇱ)]. 4. If Δ, 𝑥: 𝐴ᇱ, Δଵ ⊢ 𝐵 ⇐ type [𝐵ᇱ], then Δ, [𝑥 ↦ 𝑀ᇱ](Δଵ) ⊢ [𝑥 ↦ 𝑀: 𝐴]𝐵 ⇐ type [[𝑥 ↦ 𝑀ᇱ]ୟ (𝐵ᇱ)]. 
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5. If Δ, 𝑥: 𝐴ᇱ, Δଵ; Ψ ⊢ 𝑃 ⇐ prop [𝑃ᇱ], then Δ, [𝑥 ↦ 𝑀ᇱ](Δଵ); Ψ ⊢ [𝑥 ↦ 𝑀: 𝐴]𝑃 ⇐ prop ൣ[𝑥 ↦ 𝑀ᇱ]୮(𝑃ᇱ)൧. 6. If Δ; 𝑃 ⊢ 𝐸 ⇐ 𝑥: 𝐴ᇱ. 𝑄 [𝐸ᇱ] and Δ, 𝑥: 𝐴ᇱ; 𝑄 ⊢ 𝐹 ⇐ 𝑦: 𝐵. 𝑅 [𝐹ᇱ] where 𝑥 ∉ FV(𝐵) ∪ FV(𝑅), then Δ; 𝑃 ⊢ 〈𝑥: 𝐴 ↦ 𝐸〉𝐹 ⇐ 𝑦: 𝐵. 𝑅 [〈𝑥 ↦ 𝐸ᇱ〉(𝐹ᇱ)]. 
Proof: By simultaneous induction on the structure of the derivations. 
Theorem 15: Basic mathematical properties The following sequents can be derived by the rules in the assertion logic: 1. Δ; Ψ; Γଵ, id୬ୟ୲(𝑀ଵ + 𝑁, 𝑀ଶ + 𝑁) ⊢ id୬ୟ୲(𝑀ଵ, 𝑀ଶ), Γଶ 2. Δ; Ψ; Γଵ, id୬ୟ୲(𝑀 + 𝑁, 𝑁) ⊢ id୬ୟ୲(𝑀, zero), Γଶ 3. Δ; Ψ; Γଵ ⊢ id୬ୟ୲(𝑀 + 𝑁, 𝑁 + 𝑀), Γଶ 4. Δ; Ψ; Γଵ ⊢ id୬ୟ୲(𝑀 × 𝑁, 𝑁 × 𝑀), Γଶ 5. Δ; Ψ; Γଵ ⊢ id୬ୟ୲൫(𝑀ଵ + 𝑀ଶ) + 𝑀ଷ, 𝑀ଵ + (𝑀ଶ + 𝑀ଷ)൯, Γଶ 6. Δ; Ψ; Γଵ ⊢ id୬ୟ୲൫(𝑀ଵ × 𝑀ଶ) × 𝑀ଷ, 𝑀ଵ × (𝑀ଶ × 𝑀ଷ)൯, Γଶ 7. Δ; Ψ; Γଵ ⊢ id୬ୟ୲൫(𝑀ଵ + 𝑀ଶ) × 𝑁, 𝑀ଵ × 𝑁 + 𝑀ଶ × 𝑁൯, Γଶ 8. Δ; Ψ; Γଵ, id୬ୟ୲(𝑀 + 𝑁, zero) ⊢ id୬ୟ୲(𝑀, zero), Γଶ 9. Δ; Ψ; Γଵ, 𝑀 ≤ 𝑁, 𝑁 ≤ 𝑀 ⊢ id୬ୟ୲(𝑀, 𝑁), Γଶ 10. Δ; Ψ; Γଵ ⊢ 𝑀 ≤ 𝑁, 𝑁 ≤ 𝑀, Γଶ 11. Δ; Ψ; Γଵ, 𝑀 ≤ 𝑁 ⊢ id୬ୟ୲(𝑀, 𝑁), 𝑀 < 𝑁, Γଶ 12. Δ; Ψ; Γଵ, id୬ୟ୲(𝑀, succ 𝑀) ⊢ Γଶ 13. Δ; Ψ; Γଵ, id୬ୟ୲൫𝑀, succ(𝑀 + 𝑁)൯ ⊢ Γଶ 14. Δ; Ψ; Γଵ, 𝑀 ≤ 𝑁, 𝑁 < 𝑀 ⊢ Γଶ 15. Δ; Ψ; Γଵ, idୠ୭୭୪(eq(𝑀, 𝑁), true) ⊢ id୬ୟ୲(𝑀, 𝑁), Γଶ 16. Δ; Ψ; Γଵ, idୠ୭୭୪(eq(𝑀, 𝑁), false), id୬ୟ୲(𝑀, 𝑁) ⊢ Γଶ 17. Δ; Ψ; Γଵ, idୠ୭୭୪(le(𝑀, 𝑁), true) ⊢ 𝑀 ≤ 𝑁, Γଶ 18. Δ; Ψ; Γଵ, idୠ୭୭୪(le(𝑀, 𝑁), false), 𝑀 ≤ 𝑁 ⊢ Γଶ 19. Δ; Ψ; Γଵ, idୠ୭୭୪(lt(𝑀, 𝑁), true) ⊢ 𝑀 < 𝑁, Γଶ 20. Δ; Ψ; Γଵ, idୠ୭୭୪(lt(𝑀, 𝑁), false), 𝑀 < 𝑁 ⊢ Γଶ 
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Proof: These sequents can be derived by using the rule for induction on natural numbers:  Δ ⊢ 𝑀 ⇐ nat [𝑀] Δ; Ψ; Γଵ, 𝑃 ⊢ [𝑥 ↦ succ 𝑥]୬ୟ୲୮ (𝑃), ΓଶΔ; Ψ; Γଵ, [𝑥 ↦ zero]୬ୟ୲୮ (𝑃) ⊢ [𝑥 ↦ 𝑀]୬ୟ୲୮ (𝑃), Γଶ  
To derive the first above sequent, for instance, we first use the cut rule to change the sequent to Δ; Ψ; Γଵ ⊢ id୬ୟ୲(𝑀ଵ + 𝑁, 𝑀ଶ + 𝑁) ⊃ id୬ୟ୲(𝑀ଵ, 𝑀ଶ), Γଶ. Then, after applying induction on N, we have to derive the following two sequents: 

 Δ; Ψ; Γଵ ⊢ id୬ୟ୲(𝑀ଵ, 𝑀ଶ) ⊃ id୬ୟ୲(𝑀ଵ, 𝑀ଶ), Γଶ  
 Δ; Ψ; Γଵ, id୬ୟ୲(𝑀ଵ + 𝑛, 𝑀ଶ + 𝑛) ⊃ id୬ୟ୲(𝑀ଵ, 𝑀ଶ) ⊢           id୬ୟ୲൫succ(𝑀ଵ + 𝑛), succ(𝑀ଶ + 𝑛)൯ ⊃ id୬ୟ୲(𝑀ଵ, 𝑀ଶ), Γଶ  The former is the case when 𝑁 = zero, which is shown by the identity principles. The latter is the inductive step, which is also easily derived by the id rule and other basic rules. The last six sequents need nested induction to derive them. For example, the sequent 15 is derived from ∀𝑛: nat. idୠ୭୭୪(eq(𝑚, 𝑛), true) ⊃ id୬ୟ୲(𝑚, 𝑛), by induction first on 𝑚 and second on 𝑛. The sequent 10 should require the most complicated proof. This is derived by induction on 𝑚 in ∃𝑝: nat. id୬ୟ୲(𝑚 + 𝑝, 𝑁) ∨ ∃𝑞: nat. id୬ୟ୲(𝑁 + 𝑞, 𝑚). The case when 𝑚 = zero should be obvious. In the induction step, we need to show the following two: 
 ∃𝑝: nat. id୬ୟ୲(𝑚 + 𝑝, 𝑁) ⊢ ∃𝑟: nat. id୬ୟ୲(succ(𝑚 + 𝑟), 𝑁) ∨ ∃𝑠: nat. id୬ୟ୲(𝑁 + 𝑠, succ 𝑚) 
 ∃𝑞: nat. id୬ୟ୲(𝑁 + 𝑞, 𝑚) ⊢ ∃𝑟: nat. id୬ୟ୲(succ(𝑚 + 𝑟), 𝑁) ∨ ∃𝑠: nat. id୬ୟ୲(𝑁 + 𝑠, succ 𝑚) For the latter, we simply instantiate 𝑞 and give succ 𝑞 as a witness to 𝑠. For the former, we need case analysis on 𝑝. In the case when 𝑝 = zero, the witness 𝑠 = succ zero suffices for id୬ୟ୲(𝑁 +𝑠, succ 𝑚), and in the case when 𝑝 > 𝑧𝑒𝑟𝑜, succ 𝑟 = 𝑝 suffices id୬ୟ୲(succ(𝑚 + 𝑟), 𝑁). We ac-tually need induction on 𝑝 to perform case analysis within the assertion logic. 

Values 𝑣, 𝑙 ∷= () | λ𝑥. 𝑀 | dia 𝐸 | true | false | zero | succ 𝑣 Heaps 𝜒 ∷= ∙ | 𝜒, 𝑙 ↦ 𝑣 Continuations 𝜅 ∷= ∙  | 𝑥: 𝐴. 𝐸; 𝜅 Control expressions 𝜌 ∷= 𝜅 ⊳ 𝐸 Abstract machines 𝜇 ∷= 𝜒, 𝜅 ⊳ 𝐸 
Figure 2: Syntax for operational semantics 



 

