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ABSTRACT

Hoare Type Theory is a recently proposed type system for reasoning about programs that
contain non-effectful higher-order functions and effectful operations. It integrates Hoare logic
into a typed lambda calculus by encapsulating effectful operations as monads of the type of
Hoare triples, which specifies the precondition, the type of the result value, and the postcondi-
tion of operations. However, in previous work, the number of updated locations is defined in
the assertion statically; therefore, we cannot update multiple locations if the number of the
locations is given at runtime. In this thesis, Hoare Type Theory is extended to allow typing such
programs, by changing the notion of update in the assertion logic. The new system can type
programs that deal with adjacent multiple locations of runtime-defined length, which can be

considered as arrays.
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1 Introduction

Functional programming and imperative programming are two of the most important pro-
gramming paradigms.

In functional programming, computation is performed by evaluating functions and treat-
ment of states is intentionally avoided. Because evaluation of a function does not depend on or
affect states, any function evaluates to the same value for the same argument. This property is
called referential transparency and it establishes independence between functions. Thus, when
we check correctness of a program, we do not have to pay attention to relationships or interac-
tions between functions in the program; check of correctness of the whole program can be
done by simply checking each of the functions in the program.

Lambda calculus is a popular system that embodies basic ideas of the functional program-
ming paradigm. The lambda calculus that contains formal definitions for type checking is called
typed lambda calculus. A variety of typed lambda calculi has been studied for decades. The
most basic one is the simply typed lambda calculus [5], which gives simple types of functions to
the untyped lambda calculus. System F [7, 19] adds polymorphism to the simply typed lambda
calculus by using universal quantification over types. Dependent types [6, 8] are types that
depend on values, which can be considered attributes that qualify the types.

In imperative programming, on the other hand, computation is mainly performed by execut-
ing statements that change the state. A change of a state is called a side effect or simply an
effect. The result of execution of a statement depends on the state, so conditions about the
state between each statement must be examined to check correctness of a program.

Hoare logic [9] is a classic system for reasoning about imperative programs. The main fea-
ture of Hoare logic is the Hoare triple, which comprises a precondition, a postcondition and a
statement. A Hoare triple states that if the precondition is satisfied before the statement is
executed and if the execution terminates, then the postcondition is satisfied after the execution.
In Hoare logic, correctness of a program is checked by ensuring consistency of all the pre- and

postconditions, which are expressed as logical propositions and are called assertions. Part of



the logic that formally defines the way to ensure consistency of assertions is called the asser-
tion logic.

Hoare Type Theory (HTT) [14, 15, 16] is a type theory which integrates Hoare logic into a
dependently typed lambda calculus. In HTT, effectful computations are encapsulated into
monads [13, 21, 22] so that they can appear in non-effectful terms. Those monads have the
type of Hoare triples, which is made up of the precondition, the postcondition and the type of
the result of the effectful computation. We can combine higher-order functions from the lamb-
da calculus with Turing-complete imperative programs and check correctness of the combined
programs using the assertion logic, whereas higher-order functions typically cannot appear in
Hoare logic.

Use of HTT for practical applications, however, has not been studied well. Mutable arrays, for
instance, are one of the most basic data structures that are used in imperative programming,
but HTT cannot effectively handle arrays.

One reason for this is that it lacks the way to allocate arrays. Allocation of arrays is difficult
because the alloc command, which is the primitive computation that allocates a heap location,
is not defined to allocate multiple locations. We need a way to allocate multiple adjacent loca-
tions, which can be used as an array.

Another reason comes from the limitation in the assertion logic. In the assertion logic of the
original HTT [14], the notion of heap updates is represented by the update construct adapted
from [4]; each instance of updates is represented by a corresponding instance of the update
construct. Although multiple updates to the same location can be contracted to one invocation
of the update construct, those to different locations cannot. Therefore, the number of updated
locations in a program is determined statically as specified in the assertion for the entire pro-
gram, making it impossible to type-check such a program that the number of updated locations
is determined at runtime.

In this thesis, the original HTT is extended in order to make it possible to handle arrays by

changing the semantics of the alloc command and redefining treatment of heaps in the asser-



Types A,B,C = a]bool|nat]|unit|Ix:A.B | {P}x: A{Q}
Primitive propositions p u= T| L1 |idy(M,N) |seleq,(h,M,N)
Propositions P,Q,R,I := p|PAQ|PVQ|PDQ|P]|
Vx:A.P|3x:A.P |
Vo type. P | Ja: type. P | Vh:heap. P | 3h: heap. P
Elimination terms K,L = x|KM|M:A
Introduction terms M,N,0 == K|(Q|Ax.M |diaE |true | false |
zero |succM |[M +N|M XN |
eq(M,N) | le(M,N) | 1t(M, N)
Commands c = x=allocM|x=[M],]|[M]y=N |
x = ify(M,E;, E;) | x = loopy(M,y.N,y.F) |
x = fix,(f.y. F, M)

Computations E,F = M|letdiax=KinE|cE
Variable contexts A = - |AxA|A

Heap contexts 4 = - |WY,h

Proposition contexts T’ = - |[P

Here a represents a type variable and h represents a heap variable.