17  

The other above sequents can be derived by similar inductions, therefore the proof for them are omitted. 5 Operational Semantics In this section, an operational semantics for HTT is defined, to establish soundness with re-spect to evaluation. Firstly, additional syntax is defined for the operational semantics as in Figure 2. The defini-tion is the same as in [14]. A heap is a mapping from locations to values. A continuation is a sequence of computations with one parameter each, where every computation receives a parameter value and passes the result of the computation to the next one. A control expression is a continuation with a computation, where the result of the computation is passed to the continuation. An abstract machine is a pair of a heap and a control expression, which represents a state during evaluation. Control expressions are needed to keep the order of computations. The typing judgment for control expressions has the form of Δ; 𝑃 ⊢ 𝜅 ⊳ 𝐸 ⇐ 𝑥: 𝐴. 𝑄, which is similar to that for compu-tations. The typing judgment for abstract machines has the form of ⊢ 𝜒, 𝜅 ⊳ 𝐸 ⇐ 𝑥: 𝐴. 𝑄 and this is equivalent to ⋅; ⟦𝜒⟧ ⊢ 𝜅 ⊳ 𝐸 ⇐ 𝑥: 𝐴. 𝑄 by definition, where ⟦𝜒⟧ is an expression which converts a heap into a proposition that expresses the heap: ⟦⋅⟧ ≔ ⊤ ⟦𝜒, 𝑙 ↦ 𝑣⟧ ≔ ⟦𝜒⟧ ∧ seleq(mem, 𝑙, 𝑣) Evaluation is defined using three types of judgments; one for elim terms 𝐾 ↪୩ 𝐾ᇱ, another for intro terms 𝑀 ↪୫ 𝑀ᇱ, and the other for abstract machines 𝜒, 𝜅 ⊳ 𝐸 ↪ୣ 𝜒ᇱ, 𝜅ᇱ ⊳ 𝐸ᇱ. Each judgment denotes one step of evaluation. 
Lemma 16: Replacement 1. If Δ; 𝑃 ⊢ 𝜅 ⊳ 𝐸 ⇐ 𝑥: 𝐴. 𝑄, then Δ; 𝑃 ⊢ 𝐸 ⇐ 𝑦: 𝐵. 𝑅 [𝐸ᇱ] for some 𝑦, 𝐵, 𝑅, 𝐸ᇱ and if Δଵ; 𝑃ଵ ⊢𝜅ଵ ⊳ 𝐸ଵ ⇐ 𝑦: 𝐵. 𝑅 for some Δଵ extending Δ, then Δଵ; 𝑃 ⊢ 𝜅ଵ; 𝜅 ⊳ 𝐸ଵ ⇐ 𝑥: 𝐴. 𝑄. 2. If Δ; 𝑃 ⊢ 𝑦: 𝐵. 𝐹; 𝜅 ⊳ 𝐸 ⇐ 𝑥: 𝐴. 𝑄, then Δ; 𝑃 ⊢ 𝜅 ⊳ 〈𝑦: 𝐵 ↦ 𝐸〉𝐹 ⇐ 𝑥: 𝐴. 𝑄. 
Proof: By straightforward induction on the structure of 𝜅. 
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Theorem 17: Preservation 1. If 𝐾 ↪୩ 𝐾ଵ and ⊢ 𝐾 ⇒ 𝐴 [𝑁ᇱ], then ⊢ 𝐾ଵ ⇒ 𝐴 [𝑁ᇱ]. 2. If 𝑀 ↪୫ 𝑀ଵ and ⊢ 𝑀 ⇐ 𝐴 [𝑀ᇱ], then ⊢ 𝑀ଵ ⇐ 𝐴 [𝑀ᇱ]. 3. If 𝜇 ↪ୣ 𝜇ଵ and ⊢ 𝜇 ⇐ 𝑥: 𝐴. 𝑄, then ⊢ 𝜇ଵ ⇐ 𝑥: 𝐴. 𝑄. 
Proof: The first two statements are proved by induction on the derivation of the evaluation judgment. The last one is proved by case analysis on the derivation of the typing judgment, using the first two statements and the replacement lemma. Here only the case when 𝜇 =𝜒, 𝜅 ⊳ 𝑦 = alloc 𝑣 ; 𝐸 is shown because the proof for the other cases are the same as in [14]. In this case, 𝜇ଵ = (𝜒, 𝑙 ↦୳୬୧୲ (), … , 𝑙 + 𝑣 − 1 ↦୳୬୧୲ ()), 𝜅 ⊳ [𝑥 ↦ 𝑙: nat]𝐸. From the typing of  𝜇 , we have ⋅; ⟦𝜒⟧ ⊢ 𝜅 ⊳ 𝑦 = alloc 𝑣 ; 𝐸 ⇐ 𝑥: 𝐴. 𝑄 . By the replacement lemma, there ist  𝑧, 𝐶, 𝑆, 𝐸ᇱ such that ⋅; ⟦𝜒⟧ ⊢ 𝑦 = alloc 𝑣 ; 𝐸 ⇐ 𝑧: 𝐶. 𝑆 [𝐸ᇱ] . By the typing rules for alloc, 𝑦: nat; ⟦𝜒⟧ ∘ 𝑃 ⊢ 𝐸 ⇐ 𝑧: 𝐶. 𝑆 [𝐸ᇱ], where 𝑃 = ∀𝑛: nat. ൫𝑛 < 𝑙 ∨ 𝑙 + 𝑣 ≤ 𝑛 ⊃ share(init, mem, 𝑛)൯ ∧                         ൫𝑙 ≤ 𝑛 ∧ 𝑛 < 𝑙 + 𝑣 ⊃ ¬indom(init, 𝑛) ∧ seleq୳୬୧୲(mem, 𝑛, ())൯. We can show  ⋅; mem; ⟦𝜒, 𝑙 ↦୳୬୧୲ (), … , 𝑙 + 𝑣 − 1 ↦୳୬୧୲ ()⟧ ⊢ ⟦𝜒⟧ ∘ 𝑃 by a straightforward derivation and we get  𝑦: nat; ⟦𝜒, 𝑙 ↦୳୬୧୲ (), … , 𝑙 + 𝑣 − 1 ↦୳୬୧୲ ()⟧ ∘ 𝑃 ⊢ 𝐸 ⇐ 𝑧: 𝐶. 𝑆 [𝐸ᇱ]  by properties of computations. From this  ⊢ (𝜒, 𝑙 ↦୳୬୧୲ (), … , 𝑙 + 𝑣 − 1 ↦୳୬୧୲ ()), 𝜅 ⊳ [𝑥 ↦𝑙: nat]𝐸 ⇐ 𝑧: 𝐶. 𝑆 immediately follows. Q.E.D. 
Definition 18: Heap soundness For every heap 𝜒 and natural number 𝑙, 1. ⋅; mem; ⟦𝜒⟧ ⊢ seleq(mem, 𝑙, −) implies 𝑙 ↦ 𝑣 ∈ 𝜒 for some value 𝑣. 2. ⋅; mem; ⟦𝜒⟧ ⊢ 𝑙 ∈ mem implies 𝑙 ↦ 𝑣 ∈ 𝜒 for some type 𝐴 and value 𝑣. Heap soundness is an important property which is used to prove the progress theorem, but is not proved in this thesis. Although the statement of heap soundness may seem obvious, it cannot be proved simply by induction on 𝜒 because, in the case when 𝜒 = ⋅, we need to prove that the sequent  ⋅; mem; ⊤ ⊢ seleq(mem, 𝑙, −) cannot be derived, which is hard by usual case analysis. Nanevski et al. [15] showed heap soundness for a HTT which was redefined 
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through a small-footprint approach, by constructing denotational semantics of HTT. Heap soundness was also proved by means of a set-theoretic interpretation of HTT [16]. Their proof may possibly be adapted for proof in this thesis, but it should require hard work and a lengthy description. Thus, heap soundness is left unproved in this thesis. 
Theorem 19: Progress 1. If ⊢ 𝐾 ⇒ 𝐴 [𝑁ᇱ], then either 𝐾 = 𝑣: 𝐴 or 𝐾 ↪୩ 𝐾ଵ for some 𝐾ଵ. 2. If ⊢ 𝑀 ⇐ 𝐴 [𝑀ᇱ], then either 𝑀 = 𝑣 or 𝑀 ↪୫ 𝑀ଵ for some 𝑀ଵ. 3. If ⊢ 𝜒, 𝜅 ⊳ 𝐸 ⇐ 𝑥: 𝐴. 𝑄, then either 𝐸 = 𝑣 and 𝜅 = ⋅ or 𝜒, 𝜅 ⊳ 𝐸 ↪ୣ 𝜒ଵ, 𝜅ଵ ⊳ 𝐸ଵ for some 𝜒ଵ, 𝜅ଵ, 𝐸ଵ. 
Proof: The proof is done in the same manner in [14], by straightforward case analysis on 𝐾, 𝑀 and 𝐸. The proof relies on heap soundness, which is not proved in this thesis. 6 Examples In this section, two programs are shown to illustrate how arrays can be used in programs of HTT. For brevity, the variable and heap contexts are omitted for most of the sequents that appear in this section. 
6.1 Array initialization The first example, Figure 3, is a simple function which fills the elements of an array with the 

fillarray : Πp:nat. Πn:nat. 
    { forall m:nat. m < n -> p + m in mem } 
    dummy:unit 
    { forall m:nat. (m < n -> seleqbool(mem, p + m, true)) /\ 
                     (m < p \/ p + n <= m -> share(init, mem, m)) } 
= λp. λn. dia( 
    m' = loopnat

I(zero, 
        m.lt(m, n), 
        m.({𝑃} [p + m]bool = true; {𝑃ଵ} succ m)); 
    () 
) 

where I := forall i:nat. 
    (i < n -> p + i in mem) /\ 
    (i < m' -> seleqbool(mem, p + i, true)) /\ 
    (i < p \/ p + n <= i -> share(init, mem, i)) 

Figure 3: Example of array initialization 



 

20  

Boolean constant value true. The function takes two arguments, the first of which is the loca-tion of the first element and the second is the number of the elements. In the function is a loop, which is encapsulated in a monad. The result of the loop is unit because the function does not return a meaningful result. The precondition of the function asserts that an array of length n starting at the location p is allocated when the computation starts. The postcondition asserts that the elements of the array are the Boolean value true and that locations other than the array are not changed during the computation. The function body is a simple loop, whose loop counter m starts with zero and goes up until lt(𝑚, 𝑛) is not satisfied. In each iteration of the loop, the mth element is as-signed true, and succ 𝑚 is returned as the result of the iteration, which is the next loop counter value. The loop invariant I states a condition which is satisfied between iterations, that is, the array is allocated, elements with index up to the loop counter are assigned true, and other locations are not changed. The propositions 𝑃 and 𝑃ଵ that are yielded in typing are: 𝑃 = hid(init, mem) ∧ [𝑚ᇱ ↦ 𝑚]𝐼 ∧ idୠ୭୭୪(lt(𝑚, 𝑛), true) 𝑃ଵ = 𝑃 ∘ seleqୠ୭୭୪(mem, 𝑝 + 𝑚, true) ∧ ∀𝑛: nat. ¬id୬ୟ୲(𝑛, 𝑝 + 𝑚) ⊃ share(init, mem, 𝑛). One of the sequents which must be proved during type checking is 𝑃ଵ ∧ id୬ୟ୲(𝑚ᇱ, succ 𝑚) ⊢ 𝐼, which confirms that the loop invariant is implied by the postcondition of the iterated computa-tion. After applying some derivation rules, we find that this sequent can be derived from the following three sequents: 𝑃ଵ, id୬ୟ୲(𝑚ᇱ, succ 𝑚), 𝑖 < 𝑛 ⊢ 𝑝 + 𝑖 ∈ mem 𝑃ଵ, id୬ୟ୲(𝑚ᇱ, succ 𝑚), 𝑖 < 𝑚ᇱ ⊢ seleqୠ୭୭୪(mem, 𝑝 + 𝑖, true) 𝑃ଵ, id୬ୟ୲(𝑚ᇱ, succ 𝑚), 𝑖 < 𝑝 ∨ 𝑝 + 𝑛 ≤ 𝑖 ⊢ share(init, mem, i) The first and third ones can be easily derived by basic rules of the assertion logic. The second one requires case analysis on 𝑖: the cases when 𝑖 < 𝑚 and when 𝑖 = 𝑚. Note that we do not have to consider the case when 𝑖 > 𝑚 because 𝑖 < 𝑚ᇱ = succ 𝑚. We can replace 𝑖 < 𝑚ᇱ in the antecedent with  𝑖 ≤ 𝑚 by the cut and identity rules, and then replace it with  𝑖 < 𝑚 ∨



 

21  

id୬ୟ୲(𝑖, 𝑚) by the cut rule and the basic mathematical properties. Now we split the proposition into 𝑖 < 𝑚 and 𝑖 = 𝑚 then use basic derivation rules to show each of them. 
6.2 Bubble sort The second example is bubble sort. In this example, the function takes two arguments as the first example, but the array elements must be natural numbers. The function body is a doubly nested loop which implements bubble sort straightforwardly. Here it is assumed that all the array elements are different in order to simplify the assertions. The more general case where multiple elements may be the same is discussed later. In this example, the notations defined in Figure 4 are used as syntactic sugar to save space. perm(ℎଵ, ℎଶ, 𝑝, 𝑛) denotes that the only change between the two heaps ℎଵ and ℎଶ is permuta-tion of the elements of the n-element array starting at p: that is, locations out of the array are not changed, and every element of the array in ℎଵ has a corresponding element in ℎଶ and vice versa. On the assumption that all the array elements are different, this establishes a one-to-one correspondence of the elements between the two heaps. largest(ℎ, 𝑝, 𝑖) denotes that the 𝑖th element of the array starting at 𝑝 in the heap ℎ is not less than any preceding elements. sorted(ℎ, 𝑝, 𝑖, 𝑗) denotes that the elements with index between 𝑖 and 𝑗 are sorted and not less than any preceding elements. Using these notations, the type T of the sort function can be defined as: 

perm(h1, h2, p, n) := 
    forall i:nat. 
        (i < p \/ p + n <= i -> share(h1, h2, i)) /\ 
        (i < n -> 
            (exists j:nat. j < n /\ forall v:nat. 
                seleqnat(h1, p + i, v) -> seleqnat(h2, p + j, v)) /\ 
            (exists j:nat. j < n /\ forall v:nat. 
                seleqnat(h2, p + i, v) -> seleqnat(h1, p + j, v))) 

largest(h, p, i) := 
    forall j:nat. j <= i -> 
        exists v:nat. exists w:nat. 
            seleqnat(h, p + j, v) /\ seleqnat(h, p + i, w) /\ v <= w 

sorted(h, p, i, j) := 
    forall k:nat. i <= k /\ k < j -> largest(h, p, k) 

Figure 4: Notations used in the sorting example 
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T := Πp:nat. Πn:nat. 
    { forall i:nat. i < n -> seleqnat(mem, p + i, -) } 
    dummy:unit 
    { perm(init, mem, p, n) /\ sorted(mem, p, zero, n) } The precondition and the result type is the same as that of the first example, except that the array elements are restricted to natural numbers. The postcondition asserts that permutation of the given array is the only change in the heap during the computation and that the whole array is sorted (all the elements are arranged in ascending order). Note that the notations and the type above are independent of implementation of sort program and can be used for other sorting algorithms. Now a straightforward implementation of bubble sort, which has the above type T, would be as in Figure 5. The structure of the program is simple, nested loops. The loop counter 𝑖 of the outer loop starts at zero and goes up to the array length 𝑛. After the 𝑖th iteration of the outer loop, the last 𝑖 elements of the array are sorted (i.e. are not swapped any more), which is ex-pressed as the proposition sorted(mem, 𝑝, 𝑘, 𝑛) in the loop invariant I, where 𝑘 = 𝑛 − 𝑖. The loop counter 𝑗 starts at zero and goes up to 𝑛 − 𝑖 − 1. In each iteration of the inner loop, the 𝑗th 

bubblesort : T = λp. λn. dia( 
    i' = loopnat

I(zero, 
        i. lt(i, n), 
        i. (j' = loopnat

J(zero, 
                j. lt(i + succ j, n), 
                j. (v = [p + j]nat; 
                    w = [p + succ j]nat; 
                    dummy' = ifunit(lt(w, v), 
                        [p + j]nat = w; [p + succ j]nat = v; (), 
                        ()); 
                    succ j)); 
            succ i)); 
    () 
) 

where I := 
    perm(init, mem, p, n) /\ 
    (exists k:nat. idnat(i' + k, n) /\ sorted(mem, p, k, n)) 
and J := 
    perm(init, mem, p, n) /\ 
    (exists k:nat. idnat(i + k, n) /\ sorted(mem, p, k, n)) /\ 
    largest(mem, p, j') /\ i + succ j' <= n 

Figure 5: Example of bubble sort 
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and (𝑗 + 1)th elements are looked up and compared. If the 𝑗th element is larger, the two ele-ments are swapped. Then at the end of the iteration, it is shown that the (𝑗 + 1)th element is not less than any preceding elements, which is expressed as largest(mem, 𝑝, 𝑗ᇱ) in J, as well as that it is not larger than any succeeding elements, expressed as a implication from sorted(mem, 𝑝, 𝑘, 𝑛). The proposition 𝑖 + succ 𝑗ᇱ ≤ 𝑛 is required in J to show that the loop counter is exactly 𝑛 −ly 𝑛 − 𝑖 − 1 when the inner loop ends. Without this proposition, we can only show that the loop counter is not less than 𝑛 − 𝑖 − 1, but this is insufficient to show that the loop invariant of the outer loop is satisfied when an iteration of the outer loop ends. To show that the loop invariant holds, we need to show that the range of the array where sort is done is increased by one element during the inner loop. This is done by showing largest(mem, 𝑝, 𝑗ᇱ) and that 𝑗ᇱ is equal to 𝑛 − 𝑖ᇱ. In the above example, it is assumed that all the array elements are different. This is because it is hard to assert that there is no such case that more than one element before sort is corres-ponding to one element after sort. A possible solution to this is to use an additional array to track indices of the swapped elements. Let A be the array we want to sort, which may contain the same elements, and B be an additional array of the same length as that of A. Every element of B is initialized to a natural number equal to its index. When elements of A are swapped, elements of B are swapped correspondingly. Since the elements of B are all different, we can assert a one-to-one correspondence on them between before and after sort. By considering correspondence between the elements of A and of B, we can establish a one-to-one correspon-

perm(h1, h2, p, n) := 
    exists pf:(Πn:nat.nat). biject(pf, n) /\ 
        forall i:nat. 
            (i < p \/ p + n <= i -> share(h1, h2, i)) /\ 
            (i < n -> forall v:nat. 
                seleqnat(h1, p + i, v) <-> seleqnat(h2, p + pf i, v)) 
biject(f, n) := forall k:nat. k < n -> 
    (exists l:nat. l < n /\ idnat(f l, k)) /\ 
    (forall l:nat. l < n -> idnat(f k, f l) -> idnat(k, l)) 