Figure 1: Syntax of Hoare Type Theory

tion logic. Changes in this thesis can be summarized as follows:

® The update construct is no longer used in the assertion logic and assertions about heaps

are expressed by propositions that relate states of each location between effects.

® The changed alloc command allocates multiple adjacent locations whose exact number

is not known at the type checking.

® The terms are enriched with the new le and It comparison operators (standing for

“less-equal” and “less-than” respectively), which are not formally defined in the pre-
vious work [14, 15, 16] but useful for judgment of termination of a loop.

The rest of this thesis is organized as follows. In Section 2, the syntax and its intuitive se-
mantics of the extended HTT are described. Section 3 describes the judgments used in type
checking. Section 4 shows lemmas and theorems on the type system. Section 5 defines the
operational semantics of HTT and shows soundness of the type system. Section 6 gives two
example programs that deal with arrays. Section 7 discusses related and future work about

HTT. Finally, Section 8 concludes the thesis.



2 Syntax

The syntax of HTT is defined as in Figure 1, following [14] with a few changes.

The primitive types of HTT consist of natural numbers, Booleans and unit. HTT has no loca-
tion type because natural numbers are used to represent heap locations. The other types are
the dependent function type and the computation type. In the computation type {P}x: A{Q}, P
is the precondition, A is the type of the result of the computation, and Q is the postcondition,
where A and Q may depend on the variable x, which represents the result value. The precondi-
tion is a condition which must be satisfied to ensure the computation does not get stuck. The
postcondition is a condition which is always satisfied after the computation terminates.

The primitive propositions include the id and seleq predicates. The proposition id,(M, N)
asserts equality of two terms M and N of type A. The proposition seleq,(h, M, N) asserts that
the location M of the heap h contains the term N of type A. Non-primitive propositions may
contain universal and existential quantifications over types, values and heaps. Quantification
on types is adopted from [15] to allow asserting about locations whose content types and
values are unknown. To this end, types and variable contexts are also extended with type
variables. However, the type variables are not used to achieve polymorphism in this thesis
because it is beyond the scope of this thesis.

The following notations are defined to simplify propositions, in the same way as in [15]:

MEh = Jo: type. v: a. seleqq (h, M, v)
Meh :=—(M € h)
PoQ =P>2QANQ>P)

seleqq(h,M,—) = 3x:A.selequ(h, M, x)

share(hq, h,, M) = Va: type. Vv: a.seleqy(hy, M, v) & seleqy(hy, M, v)

hid(h,, h,) := Vx: nat. share(hy, h,, x)
M € h denotes that the location M is allocated in the heap h. share(hq, h,, M) denotes that the
content of the location M is the same between the two heaps h, and h,. hid(h4, h,) denotes

that the two heaps are identical.



A heap, semantically, is a finite partial function which maps a natural number to a pair of a
value and its type. Syntactically, however, heaps only appear in the form of heap variables,
which each denote the whole state of a heap at a particular moment between effects. This is
one of the differences from [14], which had a special construct (upd) to denote update of a
heap. In this thesis, such a construct is not used. Instead, the seleq predicate, adopted from [15],
is defined as a primitive proposition and is used to assert the content of a location at a particu-
lar moment.

Terms include primitive values such as true and (), and some arithmetic operations. The
comparison operations eq, It and le evaluates to true or false according to whether their first
operand is equal to, less than and either equal to or less than their second operand respectively.
The term dia E is an encapsulated computation. Terms are divided into two categories, i.e.
elimination terms (or elim terms) and introduction terms (or intro terms), which correspond
to the two forms of the typing judgments for terms. This approach is due to Watkins et al [23].

Computations are the effectful part of HTT. Computations that can be separated by semico-
lons are especially called commands.

® The command x = alloc M allocates adjacent M heap locations and binds the varia-

ble x to the first location.

® x = [M], looks up the content of the location M and [M], = N updates the content of

the location to N, where A is the type of the content value.
® The conditional command x = if,(M, E;, E,) binds x to the result of the computation
E; or E, according to the value of the Boolean term M.

® The loop command x = loop,(M,y.N,y.F) executes the computation F while the
Boolean term N evaluates to true. Each time before N is evaluated or F is computed, the
free variable y in N or F is replaced with the loop counter. The initial loop counter is M
and the result of F becomes the next loop counter after each iteration. When N evaluates
to false, x is bound to the then loop counter. The proposition I expresses the loop inva-

riant which denotes the effect of the loop and the type A is the type of the loop counter,



which is also the type of the result of F.

® The fixpoint command x = fix,(f.y.F,M) applies the fixpoint of the equation
f =Ay.diaF to M and binds x to the result of it. The type 4 is the type of the fixpoint.

® In the computation letdiax = K in E, the term K must evaluate to an encapsulated
computation, which is subsequently executed. The result of the computation is bound to

the variable x and then the computation E is executed.

3 Type System
The basic structure of the type system is described in this section, though most part of it re-
mains the same as in [14]. The full definition of the type system is presented in the appendix.
The type system contains several kinds of judgments. Some judgments synthesize the ca-
nonical form of the expression on which the judgment is performed. The canonical form is the
semantically equivalent expression which is in the normal and eta-long form, that is, beta
reduction and eta expansion are fully performed on all its subterms. The intention of introduc-
ing the canonical form is that terms that are syntactically different but semantically equivalent
are canonicalized to the same form (except for alpha-equivalence), so that in the assertion logic
semantic equivalence of terms can be checked by simply comparing the syntactic structures of
their canonical forms (after proper alpha-conversions). In the judgments, the synthesized
canonical forms are given in brackets and usually denoted by primed variables.
Judgments on well-formedness of expressions are in the following forms:
F A ctx
A+ A <typelA]
A+ P < prop [P']
The type checking judgments have the following forms:
A+-K=A[N']
AFMe&A[M]
MPHE=x:AQ[E']
MPHE <x:A.Q[E']

6



The other judgment is the sequent, which is used in the assertion logic:
AW ET,
3.1 Hereditary and monadic substitutions

The process of canonicalization of a term includes repeated beta reduction of the subterms.
To achieve this, a special substitution operation is used, which is called hereditary substitution.
Hereditary substitution differs from the normal substitution operation in that if substitution
makes a new redex it is immediately reduced by recursively applying hereditary substitution.
To ensure that hereditary substitution terminates despite recursion, the type of the substituted
term is used as a metric. If the metric does not satisfy the specific conditions, hereditary subs-
titution fails, and so does the whole type checking.

A hereditary substitution is denoted as [x = M]5(X), where S is the type of M which is used
as the metric, and X is an expression in which substitution is performed. * is one of a, k, m, e,
and p, and specifies the syntactic category of X: a for types, k for elim terms, m for intro terms,
e for computations, and p for propositions. Precisely, S is not a type, but the shape of a type,
which can be taken as an abstract structure of the type. Using the shape of types (rather than
types themselves) as the metric makes simpler the definition of and proofs about hereditary
substitutions. The shape of a type A is formally denoted as A~, but is often written simply
as A if not ambiguous.

While testing the metrics in the substitution, it is required to check if a shape is a syntactic
subexpression of another shape. This check can obviously be done inductively in finite time. It
is denoted as S; < S, that§; is a subexpression of S,, and S; < S, thatS; is a proper subex-
pression of S,.

As beta reduction on terms is calculated by term substitution, beta reduction on computa-
tions is calculated by a proper substitution operation adopted from [18], which is called mo-
nadic substitution. The monadic substitution {x: A » E)F denotes substitution of the free
variable x in the computation F with the result of computation E. Monadic substitution also

has a hereditary version of it, which is denoted as {(x — E)gF.



The rest of this subsection shows some properties of hereditary substitutions, following
[14].
Theorem 1: Termination of hereditary substitutions
1. If[x > M]X(K) = N':: S;,thenS; < S.
2. [x > M](X) and (x —» E)¢(F) terminate in finite time, either in success or in failure.
Proof: The first statement is by induction on K. The second is by nested induction on the
structure of S and on that of X. The cases for the newly added operator terms le(M, N) and
1t(M, N) are analogous to that of eq(M, N).
Lemma 2: Hereditary substitutions and heads
If [x = M]X(K) exists, then it is an elim term K’ iffhead(K) # x and otherwise it is an intro

term M’ :: S’, where the head of an elim term is defined as:

head(x) =x
head(K N) = head(K)

Proof: By induction on the structure of K.

Lemma 3: Trivial hereditary substitutions

If x ¢ FV(X), then [x » M]3(X) = X.

Proof: By induction on the structure of X.

Lemma 4: Hereditary substitutions and primitive operations

Assuming that [x » M]T(N;) and [x » M]T(N,) exist, the following equations hold:
1. [x » MI?(plus(Ny, Ny)) = plus([x = MIP(N,), [x » MIP(N,))

2. [xw M]’S“(times(Nl,Nz)) = times([x - M]P(Ny), [x » M];“(Nz))

3. [x » M]P(equals(N;, N,)) = equals([x » M]P(Ny), [x » M]T(N,))

4. [x » M]P(lessequal(Ny, N;)) = lessequal([x = M]P(Ny), [x » M]T(N,))
5. [x » M]?(lessthan(Ny, N,)) = lessthan([x » M]T(N,), [x » M]P(N,))
Proof: By induction on the structure of N; and N,.

Lemma 5: Composition of hereditary substitutions

1. Ify@&FV(M,), and [x » My|3(X) =Xy, [y » M;]5(X) =X, and [x » M]3 (M) exist,



then [x = Mo]3(X1) = [y = [x = Mo]3' (M1)]5(Xo).
2. If yeFV(M,), and [x » Myl5(F) =F,, (y » E{)g(F) = F; and [x » My]5(E;) exist,
then [x = Mo]3(F) = (y = [x » Mo]3(E1))s(Fo).
3. Ifx ¢ FV(F),and (y » E;)g(F) = Fiand (x » E,)4(E,) exist,
then (x = Eg),(F1) =y = (x » Eo)4(E1))p(F).
Proof: By nested induction, first on the shapes A~ and B, then on the structure of the expres-
sions in which substitution is performed.
3.2 Terms

The type checking judgment for intro terms has the form A - K = A [N'] and infers the type
A of the term K. The judgment for elim terms has the form A - M < A [M'] and checks the
term K against the given type A.