Figure 6: New notations for the type of sort function 
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dence on the elements of A, which establishes that A is correctly sorted. Another possible solution is to extend the type system and allow conditionals in terms. In the extended system, for example, a binary function that returns the minimal value of the arguments would be:  λ𝑥. λ𝑦. if le(𝑥, 𝑦) then 𝑥 else 𝑦 ∶ Π𝑥: nat. Π𝑦: nat. nat Now we can redefine perm(ℎଵ, ℎଶ, 𝑝, 𝑛) as in Figure 6. The correspondence of elements is established by showing existence of a bijective function which maps the index of an element before sort to that of after sort. The expression biject(𝑓, 𝑛) means that the function f is bijec-tive if we account the domain and the codomain of the function to be restricted to natural numbers less than n. Such a function can indeed be constructed as a term using conditionals. Since this function maps the indices of the elements (not elements themselves), the values of the elements are not important in verifying the assertion. 7 Related and Future Work Nanevski et al., the pioneers of HTT, have proposed several variations of HTT to extend the capability of the type system for more sophisticated programs. In [15], polymorphism has been introduced and the notion of separation logic [17, 20] has been adapted to allow assertion about more complicated effects on heaps. In [16], HTT has been refined with the notion of Extended Calculus of Constructions [12], clearing away the syntactic distinction between terms, types and propositions. These improvements are mainly about fertility of types available in HTT. This thesis, on the other hand, improves HTT with respect to the capability of dealing with heaps. Another direction of improvement in HTT may be as to the capability of terms. As illustrated in Section 6, extension of terms with operations, such as conditionals, enables more compli-cated calculation within terms. Since calculation available in the assertion logic depends on that of terms, improvement of the capability of terms will allow more complicated assertion. Other recent researches on combination of functional and imperative programming include work by Honda et al. [10, 1], which integrates higher-order functions into Hoare logic, whereas 
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HTT integrates Hoare logic into functions. Krishnaswami [11] have proposed an extended version of separation logic, which is very similar to HTT but is so simple that it does not sup-port pointer arithmetic. The type system by Birkedal et al. [2] also extends separation logic with higher-order procedures, though computation cannot return a value as the result in their system. Bulwahn et al. [3] have employed the monad of heap in their system and claimed applicability to practical verification tools, but it seems hard in their system to assert inva-riance of part of a heap that is not involved in a computation. Moreover, it seems impossible in these systems to allocate adjacent locations as an array. 8 Conclusions In this thesis, an extended version of HTT was defined to allow typing of programs which deal with adjacent heap locations, where the number of updated locations may be specified at runtime. Changes from the original type system include redefinition of the alloc command, which allocates multiple adjacent locations, and addition of the le and lt operators, which are useful for loop condition. Treatment of heaps in the assertion logic was also redefined so that each predicate asserts about one location rather than the whole heap. As a result, adjacent multiple locations whose number is specified at runtime can be allocated and used as an array in HTT. This thesis also described how to assert inequality of natural numbers and how it is used in combination with quantifiers to assert about adjacent locations and their contents. Soundness of the extended HTT with respect to evaluation was established, assuming sound-ness of the assertion logic. References 1. Berger, M. and Honda, K. and Yoshida, N.: A Logical Analysis of Aliasing in Imperative Higher-Order Functions, J. Func. Prog., Vol. 17, No. 4-5, pp. 473-546 (2007). 2. Birkedal, L. and Torp-Smith, N. and Yang, N.H.: Semantics of Separation-Logic Typing and Higher-Order Frame Rules, Proc. 20th LICS, pp. 260-269 (2005). 3. Bulwahn, L. and Krauss, A. and Haftmann, F. and Erkok, L. and Matthews, J.: Imperative Functional Programming with Isabelle/HOL, LNCS, Vol. 5170, pp, 134-149 (2008). 4. Cartwright, R. and Oppen, D.: The Logic of Aliasing, Acta Informatica, Vol. 15, No. 4, pp. 365-384 (1981). 
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Appendix 1. Type System of HTT 
A 1.1. Hereditary substitution [𝑥 ↦ 𝑀]ௌ୩(𝑥) ≔ 𝑀 ∷ 𝑆 [𝑥 ↦ 𝑀]ௌ୩(𝑦) ≔ 𝑦 if 𝑦 ≠ 𝑥 [𝑥 ↦ 𝑀]ௌ୩(𝐾 𝑁) ≔ 𝐾ᇱ𝑁ᇱ if [𝑥 ↦ 𝑀]ௌ୩(𝐾) = 𝐾ᇱ and [𝑥 ↦ 𝑀]ௌ୩(𝑁) = 𝑁ᇱ [𝑥 ↦ 𝑀]ௌ୩(𝐾 𝑁) ≔ 𝑂ᇱ ∷ 𝑆ଶ if [𝑥 ↦ 𝑀]ௌ୩(𝐾) = λ𝑦. 𝑀ᇱ ∷ 𝑆ଵ → 𝑆ଶ where 𝑆ଵ → 𝑆ଶ ≼ 𝑆 and [𝑥 ↦ 𝑀]ௌ୩(𝑁) = 𝑁ᇱ  and [𝑦 ↦ 𝑁ᇱ]ௌభ୩ (𝑀ᇱ) = 𝑂ᇱ  [𝑥 ↦ 𝑀]୩ (𝐾) ≔ fails otherwise [𝑥 ↦ 𝑀]ௌ୫(𝐾) ≔ 𝐾ᇱ if [𝑥 ↦ 𝑀]ௌ୩(𝐾) = 𝐾ᇱ [𝑥 ↦ 𝑀]ௌ୫(𝐾) ≔ 𝑁ᇱ if [𝑥 ↦ 𝑀]ௌ୩(𝐾) = 𝑁ᇱ ∷ 𝑆ᇱ [𝑥 ↦ 𝑀]ௌ୫(()) ≔ () [𝑥 ↦ 𝑀]ௌ୫(λ𝑦. 𝑁) ≔ λ𝑦. 𝑁ᇱ if [𝑥 ↦ 𝑀]ௌ୩(𝑁) = 𝑁ᇱ   choosing 𝑦 ∉ FV(𝑀) ∪ {𝑥}  [𝑥 ↦ 𝑀]ௌ୫(dia 𝐸) ≔ dia 𝐸ᇱ if [𝑥 ↦ 𝑀]ௌୣ(𝐸) = 𝐸ᇱ [𝑥 ↦ 𝑀]ௌ୫(true) ≔ true [𝑥 ↦ 𝑀]ௌ୫(false) ≔ false [𝑥 ↦ 𝑀]ௌ୫(zero) ≔ zero [𝑥 ↦ 𝑀]ௌ୫(succ 𝑁) ≔ succ 𝑁ᇱ if [𝑥 ↦ 𝑀]ௌ୫(𝑁) = 𝑁ᇱ [𝑥 ↦ 𝑀]ௌ୫(𝑁ଵ + 𝑁ଶ) ≔ plus(𝑁ଵᇱ, 𝑁ଶᇱ) if [𝑥 ↦ 𝑀]ௌ୫(𝑁ଵ) = 𝑁ଵᇱ and [𝑥 ↦ 𝑀]ௌ୫(𝑁ଶ) = 𝑁ଶᇱ [𝑥 ↦ 𝑀]ௌ୫(𝑁ଵ × 𝑁ଶ) ≔ times(𝑁ଵᇱ, 𝑁ଶᇱ) if [𝑥 ↦ 𝑀]ௌ୫(𝑁ଵ) = 𝑁ଵᇱ and [𝑥 ↦ 𝑀]ௌ୫(𝑁ଶ) = 𝑁ଶᇱ [𝑥 ↦ 𝑀]ௌ୫൫eq(𝑁ଵ, 𝑁ଶ)൯ ≔ equals(𝑁ଵᇱ, 𝑁ଶᇱ) if [𝑥 ↦ 𝑀]ௌ୫(𝑁ଵ) = 𝑁ଵᇱ and [𝑥 ↦ 𝑀]ௌ୫(𝑁ଶ) = 𝑁ଶᇱ [𝑥 ↦ 𝑀]ௌ୫൫le(𝑁ଵ, 𝑁ଶ)൯ ≔ lessequal(𝑁ଵᇱ, 𝑁ଶᇱ) if [𝑥 ↦ 𝑀]ௌ୫(𝑁ଵ) = 𝑁ଵᇱ and [𝑥 ↦ 𝑀]ௌ୫(𝑁ଶ) = 𝑁ଶᇱ [𝑥 ↦ 𝑀]ௌ୫൫lt(𝑁ଵ, 𝑁ଶ)൯ ≔ lessthan(𝑁ଵᇱ, 𝑁ଶᇱ) if [𝑥 ↦ 𝑀]ௌ୫(𝑁ଵ) = 𝑁ଵᇱ and [𝑥 ↦ 𝑀]ௌ୫(𝑁ଶ) = 𝑁ଶᇱ [𝑥 ↦ 𝑀]ௌ୫(𝑁) ≔ fails otherwise [𝑥 ↦ 𝑀]ௌୣ(𝑁) ≔ 𝑁ᇱ if [𝑥 ↦ 𝑀]ௌ୫(𝑁) = 𝑁ᇱ [𝑥 ↦ 𝑀]ௌୣ(let dia 𝑦 = 𝐾 in 𝐸) ≔ let dia 𝑦 = 𝐾ᇱ in 𝐸ᇱ if [𝑥 ↦ 𝑀]ௌ୩(𝐾) = 𝐾ᇱ and [𝑥 ↦ 𝑀]ௌୣ(𝐸) = 𝐸ᇱ choosing 𝑦 ∉ FV(𝑀) ∪ {𝑥}  [𝑥 ↦ 𝑀]ௌୣ(let dia 𝑦 = 𝐾 in 𝐸) ≔ 𝐹ᇱ if [𝑥 ↦ 𝑀]ௌ୩(𝐾) = dia 𝐹 ∷ ◇𝑆ଵ and [𝑥 ↦ 𝑀]ௌୣ(𝐸) = 𝐸ᇱ  and ◇𝑆ଵ ≼ 𝑆 and 〈𝑦 ↦ 𝐹〉ௌభ(𝐸ᇱ)  choosing 𝑦 ∉ FV(𝑀) ∪ {𝑥}  [𝑥 ↦ 𝑀]ௌୣ(𝐸) fails otherwise [𝑥 ↦ 𝑀]ௌୟ(α) ≔ α [𝑥 ↦ 𝑀]ௌୟ(bool) ≔ bool [𝑥 ↦ 𝑀]ௌୟ(nat) ≔ nat [𝑥 ↦ 𝑀]ௌୟ(unit) ≔ unit 
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[𝑥 ↦ 𝑀]ௌୟ(Π𝑦: 𝐴. 𝐵) ≔ Π𝑦: 𝐴ᇱ. 𝐵ᇱ if [𝑥 ↦ 𝑀]ௌୟ(𝐴) = 𝐴ᇱ and [𝑥 ↦ 𝑀]ௌୟ(𝐵) = 𝐵ᇱ choosing 𝑦 ∉ FV(𝑀) ∪ {𝑥} [𝑥 ↦ 𝑀]ௌୟ({𝑃}𝑦: 𝐴{𝑄}) ≔ {𝑃ᇱ}𝑦: 𝐴ᇱ{𝑄ᇱ} if [𝑥 ↦ 𝑀]ௌୟ(𝐴) = 𝐴ᇱ and [𝑥 ↦ 𝑀]ௌ୮(𝑃) = 𝑃ᇱ and [𝑥 ↦ 𝑀]ௌ୮(𝑄) = 𝑄ᇱ choosing 𝑦 ∉ FV(𝑀) ∪ {𝑥} [𝑥 ↦ 𝑀]ௌ୮(⊤) ≔ ⊤ [𝑥 ↦ 𝑀]ௌ୮(⊥) ≔ ⊥ [𝑥 ↦ 𝑀]ௌ୮(𝑃 ∧ 𝑄) ≔ 𝑃ᇱ ∧ 𝑄ᇱ if [𝑥 ↦ 𝑀]ௌ୮(𝑃) = 𝑃ᇱ and [𝑥 ↦ 𝑀]ௌ୮(𝑄) = 𝑄ᇱ [𝑥 ↦ 𝑀]ௌ୮(𝑃 ∨ 𝑄) ≔ 𝑃ᇱ ∨ 𝑄ᇱ if [𝑥 ↦ 𝑀]ௌ୮(𝑃) = 𝑃ᇱ and [𝑥 ↦ 𝑀]ௌ୮(𝑄) = 𝑄ᇱ [𝑥 ↦ 𝑀]ௌ୮(𝑃 ⊃ 𝑄) ≔ 𝑃ᇱ ⊃ 𝑄ᇱ if [𝑥 ↦ 𝑀]ௌ୮(𝑃) = 𝑃ᇱ and [𝑥 ↦ 𝑀]ௌ୮(𝑄) = 𝑄ᇱ [𝑥 ↦ 𝑀]ௌ୮(¬𝑃) ≔ ¬𝑃ᇱ if [𝑥 ↦ 𝑀]ௌ୮(𝑃) = 𝑃ᇱ [𝑥 ↦ 𝑀]ௌ୮൫id(𝑁ଵ, 𝑁ଶ)൯ ≔ idᇲ(𝑁ଵᇱ, 𝑁ଶᇱ) if [𝑥 ↦ 𝑀]ௌୟ(𝐴) = 𝐴ᇱ and [𝑥 ↦ 𝑀]ௌ୫(𝑁ଵ) = 𝑁ଵᇱ and [𝑥 ↦ 𝑀]ௌ୫(𝑁ଶ) = 𝑁ଶᇱ [𝑥 ↦ 𝑀]ௌ୮൫seleq(ℎ, 𝑁ଵ, 𝑁ଶ)൯ ≔ seleqᇲ(ℎ, 𝑁ଵᇱ, 𝑁ଶᇱ) if [𝑥 ↦ 𝑀]ௌୟ(𝐴) = 𝐴ᇱ and [𝑥 ↦ 𝑀]ௌ୫(𝑁ଵ) = 𝑁ଵᇱ and [𝑥 ↦ 𝑀]ௌ୫(𝑁ଶ) = 𝑁ଶᇱ [𝑥 ↦ 𝑀]ௌ୮(∀α: type. 𝑃) ≔ ∀α: type. 𝑃ᇱ if [𝑥 ↦ 𝑀]ௌ୮(𝑃) = 𝑃ᇱ [𝑥 ↦ 𝑀]ௌ୮(∃α: type. 𝑃) ≔ ∃α: type. 𝑃ᇱ if [𝑥 ↦ 𝑀]ௌ୮(𝑃) = 𝑃ᇱ [𝑥 ↦ 𝑀]ௌ୮(∀ℎ: heap. 𝑃) ≔ ∀ℎ: heap. 𝑃ᇱ if [𝑥 ↦ 𝑀]ௌ୮(𝑃) = 𝑃ᇱ [𝑥 ↦ 𝑀]ௌ୮(∃ℎ: heap. 𝑃) ≔ ∃ℎ: heap. 𝑃ᇱ if [𝑥 ↦ 𝑀]ௌ୮(𝑃) = 𝑃ᇱ [𝑥 ↦ 𝑀]ௌ୮(∀𝑦: 𝐴. 𝑃) ≔ ∀𝑦: 𝐴ᇱ. 𝑃ᇱ if [𝑥 ↦ 𝑀]ௌୟ(𝐴) = 𝐴ᇱ and [𝑥 ↦ 𝑀]ௌ୮(𝑃) = 𝑃ᇱ choosing 𝑦 ∉ FV(𝑀) ∪ {𝑥} [𝑥 ↦ 𝑀]ௌ୮(∃𝑦: 𝐴. 𝑃) ≔ ∃𝑦: 𝐴ᇱ. 𝑃ᇱ if [𝑥 ↦ 𝑀]ௌୟ(𝐴) = 𝐴ᇱ and [𝑥 ↦ 𝑀]ௌ୮(𝑃) = 𝑃ᇱ choosing 𝑦 ∉ FV(𝑀) ∪ {𝑥} 
plus(𝑀, 𝑁) ≔ ⎩⎪⎨