The auxiliary functions plus, times, equals, lessequal and lessthan are used to compute canon-
ical forms of corresponding primitive operation terms. The last two are the ones which were
newly added in this thesis and have definitions analogous to that of equals. They are used in
canonicalization of the newly added terms le and It.

Since locations in HTT are just natural numbers, the capability of natural number arithmetic
directly defines the capability of pointer arithmetic. The natural number arithmetic of HTT
includes addition, multiplication, and comparison, which are mostly enough for pointer arith-
metic to deal with arrays. The arithmetic is also used in the assertion logic through canonicali-
zation of terms.

3.3 Computations

The judgments for computations also have two forms: A;P - E = x: A.Q [E'] and A; P +
E < x:A.Q [E']. The former checks that the result type of the computation E is A and calcu-
lates the strongest postcondition Q from the precondition P. The latter checks if Q is a valid
postcondition for the computation E as well as if A is a valid result type of E. The assertion logic,
which is described below, is used for the latter. That is, it is checked if the calculated strongest

postcondition implies the given postcondition Q. In both the judgments, A and Q may depend



on the variable x, which denotes the result of the computation.

The special heap variables mem and init are used in pre- and postconditions. In precondi-
tions, mem denotes the heap just before the computation. In postconditions, init denotes the
heap just before the computation and mem the heap just after the computation.

As the notion of heaps is changed in this thesis, the strongest postconditions calculated by
the typing rules are changed accordingly. For instance, the strongest postcondition of update is
defined as:

sp([M], = N) := seleq,(mem, M, N) A Vn: nat. =id,,(n, M) D share(init, mem, n).
This states that the location M contains the term N of type A after the update and that any other
location is not changed in the update.

The major change in the definition of the computations from [14] is the definition of the al-
loc command. In [14], this command allocates a new heap location and initializes it with the
given argument. Since an arbitrary unused location is selected for the new location, one cannot
assume any ordering or continuity between locations allocated by multiple invocations of the
command. Therefore, one cannot allocate adjacent locations, which we want to use as an array.
In this thesis, on the other hand, the alloc command allocates multiple adjacent locations at a
time and the number of the locations can be specified by the argument of the natural number
type. This allows allocation of an array whose length is statically unknown. The contents of the
newly allocated locations are initialized to the unit value. Since strong update is possible in this
type system, the initial values and their types are not important.

The strongest postcondition calculated by the type checking for the alloc command is de-
fined as:

sp(x = alloc M) := Vn:nat. (n < xVx+ M < n D share(init, mem, n)) A
(x <nAn<x+ M D =indom(init, n) A seleqypir(mem, n, ())).
This states that M locations, the first of which is x, are allocated and initialized to the unit value.
The proposition share(init, mem, n) states that the location n is not changed by the alloc com-

mand, where nis a location that is not any of the locations allocated. The proposition
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—indom(init, n) A seleqyui:(mem,n, ()) states that the location n is not allocated before the
command and that the location contains the unit value after the command, where n is one of
the locations allocated by the command.
3.4 Assertion logic

The assertion logic is a simple sequent calculus. Some derivation rules about heaps which
were in [14] are removed in this thesis because they are no longer needed now that heap
expressions are not used in the assertion logic. Instead, universal and existential quantifica-
tions on types are adopted from [15]. Universal quantification on types is essential for the
definition of the share expression because the expression is used to relate arbitrary locations,
the type of whose content is unknown.

Inequality of natural numbers can be expressed as the following in the assertion logic:

M<N:

Jx:nat. idp, (M + x, N)

M < N:=succM <N

Some mathematical properties about inequality are shown in the next section.

4 Properties

This section shows basic properties of HTT. Most of the proofs for these properties can be
done in the same manner as in [14], and thus are not given in detail. Especially, in case analysis,
cases for the newly added operator terms le and It are analogous to that of the term eq.

At the last of this section are basic mathematical properties, which are not mentioned in [14],
but should be worth mentioning to convince the reader that the logic is strong enough to
validate the example programs shown in Section 6.

Theorem 6: Relative decidability of type checking
If validity of every assertion sequent is decidable, then all the typing judgments of HTT are
decidable.
Proof: By induction on the structure of the typing judgment.
As stated in the theorem, decidability of the whole type system depends on the assumption

that the assertion logic is decidable. Decidability of the assertion logic is still not established in
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this thesis.
Lemma 7: Context weakening and contraction
Let A - ] be a judgment of HTT that depends on a variable context A, and A; W - ] be a judg-
ment that depends on a variable context A and a heap context W.
1. IfA+JandA+ A < type [A], then A, x: A + .
2. IfAW -], thenA; W, h ).
3. IfAx:iA AL, y:A A, -], thenA x: A AL [y o x]A; F [y - x]].
4. IfNW, W, g9 ¥, F ], then A; W, 0 W, W, - [g = h]J.
Proof: By straightforward induction on the derivation of J.
Lemma 8: Closed canonical forms of primitive types
1. If+ M & nat[M], then M = succ™ zero for some natural number n.
2. If+ M < bool [M], then M = true or M = false.
Proof: By induction of the structure of M.
Lemma 9: Properties of variable expansion
1. IfAx:A A -K = B[K], then [x » expandA(x)]'j(K) exists, and
(a) if [x = expand,(x)]5(K) = K, thenK' = K
(b) if [x = expand,(x)]$(K) = N" :: S, then N’ = expandz(K) and S = B~.
2. IfAx:AA, - N & B [N], then [x » expand,(x)]T(N) = N.
3. IfAx:AA;PHE < y:B.Q[E] then [x » expand,(x)]$(E) = E.
4. IfA x:A A, + B < type [B], then [x » expand,(x)]3(B) = B.
5. IfAx:A,A; W F P < prop [P], then [x - expand,(x)]5(P) = P.
6. IfA+ M &< A[M], then [x —» M]¥(expand,(x)) = M.
7. IfAP+E < x:A.Q[E], then (x » E)4(expand,(x)) = E.
Proof: By mutual nested induction on the structure of the type A and the substituted expres-
sion.
Lemma 10: Identity principles

1. IfA;W+ P < prop [P], then A; W; T, P + P, T,

12



2. IfAW;T,idg(M,N) F [x » M]g(P),FZ and [x » N]g(P) is well-formed and canonical,
then A; W; Ty, idg (M, N) F [x - N]5(P), I
3. IfA;W; Ty, hid(hy, hy) + [ - hy]P, T, then A; W; Ty, hid(hy, hy) F [h = hy]P, T
4. IfAF K= A[K], then A I expand,(K) < A [expand,(K)].
Proof: By simultaneous induction on the structures of P and A. The difference from [14] is that
seleq, not hid, is the primitive proposition that asserts on heaps. The case analysis for the
statement 3 is slightly changed accordingly. Instead of proofing the case when P = hid(h, h'),
we need to prove the case when P = seleq,(h, M, N). This case is easily shown by the defini-
tion of hid(h4, h,).
Lemma 11: Properties of computations
IfA;P+E < x:A.Q [E'] and
1. ifA;x:A;init, mem; Q + R,then A;P + E & x: A.R [E'].
2. if A;init, mem; R + P,then A;R - E & x: A.Q [E'].
3. ifA;init, mem + R < prop [R],thenA;Re P +E & x: A.(R o Q)[E'].
Proof: The first statement is by simple deduction using the derivation rule for A;P - E <
x: A.Q [E'] and the cut rule. The second and third are by induction on the structure of E.
Lemma 12: Canonical substitution principles
Assuming A+ M < A[M]and + (A x: A, A;)ctx and that the context A] = [x —» M],(4,) ex-
ists and is well-formed (i.e. - (4, A}) ctx), the following statements hold:
1. If Ax:A.A K = B[K], then [x » M]5(K) and B’ = [x = M]3(B) exist, B' is well-
formed (i.e. A, A} + B’ < type [B']) and
(@) if[x = M]5(K) = K',then A, A} - K' < B’ [K']
(b) if[x = M]X(K) = N’ :: S,thenA,A; - N' & B'[N']and S = B™.
2. IfAx:A, A N < BJ[N]and if the type B’ = [x » M]3(B) exists and is well-formed
(i.e. A, A7 - B' & type [B']), then A A + [x » M]F(N) & B’ [[x » M]T(N)].
3. If Ax:AA;P+HE<y:B.Q[E] and y € FV(M) and if the propositions P' =[x —

M]B (P)and Q' =[x — M]E(Q) and the type B’ = [x » M]3 (B) exist and are well-formed,
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then A, AL P + [x » MIS(E) € y:B".Q' [[x » M]S(E)].

IfA x: A, Ay + B < type [B], then A, A} + [x » M]3(B) < type [[x » M]3(B)].
IfA,x: A A; W - P < prop [P], then A, A3 W + [x — M]5(P) < prop [[x - M]E(P)].

If A,x:AA;W;T; HT, and the proposition context I} =[x —» M],4(I}) and T, = [x »
M] ,(T,) exist and are well-formed, then A, A}; W; T} + T;y.

If A;P+E<x:A.Q[E] and A, x:A;Q + F & y: B.R [F] where x ¢ FV(B) UFV(R), then

AP {(x—E),(F) €y:B.R[{x » E),(F)].

Proof: By nested induction, first on the structure of the shape of 4, and next on the derivation

of the typing or sequent judgment in each case.

Lemma 13: Idempotence of canonicalization

1.

2.

6.

IfA+ K = A[K'] where K' is an elim term, then A - K' = A [K'].
IfA+ K = A[N'] where N' is an intro term, then A - N’ € A [N'].
IfA+N<A[N'],thenA - N’ < A[N'].

IfAP +E & x:A.Q [E'], then AP + E' = x: A.Q [E'].

IfA+A < type[A'],thenA - A’ < type [A'].

IfA; ¥+ P < prop [P'], then A; W + P’ < prop [P'].

Proof: By induction on the structure of the typing derivations.

Lemma 14: General substitution principles

Assuming A - A < type [A'] and A + M < A’ [M'], the following statements hold:

1.