⎪⎧ 𝑁 if 𝑀 = zero𝑀 if 𝑁 = zerosucc൫plus(𝑀ᇱ, 𝑁)൯ if 𝑀 = succ 𝑀ᇱsucc൫plus(𝑀, 𝑁ᇱ)൯ if 𝑁 = succ 𝑁ᇱ𝑀 + 𝑁 otherwise  
times(𝑀, 𝑁) ≔ ൞ zero if 𝑀 = zero or 𝑁 = zeroplus൫𝑀ᇱ, times(𝑀ᇱ, 𝑁)൯ if 𝑀 = succ 𝑀ᇱplus(times(𝑀, 𝑁ᇱ), 𝑁ᇱ) if 𝑁 = succ 𝑁ᇱ𝑀 × 𝑁 otherwise  
equals(𝑀, 𝑁) ≔ ⎩⎪⎨

⎪⎧ true if 𝑀 = 𝑁 = zerofalse if 𝑀 = zero and 𝑁 = succ 𝑁ᇱfalse if 𝑁 = zero and 𝑀 = succ 𝑀ᇱequals(𝑀,ᇱ 𝑁ᇱ) if 𝑀ᇱ = succ 𝑀ᇱ and 𝑁 = succ 𝑁ᇱeq(𝑀, 𝑁) otherwise  
lessequal(𝑀, 𝑁) ≔ ൞ true if 𝑀 = zerofalse if 𝑀 = succ 𝑀ᇱ and 𝑁 = zerolessequal(𝑀,ᇱ 𝑁ᇱ) if 𝑀ᇱ = succ 𝑀ᇱ and 𝑁 = succ 𝑁ᇱle(𝑀, 𝑁) otherwise  
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lessthan(𝑀, 𝑁) ≔ ൞ true if 𝑀 = zero and 𝑁 = succ 𝑁ᇱfalse if 𝑁 = zerolessthan(𝑀,ᇱ 𝑁ᇱ) if 𝑀ᇱ = succ 𝑀ᇱ and 𝑁 = succ 𝑁ᇱlt(𝑀, 𝑁) otherwise  
natି ≔ nat, boolି ≔ bool, unitି ≔ unit (Π𝑥: 𝐴. 𝐵)ି ≔ 𝐴ି → 𝐵ି ({𝑃}𝑥: 𝐴{𝑄})ି ≔ ◇(𝐴ି) 

A 1.2. Monadic substitution 〈𝑥: 𝐴 ↦ 𝑀〉𝐹 ≔ [𝑥 ↦ 𝑀: 𝐴]𝐹  〈𝑥: 𝐴 ↦ let dia 𝑦 = 𝐾 in 𝐸〉𝐹 ≔ let dia 𝑦 = 𝐾 in 〈𝑥: 𝐴 ↦ 𝐸〉𝐹 〈𝑥: 𝐴 ↦ 𝑐; 𝐸〉𝐹 ≔ 𝑐; 〈𝑥: 𝐴 ↦ 𝐸〉𝐹 〈𝑥 ↦ 𝑀〉ௌ(𝐹) ≔ 𝐹ᇱ if [𝑥 ↦ 𝑀]ௌୣ(𝐹) = 𝐹ᇱ 〈𝑥 ↦ let dia 𝑦 = 𝐾 in 𝐸〉ௌ(𝐹) ≔ let dia 𝑦 = 𝐾 in 𝐹ᇱ if 〈𝑥 ↦ 𝐸〉ௌ(𝐹) = 𝐹ᇱ 〈𝑥 ↦ 𝑐; 𝐸〉ௌ(𝐹) ≔ 𝑐; 𝐹ᇱ if 〈𝑥 ↦ 𝐸〉ௌ(𝐹) = 𝐹ᇱ 
A 1.3. Context formation 

⊢ ∙ ctx   ⊢ Δ ctx Δ ⊢ 𝐴 ⇐ type [𝐴]⊢ (Δ, 𝑥: 𝐴) ctx    ⊢ Δ ctx⊢ (Δ, α) ctx 
Δ; Ψ ⊢ ∙ pctx   Δ; Ψ ⊢ Γ pctx Δ; Ψ ⊢ 𝑃 ⇐ prop [𝑃]Δ; Ψ ⊢ (Γ, 𝑃) pctx  

A 1.4. Type formation Δ, α, Δᇱ ⊢ α ⇐ type [α]തതതതതതതതതതതതതതതതതതതതതതതതതതതത   Δ ⊢ bool ⇐ type [bool]തതതതതതതതതതതതതതതതതതതതതതതതതതതതതത Δ ⊢ nat ⇐ type [nat]തതതതതതതതതതതതതതതതതതതതതതതതതതത   Δ ⊢ unıt ⇐ type [unıt]തതതതതതതതതതതതതതതതതതതതതതതതതതതതത Δ ⊢ 𝐴 ⇐ type [𝐴ᇱ] Δ, 𝑥: 𝐴 ⊢ 𝐵 ⇐ type [𝐵ᇱ]Δ ⊢ Π𝑥: 𝐴. 𝐵 ⇐ type [Π𝑥: 𝐴ᇱ. 𝐵ᇱ]  Δ; mem ⊢ 𝑃 ⇐ prop [𝑃ᇱ] Δ ⊢ 𝐴 ⇐ type [𝐴ᇱ] Δ, 𝑥: 𝐴ᇱ; init, mem ⊢ 𝑄 ⇐ prop [𝑄ᇱ]Δ ⊢ {𝑃}𝑥: 𝐴{𝑄} ⇐ type [{𝑃ᇱ}𝑥: 𝐴ᇱ{𝑄ᇱ}]  
A 1.5. Proposition formation Δ ⊢ 𝐴 ⇐ type [𝐴ᇱ] Δ ⊢ 𝑀 ⇐ 𝐴ᇱ[𝑀ᇱ] Δ ⊢ 𝑁 ⇐ 𝐴ᇱ[𝑁ᇱ]Δ; Ψ ⊢ id(𝑀, 𝑁) ⇐ prop [idᇲ(𝑀ᇱ, 𝑁ᇱ)]  ℎ ∈ Ψ Δ ⊢ 𝑀 ⇐ nat [𝑀ᇱ]Δ ⊢ 𝐴 ⇐ type [𝐴ᇱ] Δ ⊢ 𝑁 ⇐ 𝐴ᇱ[𝑁ᇱ]Δ; Ψ ⊢ seleq(ℎ, 𝑀, 𝑁) ⇐ prop [seleqᇲ(ℎ, 𝑀ᇱ, 𝑁ᇱ)] Δ; Ψ ⊢ ⊤ ⇐ prop [⊤]തതതതതതതതതതതതതതതതതതതതതതതതതത   Δ; Ψ ⊢⊥⇐ prop [⊥]തതതതതതതതതതതതതതതതതതതതതതതതത Δ; Ψ ⊢ 𝑃 ⇐ prop [𝑃ᇱ] Δ; Ψ ⊢ 𝑄 ⇐ prop [𝑄ᇱ]Δ; Ψ ⊢ 𝑃 ∧ 𝑄 ⇐ prop [𝑃ᇱ ∧ 𝑄ᇱ]  Δ; Ψ ⊢ 𝑃 ⇐ prop [𝑃ᇱ] Δ; Ψ ⊢ 𝑄 ⇐ prop [𝑄ᇱ]Δ; Ψ ⊢ 𝑃 ∨ 𝑄 ⇐ prop [𝑃ᇱ ∨ 𝑄ᇱ]  Δ; Ψ ⊢ 𝑃 ⇐ prop [𝑃ᇱ] Δ; Ψ ⊢ 𝑄 ⇐ prop [𝑄ᇱ]Δ; Ψ ⊢ 𝑃 ⊃ 𝑄 ⇐ prop [𝑃ᇱ ⊃ 𝑄ᇱ]  
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Δ; Ψ ⊢ 𝑃 ⇐ prop [𝑃ᇱ]Δ; Ψ ⊢ ¬𝑃 ⇐ prop [¬𝑃ᇱ] Δ, α; Ψ ⊢ 𝑃 ⇐ prop [𝑃ᇱ]Δ; Ψ ⊢ ∀α: type. 𝑃 ⇐ prop [∀α: type. 𝑃ᇱ]   Δ, α; Ψ ⊢ 𝑃 ⇐ prop [𝑃ᇱ]Δ; Ψ ⊢ ∃α: type. 𝑃 ⇐ prop [∃α: type. 𝑃ᇱ] Δ; Ψ, ℎ ⊢ 𝑃 ⇐ prop [𝑃ᇱ]Δ; Ψ ⊢ ∀ℎ: heap. 𝑃 ⇐ prop [∀ℎ. heap. 𝑃ᇱ]   Δ; Ψ, ℎ ⊢ 𝑃 ⇐ prop [𝑃ᇱ]Δ; Ψ ⊢ ∃ℎ: heap. 𝑃 ⇐ prop [∃ℎ. heap. 𝑃ᇱ] Δ ⊢ 𝐴 ⇐ type [𝐴ᇱ] Δ, 𝑥: 𝐴ᇱ ⊢ 𝑃 ⇐ prop [𝑃ᇱ]Δ; Ψ ⊢ ∀𝑥: 𝐴. 𝑃 ⇐ prop [∀𝑥: 𝐴ᇱ. 𝑃ᇱ]    Δ ⊢ 𝐴 ⇐ type [𝐴ᇱ] Δ, 𝑥: 𝐴ᇱ ⊢ 𝑃 ⇐ prop [𝑃ᇱ]Δ; Ψ ⊢ ∃𝑥: 𝐴. 𝑃 ⇐ prop [∃𝑥: 𝐴ᇱ. 𝑃ᇱ]  
A 1.6. Typing of terms Δ ⊢ () ⇐ unıt [()]തതതതതതതതതതതതതതതതതതതതതതത   Δ ⊢ true ⇐ bool [true]തതതതതതതതതതതതതതതതതതതതതതതതതതതതത   Δ ⊢ false ⇐ bool [false]തതതതതതതതതതതതതതതതതതതതതതതതതതതതതത 

Δ ⊢ zero ⇐ nat [zero]   Δ ⊢ 𝑀 ⇐ nat [𝑀ᇱ]Δ ⊢ succ 𝑀 ⇐ nat [succ 𝑀ᇱ] Δ ⊢ 𝑀 ⇐ nat [𝑀ᇱ] Δ ⊢ 𝑁 ⇐ nat [𝑁ᇱ]Δ ⊢ 𝑀 + 𝑁 ⇐ nat [plus(𝑀ᇱ, 𝑁ᇱ)]    Δ ⊢ 𝑀 ⇐ nat [𝑀ᇱ] Δ ⊢ 𝑁 ⇐ nat [𝑁ᇱ]Δ ⊢ 𝑀 × 𝑁 ⇐ nat [times(𝑀ᇱ, 𝑁ᇱ)]  Δ ⊢ 𝑀 ⇐ nat [𝑀ᇱ] Δ ⊢ 𝑁 ⇐ nat [𝑁ᇱ]Δ ⊢ eq(𝑀, 𝑁) ⇐ bool [equals(𝑀ᇱ, 𝑁ᇱ)]   Δ ⊢ 𝑀 ⇐ nat [𝑀ᇱ] Δ ⊢ 𝑁 ⇐ nat [𝑁ᇱ]Δ ⊢ le(𝑀, 𝑁) ⇐ bool [lessequal(𝑀ᇱ, 𝑁ᇱ)] Δ ⊢ 𝑀 ⇐ nat [𝑀ᇱ] Δ ⊢ 𝑁 ⇐ nat [𝑁ᇱ]Δ ⊢ lt(𝑀, 𝑁) ⇐ bool [lessthan(𝑀ᇱ, 𝑁ᇱ)] 
Δ, 𝑥: 𝐴, Δᇱ ⊢ 𝑥 ⇒ 𝐴 [𝑥] var Δ, 𝑥: 𝐴 ⊢ 𝑀 ⇐ 𝐵 [𝑀ᇱ]Δ ⊢ λ𝑥. 𝑀 ⇐ Π𝑥: 𝐴. 𝐵 [λ𝑥. 𝑀ᇱ] ΠI   Δ ⊢ 𝐾 ⇒ Π𝑥: 𝐴. 𝐵 [𝑁ᇱ] Δ ⊢ 𝑀 ⇐ 𝐴 [𝑀ᇱ]Δ ⊢ 𝐾 𝑀 ⇒ [𝑥 ↦ 𝑀ᇱ]ୟ (𝐵) [apply(𝑁ᇱ, 𝑀ᇱ)] ΠE Δ ⊢ 𝐾 ⇒ 𝐴 [𝑁ᇱ]Δ ⊢ 𝐾 ⇐ 𝐴 [expand(𝑁ᇱ)] ⇒⇐    Δ ⊢ 𝐴 ⇐ type [𝐴ᇱ] Δ ⊢ 𝑀 ⇐ 𝐴ᇱ [𝑀ᇱ]Δ ⊢ 𝑀: 𝐴 ⇒ 𝐴ᇱ [𝑀ᇱ] ⇐⇒ apply(𝐾, 𝑀) ≔ 𝐾 𝑀 apply(λ𝑥. 𝑁, 𝑀) ≔ 𝑁ᇱ if [𝑥 ↦ 𝑀]୫(𝑁) = 𝑁ᇱ apply(𝑁, 𝑀) fails otherwise expandୠ୭୭୪(𝐾) ≔ 𝐾 expand୬ୟ୲(𝐾) ≔ 𝐾 expand୳୬୧୲(𝐾) ≔ 𝐾 expandஈ௫:.(𝐾) ≔ λ𝑥. expand(𝐾 𝑀) if expand(𝑥) = 𝑀 choosing 𝑥 ∉ FV(𝐾) expand{}௫:{ொ}(𝐾) ≔ dia(let dia 𝑥 = 𝐾 in 𝑀) if expand(𝑥) = 𝑀 expand(𝑁) ≔ 𝑁 

A 1.7. Typing of computations Δ; 𝑃 ⊢ 𝐸 ⇒ 𝑥: 𝐴. 𝑅 [𝐸ᇱ] Δ, 𝑥: 𝐴; init, mem; 𝑅 ⊢ 𝑄Δ; 𝑃 ⊢ 𝐸 ⇐ 𝑥: 𝐴. 𝑄 [𝐸ᇱ] consequent Δ ⊢ 𝑀 ⇐ 𝐴 [𝑀ᇱ]Δ; 𝑃 ⊢ 𝑀 ⇒ 𝑥: 𝐴. 𝑃 ∧ id(expand(𝑥), 𝑀ᇱ) [𝑀ᇱ] comp 
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Δ; hid(init, mem) ∧ 𝑃 ⊢ 𝐸 ⇐ 𝑥: 𝐴. 𝑄 [𝐸ᇱ]Δ ⊢ dia 𝐸 ⇐ {𝑃}𝑥: 𝐴{𝑄} [dia 𝐸ᇱ] {}I Δ ⊢ 𝐾 ⇒ {𝑅ଵ}𝑥: 𝐴{𝑅ଶ} [𝑁ᇱ] Δ; init, mem; 𝑃 ⊢ 𝑅ଵ Δ, 𝑥: 𝐴; 𝑃 ∘ 𝑅ଶ ⊢ 𝐸 ⇒ 𝑦: 𝐵. 𝑄 [𝐸ᇱ]Δ; 𝑃 ⊢ (let dia 𝑥 = 𝐾 in 𝐸) ⇒ 𝑦: 𝐵. (∃𝑥: 𝐴. 𝑄) [reduce(𝑁ᇱ, 𝑥, 𝐸ᇱ)] {}E Δ ⊢ 𝑀 ⇐ nat [𝑀ᇱ] Δ, 𝑥: nat; 𝑃 ∘ sp(𝑥 = alloc 𝑀ᇱ) ⊢ 𝐸 ⇒ 𝑦: 𝐵. 𝑄 [𝐸ᇱ]Δ; 𝑃 ⊢ (𝑥 = alloc 𝑀; 𝐸) ⇒ 𝑦: 𝐵. (∃𝑥: nat. 𝑄) [𝑥 = alloc 𝑀ᇱ; 𝐸ᇱ] alloc Δ ⊢ 𝐴 ⇐ type [𝐴ᇱ] Δ; init, mem; 𝑃 ⊢ seleqᇲ(mem, 𝑀ᇱ, −)Δ ⊢ 𝑀 ⇐ nat [𝑀ᇱ] Δ, 𝑥: 𝐴; 𝑃 ∧ sp(𝑥 = [𝑀ᇱ]ᇲ) ⊢ 𝐸 ⇒ 𝑦: 𝐵. 𝑄 [𝐸ᇱ]Δ; 𝑃 ⊢ (𝑥 = [𝑀]; 𝐸) ⇒ 𝑦: 𝐵. (∃𝑥: 𝐴ᇱ. 𝑄) [𝑥 = [𝑀ᇱ]ᇲ; 𝐸ᇱ] lookup Δ ⊢ 𝐴 ⇐ type [𝐴ᇱ]Δ ⊢ 𝑀 ⇐ nat [𝑀ᇱ] Δ; init, mem; 𝑃 ⊢ 𝑀ᇱ ∈ memΔ ⊢ 𝑁 ⇐ 𝐴ᇱ[𝑀ᇱ] Δ; 𝑃 ∘ sp([𝑀ᇱ]ᇲ = 𝑁ᇱ) ⊢ 𝐸 ⇒ 𝑦: 𝐵. 𝑄 [𝐸ᇱ]Δ; 𝑃 ⊢ ([𝑀] = 𝑁; 𝐸) ⇒ 𝑦: 𝐵. 𝑄 [[𝑀ᇱ]ᇲ = 𝑁ᇱ; 𝐸ᇱ] mutation 
Δ ⊢ 𝐴 ⇐ type [𝐴ᇱ] Δ; 𝑃 ∧ idୠ୭୭୪(𝑀ᇱ, true) ⊢ 𝐸ଵ ⇒ 𝑥: 𝐴ᇱ. 𝑃ଵ [𝐸ଵᇱ]Δ ⊢ 𝑀 ⇐ bool [𝑀ᇱ] Δ; 𝑃 ∧ idୠ୭୭୪(𝑀ᇱ, false) ⊢ 𝐸ଶ ⇒ 𝑥: 𝐴ᇱ. 𝑃ଶ [𝐸ଶᇱ ]Δ, 𝑥: 𝐴ᇱ; 𝑃ଵ ∨ 𝑃ଶ ⊢ 𝐸 ⇒ 𝑦: 𝐵. 𝑄 [𝐸ᇱ]Δ; 𝑃 ⊢ (𝑥 = if(𝑀, 𝐸ଵ, 𝐸ଶ); 𝐸) ⇒ 𝑦: 𝐵. (∃𝑥: 𝐴ᇱ. 𝑄) [𝑥 = ifᇲ(𝑀ᇱ, 𝐸ଵᇱ, 𝐸ଶᇱ ); 𝐸] if 

Δ ⊢ 𝐴 ⇐ type [𝐴ᇱ]Δ ⊢ 𝑀 ⇐ 𝐴ᇱ [𝑀ᇱ]Δ, 𝑥: 𝐴ᇱ ⊢ 𝑁 ⇐ bool [𝑁ᇱ]Δ, 𝑥: 𝐴ᇱ, 𝑦: 𝐴ᇱ; init, mem ⊢ 𝐼 ⇐ prop [𝐼ᇱ]Δ; init, mem; 𝑃 ⊢ [𝑥 ↦ 𝑀ᇱ, 𝑦 ↦ 𝑀ᇱ]ᇲ୮ ([init ↦ mem]𝐼ᇱ)Δ, 𝑥: 𝐴ᇱ, 𝑦: 𝐴ᇱ, 𝑧: 𝐴ᇱ; init, mem; [𝑦 ↦ 𝑧]𝐼ᇱ ∘ [𝑥 ↦ 𝑧]𝐼ᇱ ⊢ 𝐼ᇱΔ, 𝑥: 𝐴ᇱ, 𝑦: 𝐴ᇱ; init, mem; 𝐼ᇱ ⊢ [init ↦ mem, 𝑥 ↦ 𝑦]𝐼ᇱΔ, 𝑥: 𝐴ᇱ; hid(init, mem) ∧ [𝑦 ↦ 𝑥]𝐼ᇱ ∧ idୠ୭୭୪(𝑁ᇱ, true) ⊢ 𝐹 ⇐ 𝑦: 𝐴ᇱ. 𝐼ᇱ [𝐹ᇱ]Δ, 𝑦: 𝐴ᇱ; 𝑃 ∘ [𝑥 ↦ 𝑀ᇱ]ᇲ୮ (𝐼ᇱ) ∧ idୠ୭୭୪([𝑥 ↦ 𝑦]𝑁ᇱ, false) ⊢ 𝐸 ⇒ 𝑧: 𝐶. 𝑄 [𝐸ᇱ]Δ; 𝑃 ⊢ (𝑦 = loopூ (𝑀, 𝑥. 𝑁, 𝑥. 𝐹); 𝐸) ⇒ 𝑧: 𝐶. (∃𝑦: 𝐴ᇱ. 𝑄) ൣ𝑦 = loopᇲூᇲ (𝑀ᇱ, 𝑥. 𝑁ᇱ, 𝑥. 𝐹ᇱ); 𝐸ᇱ൧ loop 
Δ ⊢ Π𝑥: 𝐴. {𝑅ଵ}𝑦: 𝐵{𝑅ଶ} ⇐ type [Π𝑥: 𝐴ᇱ. {𝑅ଵᇱ }𝑦: 𝐵ᇱ{𝑅ଶᇱ }]Δ ⊢ 𝑀 ⇐ 𝐴ᇱ [𝑀ᇱ]Δ; init, mem; 𝑃 ⊢ [𝑥 ↦ 𝑀ᇱ]ᇲ୮ (𝑅ଵᇱ )Δ, 𝑓: (Π𝑥: 𝐴ᇱ. {𝑅ଵᇱ }𝑦: 𝐵ᇱ{𝑅ଶᇱ }), 𝑥: 𝐴ᇱ; hid(init, mem) ∧ 𝑅ଵᇱ ⇐ 𝑦: 𝐵ᇱ. 𝑅ଶᇱ  [𝐸ᇱ]Δ, 𝑦: [𝑥 ↦ 𝑀ᇱ]ᇲୟ (𝐵ᇱ); 𝑃 ∘ [𝑥 ↦ 𝑀ᇱ]ᇲ୮ (𝑅ଶᇱ ) ⊢ 𝐹 ⇒ 𝑧: 𝐶. 𝑄 [𝐹ᇱ]Δ; 𝑃 ⊢ ൫𝑦 = fixஈ௫:.{ோభ}௬:{ோమ}(𝑓. 𝑥. 𝐸, 𝑀); 𝐹൯ ⇒ 𝑧: 𝐶. ൫∃𝑦: [𝑥 ↦ 𝑀]ᇲ୮ (𝐵ᇱ). 𝑄൯ [𝐺]where 𝐺 is 𝑦 = fixஈ௫:ᇲ.൛ோభᇲ ൟ௬:ᇲ൛ோమᇲ ൟ(𝑓. 𝑥. 𝐸ᇱ, 𝑀ᇱ); 𝐹ᇱ fix 