IfA,x: A, A, - K = B [N'],

then A, [x = M'],(8,) + [x = M:A]K = [x » M'1A(B) [[x = M'T2(N)].

IfA,x:A',A, - N & B[N'],

then A, [x » M'],(A,) + [x = M:AIN < [x » M'3(B) [[x » M'T2(N")].

IfAx:A,A;; P +E < y:B.Q [E'l and y & FV(M), then A, [x = M'],(4,); [x = M']5(P) -
[x = M:A]E & y: [x = M']5(B). [x = M']5(Q) [[x » M']5(E)].

IfA,x: A", A, - B & type [B'],

then A, [x » M'],(A)) + [x » M: A]B < type [[x » M']5(B")].
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5. IfAx:A'A;; W+ P < prop [P'],
then A, [x » M']4(A,); ¥ + [x » M: A]P < prop [[x - M’]E(P’)].

6. IfA;,PHE&x:A.Q[E'landA,x:A";Q + F & y:B.R [F'] where x € FV(B) U FV(R),
thenA;P H(x:A— EYF «y:B.R[(x » E"),(F")].

Proof: By simultaneous induction on the structure of the derivations.

Theorem 15: Basic mathematical properties

The following sequents can be derived by the rules in the assertion logic:

1. AW;T,idga(M; + N, M, + N) Fidpae (Mg, M), T,

2. MNW;Ty,idpae(M + N, N) Fidy (M, zero), T,

3. AW Fidy(M +N,N+M),T,

4. MW T Fidy(M X N,N X M), T,

5. AW Fidpa((My + My) + Mg, My + (M + M3)), T

6. AWTy F idgac((My X My) X M3, My X (My X M3)), T,

7. AT Fidga((My + My) X N,My X N + My X N), T,

8. A;W;Ty,idp,(M + N,zero)  id,,:(M, zero), T,

9. AW T,M<NN<MtFid,,«(M,N),T,

10. AW I FM < N,N<M,T,

11. AW, M < N +idy(M,N),M <N, T,

12. A W5 T, id g (M, suce M) + Ty,

13. AW Ty, idpac(M, succ(M + N)) + T,

14. WL, M SN N<MFET,

15. A;W; Ty, idyoo (eq(M, N), true) + id,,(M,N), T,

16. A;W; T, idpe0(eq(M, N), false), id, (M, N) + T,

17. A W; T, idpgo (Ie(M, N), true) - M < N, T,

18. A;W; Ty, idpgo (Ie(M, N), false), M < N T,

19. A;W; T, idpoo (It(M, N), true) - M < N, T,

20. A;W; Ty, idpeo (IL(M, N), false), M < N T,
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Values v,l == () |Ax.M |diaE | true | false | zero | succv
Heaps x = |xlegv

Continuations Kk u=-|x:A.E;k

Control expressions p =k E

Abstract machines u uw=yxykcFE

Figure 2: Syntax for operational semantics
Proof: These sequents can be derived by using the rule for induction on natural numbers:

A+ M <nat[M] ATy, P+ [x - succx]h, (P),T,
A W3 Ty, [x - zerolh (P) + [x = M]E_ (P), T,

To derive the first above sequent, for instance, we first use the cut rule to change the sequent
to A; W5 Ty Fidpa(My + N, M, + N) D idp,(M;, M), T,. Then, after applying induction on N, we
have to derive the following two sequents:

® AW Fidpac(My, My) O idpat(My, M), T

® AW, idy(My +n, M, +n) 2 idy. (Mg, My)

idpac(succ(My + n), succ(M, + n)) D idpy(Mq, M), T,

The former is the case when N = zero, which is shown by the identity principles. The latter is
the inductive step, which is also easily derived by the id rule and other basic rules.
The last six sequents need nested induction to derive them. For example, the sequent 15 is
derived from Vn:nat.idy,, (eq(m, n), true) > id,,(m,n), by induction first on m and second
on n.

The sequent 10 should require the most complicated proof. This is derived by induction
onm in Ip: nat.idy,c(m + p, N) vV 3g: nat.id, (N + g, m). The case when m = zero should be
obvious. In the induction step, we need to show the following two:

® 3dp:nat.idy,((m + p, N) F Ir:nat.id,, (succ(m + r), N) V Is: nat.id, (N + s, succm)
® 3Jg:nat.id,, (N + q,m) F 3r:nat.id,, (succ(m + r), N) V 3s: nat. id, (N + s, succm)
For the latter, we simply instantiate q and give succ q as a witness to s. For the former, we need
case analysis on p. In the case when p = zero, the witness s = succ zero suffices for id (N +
s,succm), and in the case when p > zero, succr = p suffices id,, (succ(m + r), N). We ac-

tually need induction on p to perform case analysis within the assertion logic.
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The other above sequents can be derived by similar inductions, therefore the proof for them

are omitted.

5 Operational Semantics

In this section, an operational semantics for HTT is defined, to establish soundness with re-
spect to evaluation.