𝑃 ∘ 𝑄 ≔ ∃ℎ: heap. [mem ↦ ℎ]𝑃 ∧ [init ↦ ℎ]𝑄 sp(𝑥 = alloc 𝑀) ≔ ∀𝑛: nat. ൫𝑛 < 𝑥 ∨ 𝑥 + 𝑀 ≤ 𝑛 ⊃ share(init, mem, 𝑛)൯ ∧  ൫𝑥 ≤ 𝑛 ∧ 𝑛 < 𝑥 + 𝑀 ⊃ ¬indom(init, 𝑛) ∧ seleq୳୬୧୲(mem, 𝑛, ())൯  sp(𝑥 = [𝑀]) ≔ seleq൫mem, 𝑀, expand(𝑥)൯ sp([𝑀] = 𝑁) ≔ seleq(mem, 𝑀, 𝑁) ∧ ∀𝑛: nat. ¬id୬ୟ୲(𝑛, 𝑀) ⊃ share(init, mem, 𝑛) reduce(𝐾, 𝑥, 𝐸) ≔ let dia 𝑥 = 𝐾 in 𝐸 reduce(dia 𝐹, 𝑥, 𝐸) ≔ 𝐸ᇱ if 〈𝑥 ↦ 𝐹〉(𝐸) = 𝐸ᇱ 
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reduce(𝑁, 𝑥, 𝐸) fails otherwise 
A 1.8. Sequent calculus 

Δ; Ψ; Γଵ, 𝑝 ⊢ 𝑝, Γଶ init   Δ; Ψ; Γଵ ⊢ 𝑃, Γଶ Δ; Ψ; Γଵ, 𝑃 ⊢ ΓଶΔ; Ψ; Γଵ ⊢ Γଶ cut Δ; Ψ; Γଵ ⊢ ΓଶΔ; Ψ; Γଵ, 𝑃 ⊢ Γଶ    Δ; Ψ; Γଵ ⊢ ΓଶΔ; Ψ; Γଵ ⊢ 𝑃, Γଶ    Δ; Ψ; Γଵ, 𝑃, 𝑃 ⊢ ΓଶΔ; Ψ; Γଵ, 𝑃 ⊢ Γଶ    Δ; Ψ; Γଵ ⊢ 𝑃, 𝑃, ΓଶΔ; Ψ; Γଵ ⊢ 𝑃, Γଶ  Δ; Ψ; Γଵ, ⊥ ⊢ Γଶതതതതതതതതതതതതതതതതതതത   Δ; Ψ; Γଵ ⊢ ⊤, Γଶതതതതതതതതതതതതതതതതതതത Δ; Ψ; Γଵ, 𝑃, 𝑄 ⊢ ΓଶΔ; Ψ; Γଵ, 𝑃 ∧ 𝑄 ⊢ Γଶ    Δ; Ψ; Γଵ ⊢ 𝑃, Γଶ Δ; Ψ; Γଵ ⊢ 𝑄, ΓଶΔ; Ψ; Γଵ ⊢ 𝑃 ∧ 𝑄, Γଶ  Δ; Ψ; Γଵ, 𝑃 ⊢ Γଶ Δ; Ψ; Γଵ, 𝑄 ⊢ ΓଶΔ; Ψ; Γଵ, 𝑃 ∨ 𝑄 ⊢ Γଶ    Δ; Ψ; Γଵ ⊢ 𝑃, 𝑄, ΓଶΔ; Ψ; Γଵ ⊢ 𝑃 ∨ 𝑄, Γଶ Δ; Ψ; Γଵ ⊢ 𝑃, Γଶ Δ; Ψ; Γଵ, 𝑄 ⊢ ΓଶΔ; Ψ; Γଵ, 𝑃 ⊃ 𝑄 ⊢ Γଶ    Δ; Ψ; Γଵ, 𝑃 ⊢ 𝑄, ΓଶΔ; Ψ; Γଵ ⊢ 𝑃 ⊃ 𝑄, Γଶ Δ; Ψ; Γଵ ⊢ 𝑃, ΓଶΔ; Ψ; Γଵ, ¬𝑃 ⊢ Γଶ    Δ; Ψ; Γଵ, 𝑃 ⊢ ΓଶΔ; Ψ; Γଵ ⊢ ¬𝑃, Γଶ Δ ⊢ 𝐴 ⇐ type [𝐴] Δ; Ψ; Γଵ, [α ↦ 𝐴]𝑃 ⊢ ΓଶΔ; Ψ; Γଵ, ∀α: type. 𝑃 ⊢ Γଶ    Δ, α; Ψ; Γଵ ⊢ 𝑃, ΓଶΔ; Ψ; Γଵ ⊢ ∀α: type. 𝑃, Γଶ Δ, α; Ψ; Γଵ, 𝑃 ⊢ ΓଶΔ; Ψ; Γଵ, ∃α: type. 𝑃 ⊢ Γଶ    Δ ⊢ 𝐴 ⇐ type [𝐴] Δ; Ψ; Γଵ ⊢ [α ↦ 𝐴]𝑃, ΓଶΔ; Ψ; Γଵ ⊢ ∃α: type. 𝑃, Γଶ  ℎᇱ ∈ Ψ Δ; Ψ; Γଵ, [ℎ ↦ ℎᇱ]𝑃 ⊢ ΓଶΔ; Ψ; Γଵ, ∀ℎ: heap. 𝑃 ⊢ Γଶ    Δ; Ψ, ℎ; Γଵ ⊢ 𝑃, ΓଶΔ; Ψ; Γଵ ⊢ ∀ℎ: heap. 𝑃, Γଶ Δ; Ψ, ℎ; Γଵ, 𝑃 ⊢ ΓଶΔ; Ψ; Γଵ, ∃ℎ: heap. 𝑃 ⊢ Γଶ    ℎ′ ∈ Ψ Δ; Ψ; Γଵ ⊢ [ℎ ↦ ℎᇱ]𝑃, ΓଶΔ; Ψ; Γଵ ⊢ ∃ℎ: heap. 𝑃, Γଶ  Δ ⊢ 𝑀 ⇐ 𝐴 [𝑀] Δ; Ψ; Γଵ, [𝑥 ↦ 𝑀]୮(𝑃) ⊢ ΓଶΔ; Ψ; Γଵ, ∀𝑥: 𝐴. 𝑃 ⊢ Γଶ    Δ, 𝑥: 𝐴; Ψ; Γଵ ⊢ 𝑃, ΓଶΔ; Ψ; Γଵ ⊢ ∀𝑥: 𝐴. 𝑃, Γଶ Δ, 𝑥: 𝐴; Ψ; Γଵ, 𝑃 ⊢ ΓଶΔ; Ψ; Γଵ, ∃𝑥: 𝐴. 𝑃 ⊢ Γଶ    Δ ⊢ 𝑀 ⇐ 𝐴 [𝑀] Δ; Ψ; Γଵ ⊢ [𝑥 ↦ 𝑀]୮(𝑃), ΓଶΔ; Ψ; Γଵ ⊢ ∃𝑥: 𝐴. 𝑃, Γଶ  
Δ; Ψ; Γଵ ⊢ id(𝑀, 𝑀), Γଶ    Δ; Ψ; Γଵ, id(𝑀, 𝑁) ⊢ [𝑥 ↦ 𝑁]୮(𝑝), ΓଶΔ; Ψ; Γଵ, id(𝑀, 𝑁) ⊢ [𝑥 ↦ 𝑀]୮(𝑝), Γଶ 

Δ, 𝑥: 𝐴; Ψ; Γଵ ⊢ id(𝑀, 𝑁), ΓଶΔ; Ψ; Γଵ ⊢ idஈ௫:.(λ𝑥. 𝑀, λ𝑥. 𝑁), Γଶ Δ; Ψ; Γଵ, seleq(ℎ, 𝑀, 𝑁ଵ), seleq(ℎ, 𝑀, 𝑁ଶ) ⊢ ıd(𝑁ଵ, 𝑁ଶ), Γଶതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത Δ; Ψ; Γଵ, ıd୬ୟ୲(zero, succ 𝑀) ⊢ Γଶതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത Δ; Ψ; Γଵ, ıd୬ୟ୲(succ 𝑀, succ 𝑁) ⊢ ıd୬ୟ୲(𝑀, 𝑁), Γଶതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത Δ ⊢ 𝑀 ⇐ nat [𝑀] Δ; Ψ; Γଵ, 𝑃 ⊢ [𝑥 ↦ succ 𝑥]୬ୟ୲୮ (𝑃), ΓଶΔ; Ψ; Γଵ, [𝑥 ↦ zero]୬ୟ୲୮ (𝑃) ⊢ [𝑥 ↦ 𝑀]୬ୟ୲୮ (𝑃), Γଶ  Δ; Ψ; Γଵ, ıdୠ୭୭୪(true, false) ⊢ Γଶതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത 
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Δ ⊢ 𝑀 ⇐ bool [𝑀]Δ; Ψ; Γଵ, [𝑥 ↦ true]ୠ୭୭୪୮ (𝑃), [𝑥 ↦ false]ୠ୭୭୪୮ (𝑃) ⊢ [𝑥 ↦ 𝑀]ୠ୭୭୪୮ (𝑃), Γଶ 
Appendix 2. Operational Semantics of HTT 
A 2.1. Heap formation 

⊢ ∙ ⇐ heap   ⊢ 𝜒 ⇐ heap ⊢ 𝐴 ⇐ type [𝐴] ⊢ 𝑙 ⇐ nat [𝑙] ⊢ 𝑣 ⇐ 𝐴 [𝑀] 𝑣 ∉ dom(𝜒)⊢ (𝜒, 𝑙 ↦ 𝑣) ⇐ heap  
A 2.2. Typing of control expressions Δ; 𝑃 ⊢ 𝐸 ⇐ 𝑥: 𝐴. 𝑄 [𝐸ᇱ]Δ; 𝑃 ⊢ ∙ ⊳ 𝐸 ⇐ 𝑥: 𝐴. 𝑄    Δ ⊢ 𝐵 ⇐ type [𝐵ᇱ] Δ; 𝑃 ⊢ 𝜅 ⊳ 𝐸 ⇐ 𝑦: 𝐵ᇱ. 𝑅𝑦 ∉ FV(𝐴) ∪ FV(𝑄) Δ, 𝑦: 𝐵ᇱ; 𝑅 ⊢ 𝐹 ⇐ 𝑥: 𝐴. 𝑄 [𝐹ᇱ]Δ; 𝑃 ⊢ 𝜅; (𝑦: 𝐵. 𝐹; ∙) ⊳ 𝐸 ⇐ 𝑥: 𝐴. 𝑄  
A 2.3. Typing of abstract machines ⋅; ⟦𝜒⟧ ⊢ 𝜅 ⊳ 𝐸 ⇐ 𝑥: 𝐴. 𝑄⊢ 𝜒, 𝜅 ⊳ 𝐸 ⇐ 𝑥: 𝐴. 𝑄  
A 2.4. Evaluation 𝐾 ↪୩ 𝐾ᇱ𝐾 𝑀 ↪୩ 𝐾ᇱ𝑀  𝑀 ↪୫ 𝑀ᇱ(𝑣: 𝐴)𝑀 ↪୩ (𝑣: 𝐴)𝑀ᇱ    𝑀 ↪୫ 𝑀ᇱ𝑀: 𝐴 ↪୩ 𝑀ᇱ: 𝐴 (λ𝑥. 𝑀 ∶ Π𝑥: 𝐴. 𝐵) 𝑣 ↪୩ [𝑥 ↦ 𝑣: 𝐴]𝑀 ∶ [𝑥 ↦ 𝑣: 𝐴]𝐵തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത 𝐾 ↪୩ 𝐾ᇱ𝑀𝐾 ↪୫ 𝐾ᇱ𝑀   𝐾 ↪୩ 𝑣: 𝐴𝐾 ↪୫ 𝑣  𝑀 ↪୫ 𝑀ᇱsucc 𝑀 ↪୫ succ 𝑀ᇱ 𝑀 ↪୫ 𝑀ᇱ𝑀 + 𝑁 ↪୫ 𝑀ᇱ + 𝑁   𝑁 ↪୫ 𝑁ᇱ𝑣 + 𝑁 ↪୫ 𝑣 + 𝑁ᇱ   𝑣ଵ + 𝑣ଶ ↪୫ plus(𝑣ଵ, 𝑣ଶ) 𝑀 ↪୫ 𝑀ᇱ𝑀 × 𝑁 ↪୫ 𝑀ᇱ × 𝑁   𝑁 ↪୫ 𝑁ᇱ𝑣 × 𝑁 ↪୫ 𝑣 × 𝑁ᇱ   𝑣ଵ + 𝑣ଶ ↪୫ times(𝑣ଵ, 𝑣ଶ)  𝑀 ↪୫ 𝑀ᇱeq(𝑀, 𝑁) ↪୫ eq(𝑀ᇱ, 𝑁)   𝑁 ↪୫ 𝑁ᇱeq(𝑣, 𝑁) ↪୫ eq(𝑣, 𝑁ᇱ)  eq(𝑣ଵ, 𝑣ଶ) ↪୫ equals(𝑣ଵ, 𝑣ଶ) 𝑀 ↪୫ 𝑀ᇱle(𝑀, 𝑁) ↪୫ le(𝑀ᇱ, 𝑁)   𝑁 ↪୫ 𝑁ᇱle(𝑣, 𝑁) ↪୫ le(𝑣, 𝑁ᇱ)  le(𝑣ଵ, 𝑣ଶ) ↪୫ lessequal(𝑣ଵ, 𝑣ଶ) 𝑀 ↪୫ 𝑀ᇱlt(𝑀, 𝑁) ↪୫ lt(𝑀ᇱ, 𝑁)   𝑁 ↪୫ 𝑁ᇱlt(𝑣, 𝑁) ↪୫ lt(𝑣, 𝑁ᇱ)  lt(𝑣ଵ, 𝑣ଶ) ↪୫ lessthan(𝑣ଵ, 𝑣ଶ) 𝑀 ↪୫ 𝑀ᇱ𝜒, 𝜅 ⊳ 𝑀 ↪ୣ 𝜒, 𝜅 ⊳ 𝑀ᇱ    𝜒, 𝑥: 𝐴. 𝐸; 𝜅 ⊳ 𝑣 ↪ୣ 𝜒, 𝜅 ⊳ [𝑥 ↦ 𝑣: 𝐴]𝐸ᇱ 𝐾 ↪୩ 𝐾ᇱ𝜒, 𝜅 ⊳ let dia 𝑥 = 𝐾 in 𝐸 ↪ୣ 𝜒, 𝜅 ⊳ let dia 𝑥 = 𝐾ᇱ in 𝐸 𝜒, 𝜅 ⊳ let dıa 𝑥 = (dıa 𝐹): {𝑃}𝑥: 𝐴{𝑄} ın 𝐸 ↪ୣ 𝜒, (𝑥: 𝐴. 𝐸; 𝜅) ⊳ 𝐹തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത 𝑀 ↪୫ 𝑀ᇱ𝜒, 𝜅 ⊳ 𝑥 = alloc 𝑀; 𝐸 ↪ୣ 𝜒, 𝜅 ⊳ 𝑥 = alloc 𝑀ᇱ; 𝐸 
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{𝑖|𝑙 ≤ 𝑖 < 𝑙 + 𝑣} ∩ dom(𝜒) = ∅𝜒, 𝜅 ⊳ 𝑥 = alloc 𝑣; 𝐸 ↪ୣ (𝜒, 𝑙 ↦୳୬୧୲ (), … , 𝑙 + 𝑣 − 1 ↦୳୬୧୲ ()), 𝜅 ⊳ [𝑥 ↦ 𝑙: nat]𝐸 𝑀 ↪୫ 𝑀ᇱ𝜒, 𝜅 ⊳ 𝑥 = [𝑀]; 𝐸 ↪ୣ 𝜒, 𝜅 ⊳ 𝑥 = [𝑀ᇱ]; 𝐸 ⊢ 𝐴 ⇐ type [𝐴ᇱ] 𝑙 ↦ᇲ 𝑣 ∈ 𝜒𝜒, 𝜅 ⊳ 𝑥 = [𝑙]; 𝐸 ↪ୣ 𝜒, 𝜅 ⊳ [𝑥 ↦ 𝑣: 𝐴]𝐸 𝑀 ↪୫ 𝑀ᇱ𝜒, 𝜅 ⊳ [𝑀] = 𝑁; 𝐸 ↪ୣ 𝜒, 𝜅 ⊳ [𝑀] = 𝑁; 𝐸    𝑁 ↪୫ 𝑁ᇱ𝜒, 𝜅 ⊳ [𝑣] = 𝑁; 𝐸 ↪ୣ 𝜒, 𝜅 ⊳ [𝑣] = 𝑁ᇱ; 𝐸 ⊢ 𝐴 ⇐ type [𝐴ᇱ](𝜒ଵ, 𝑙 ↦ 𝑣ᇱ, 𝜒ଶ), 𝜅 ⊳ [𝑙] = 𝑣; 𝐸 ↪ୣ (𝜒ଵ, 𝑙 ↦ᇲ 𝑣, 𝜒ଶ), 𝜅 ⊳ 𝐸 𝑀 ↪୫ 𝑀ᇱ𝜒, 𝜅 ⊳ 𝑥 = if(𝑀, 𝐸ଵ, 𝐸ଶ); 𝐸 ↪ୣ 𝜒, 𝜅 ⊳ 𝑥 = if(𝑀ᇱ, 𝐸ଵ, 𝐸ଶ); 𝐸 𝜒, 𝜅 ⊳ 𝑥 = ıf(true, 𝐸ଵ, 𝐸ଶ); 𝐸 ↪ୣ 𝜒, 𝑥: 𝐴. 𝐸; 𝜅 ⊳ 𝐸ଵതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത 𝜒, 𝜅 ⊳ 𝑥 = ıf(false, 𝐸ଵ, 𝐸ଶ); 𝐸 ↪ୣ 𝜒, 𝑥: 𝐴. 𝐸; 𝜅 ⊳ 𝐸ଶതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത 𝑀 ↪୫ 𝑀ᇱ𝜒, 𝜅 ⊳ 𝑥 = loopூ (𝑀, 𝑥. 𝑁, 𝑥. 𝐹); 𝐸 ↪ୣ 𝜒, 𝜅 ⊳ 𝑥 = loopூ (𝑀, 𝑥. 𝑁, 𝑥. 𝐹); 𝐸 𝜒, 𝜅 ⊳ 𝑥 = loopூ (𝑣, 𝑥. 𝑁, 𝑥. 𝐹); 𝐸↪ୣ 𝜒, 𝜅 ⊳ 𝑥 = ıf([𝑥 ↦ 𝑣: 𝐴]𝑁, 〈𝑧: 𝐴 ↦ [𝑥 ↦ 𝑣: 𝐴]𝐹〉(𝑦 = loopூ (𝑧, 𝑥. 𝑁, 𝑥. 𝐹); 𝑦), 𝑣); 𝐸തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത 𝑀 ↪୫ 𝑀ᇱ𝜒, 𝜅 ⊳ 𝑦 = fix(𝑓. 𝑥. 𝐹, 𝑀); 𝐸 ↪ୣ 𝜒, 𝜅 ⊳ 𝑦 = fix(𝑓. 𝑥. 𝐹, 𝑀ᇱ); 𝐸 𝜒, 𝜅 ⊳ 𝑦 = fıxஈ௫:.{ோభ}௬:{ோమ}(𝑓. 𝑥. 𝐸, 𝑣); 𝐸 ↪ୣ 𝜒, (𝑦: [𝑥 ↦ 𝑣: 𝐴]𝐵. 𝐹; 𝜅) ⊳ [𝑥 ↦ 𝑣: 𝐴, 𝑓 ↦ 𝑁]𝐸തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത where 𝑁 = λ𝑧. dia൫𝑦 = fixஈ௫:.{ோభ}௬:{ோమ}(𝑓. 𝑥. 𝐸. 𝑧); 𝑦൯ ∶ Π𝑥: 𝐴. {𝑅ଵ}𝑦: 𝐵{𝑅ଶ} 