Firstly, additional syntax is defined for the operational semantics as in Figure 2. The defini-
tion is the same as in [14]. A heap is a mapping from locations to values. A continuation is a
sequence of computations with one parameter each, where every computation receives a
parameter value and passes the result of the computation to the next one. A control expression
is a continuation with a computation, where the result of the computation is passed to the
continuation. An abstract machine is a pair of a heap and a control expression, which
represents a state during evaluation.

Control expressions are needed to keep the order of computations. The typing judgment for
control expressions has the form of A; P + k = FE < x: A. Q, which is similar to that for compu-
tations. The typing judgment for abstract machines has the form of - y,k = E & x: A. Q and
this is equivalent to -; [x] + k = E < x: A. Q by definition, where [x] is an expression which
converts a heap into a proposition that expresses the heap:

[ =T
Ly, l =4 v] = [x] Aselequ(mem,l,v)

Evaluation is defined using three types of judgments; one for elim terms K <y K', another
for intro terms M &, M’', and the other for abstract machines y,x = E <, y',k’ = E'. Each
judgment denotes one step of evaluation.

Lemma 16: Replacement

1. IfAPHik>E<x:A.Q, thenA;P+E < y:B.R[E'] for some y,B,R,E' and if A;; P, +
K1 &> E; & y:B.R for some A; extending A, then A; P F k56 & E; & x:1A.Q.

2. IfA;PrFy:B.F;k>FE < x:A.Q,thenA;P -k (y:B - E)F < x:A.Q.

Proof: By straightforward induction on the structure of k.
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Theorem 17: Preservation

1. IfKyorKyand+ K, = A[N’'],then+ K; = A[N'].

2. IfMyo, M,and+ My & A[M'],then+ M; &« A[M'].

3. Ifpgoecumiand b pyy & x:A.Q,then - pu; € x:A.Q.

Proof: The first two statements are proved by induction on the derivation of the evaluation
judgment. The last one is proved by case analysis on the derivation of the typing judgment,
using the first two statements and the replacement lemma. Here only the case when p, =
Xo Ko =y = allocv; E is shown because the proof for the other cases are the same as in [14].

In this case, u; = (%, »unit Oy -, L +v =1 405 O),k & [x & L:nat]E. From the typing
of uy, we have ;[xol +xo >y =allocv;E & x:A.Q. By the replacement lemma, there
ist z,C,S,E' such that -;[xo] -y =allocv;E < z:C.S[E']. By the typing rules for alloc,
y:nat;[xo] e P + E & z:C.S [E'], where

P = Vn:nat. (n < IV 1+ v < n > share(init, mem, n)) A

(l <nAn <l+ v > aindom(init, n) A seleqyp;i(mem, n, ())).

We can show -;mem; [xo,! Punit O, -, L+ v =1 40 OT F [xol e P by a straightforward
derivation and we get y:nat; [xo,! =unit O, -, L +v =14t Ol e P HE & 2:C.S[E'] by
properties of computations. From this F (xo,l Punic O, -, [+ Vv =1 4 O), k& [x
I:nat]E < z: C.S immediately follows. Q.E.D.
Definition 18: Heap soundness
For every heap y and natural number [,
1. - mem;[x] + seleq,(mem,l, —) implies l =, v € y for some value v.
2. -;mem; [x] + I € mem implies [ », v € y for some type A and value v.

Heap soundness is an important property which is used to prove the progress theorem, but
is not proved in this thesis. Although the statement of heap soundness may seem obvious, it
cannot be proved simply by induction on y because, in the case when y = -, we need to prove
that the sequent -; mem;T I selequ(mem,l,—) cannot be derived, which is hard by usual

case analysis. Nanevski et al. [15] showed heap soundness for a HTT which was redefined
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fillarray : Mp:nat. MNn:nat.
{ forall m:nat. m<n ->p + m in mem }
dummy :unit
{ forall m:nat. (m < n -> seleqQpi1(mem, p + m, true)) /\
(m<p\ p+n<=m->share(init, mem, m)) }
= Ap. An. dia(

m' = loopnatl(zer‘o,
m.1lt(m, n),
m.({P} [p + Mlboor = true; {P;} succ m));
O

)

where I := forall i:nat.
(i<n->p+1iin mem) /\
(i <m" -> selegpor(mem, p + i, true)) /\
(i<p\/ p+n<=1i -> share(init, mem, 1i))

Figure 3: Example of array initialization

through a small-footprint approach, by constructing denotational semantics of HTT. Heap

soundness was also proved by means of a set-theoretic interpretation of HTT [16]. Their proof

may possibly be adapted for proof in this thesis, but it should require hard work and a lengthy

description. Thus, heap soundness is left unproved in this thesis.

Theorem 19: Progress

1. If+ K, = A[N'], then either K, = v: A or K, <y K; for some K;.

2. If+ My & A[M’], then either My = v or M, &, M, for some M,.

3. Ifk yo, ko> Ey & x:A.Q, then either E; = v and ky = or yg, ko = Ey ©e ¥1, k1 & E; for
some yq, k1, E7.

Proof: The proof is done in the same manner in [14], by straightforward case analysis

on K,, My and E,. The proof relies on heap soundness, which is not proved in this thesis.

6 Examples

In this section, two programs are shown to illustrate how arrays can be used in programs of
HTT. For brevity, the variable and heap contexts are omitted for most of the sequents that
appear in this section.
6.1 Array initialization

The first example, Figure 3, is a simple function which fills the elements of an array with the
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Boolean constant value true. The function takes two arguments, the first of which is the loca-
tion of the first element and the second is the number of the elements. In the function is a loop,
which is encapsulated in a monad. The result of the loop is unit because the function does not
return a meaningful result.

The precondition of the function asserts that an array of length n starting at the location p is
allocated when the computation starts. The postcondition asserts that the elements of the
array are the Boolean value true and that locations other than the array are not changed during
the computation. The function body is a simple loop, whose loop counter m starts with zero
and goes up until It(m, n) is not satisfied. In each iteration of the loop, the mth element is as-
signed true, and succm is returned as the result of the iteration, which is the next loop counter
value. The loop invariant I states a condition which is satisfied between iterations, that is, the
array is allocated, elements with index up to the loop counter are assigned true, and other
locations are not changed.

The propositions P, and P; that are yielded in typing are:

P, = hid(init, mem) A [m' » m]I A idyee (1t(m, n), true)
P; = P, o seleqpoo1(mem, p + m, true) A Vn: nat. —id, 5. (n, p + m) > share(init, mem, n).

One of the sequents which must be proved during type checking is P; A id,,(m’, succm) I,
which confirms that the loop invariant is implied by the postcondition of the iterated computa-
tion. After applying some derivation rules, we find that this sequent can be derived from the
following three sequents:

P;,idp(m', sucem),i <n - p + i € mem

P;,idp(m', sucem),i < m' + seleqpqo(mem, p + i, true)

P;,idp,(m', sucem),i < p Vp +n < i share(init, mem, i)
The first and third ones can be easily derived by basic rules of the assertion logic. The second
one requires case analysis on i: the cases wheni < m and when i = m. Note that we do not
have to consider the case when i > m because i < m' = succm. We can replace i < m' in the

antecedent with i <m by the cut and identity rules, and then replace it withi<mvV
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perm(hl, h2, p, n) :=
forall i:nat.
(i<p\ p+n<=1->share(hl, h2, i)) /\
(i<n->
(exists j:nat. j < n /\ forall v:nat.
Seleqnat(h]-J p + i, V) -> Seleqnat(hz: p + j) V)) /\
(exists j:nat. j < n /\ forall v:nat.
Seleqnat(hZJ p + i, V) -> Seleqnat(hl: p + j) V)))

largest(h, p, i) :=
forall j:nat. j <=1 ->
exists v:nat. exists w:nat.
Seleqnat(h: p + j) V) /\ seleqnat(hJ p + i, W) /\ VvV <=w

sorted(h, p, i, j) :=
forall k:nat. i <= k /\ k < j -> largest(h, p, k)

Figure 4: Notations used in the sorting example

id,4¢ (i, m) by the cut rule and the basic mathematical properties. Now we split the proposition
into i < mand i = m then use basic derivation rules to show each of them.
6.2 Bubble sort

The second example is bubble sort. In this example, the function takes two arguments as the
first example, but the array elements must be natural numbers. The function body is a doubly
nested loop which implements bubble sort straightforwardly.

Here it is assumed that all the array elements are different in order to simplify the assertions.
The more general case where multiple elements may be the same is discussed later.

In this example, the notations defined in Figure 4 are used as syntactic sugar to save space.
perm(hy, hy, p,n) denotes that the only change between the two heaps h; and h, is permuta-
tion of the elements of the n-element array starting at p: that is, locations out of the array are
not changed, and every element of the array in h; has a corresponding element in h, and vice
versa. On the assumption that all the array elements are different, this establishes a one-to-one
correspondence of the elements between the two heaps. largest(h,p, i) denotes that the ith
element of the array starting atpin the heap his not less than any preceding elements.
sorted(h, p, i,j) denotes that the elements with index between i and j are sorted and not less
than any preceding elements.

Using these notations, the type T of the sort function can be defined as:
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bubblesort : T = Ap. An. dia(

i' = loopnﬁl(zero,
i. 1t(i, n),
i. (§' = loopnat’(zero,
j. 1t(i + succ j, n),
.o (v = [p + Jlnats
W = [p + succ Jjnat;
dummy’ = ifunit(lt(wy V)J
[P+ Jlnat = w5 [p + succ jlnat = v5 (),
)
succ j));
succ 1i));

o)
)

where I :=
perm(init, mem, p, n) /\
(exists k:nat. id,t(i' + k, n) /\ sorted(mem, p, k, n))
and J :=
perm(init, mem, p, n) /\
(exists k:nat. idm(i + k, n) /\ sorted(mem, p, k, n)) /\
largest(mem, p, j') /\ i + succ j' <=n

Figure 5: Example of bubble sort

T := Mp:nat. Mn:nat.
{ forall i:nat. i < n -> seleqnt(mem, p + i, -) }
dummy:unit
{ perm(init, mem, p, n) /\ sorted(mem, p, zero, n) }

The precondition and the result type is the same as that of the first example, except that the
array elements are restricted to natural numbers. The postcondition asserts that permutation
of the given array is the only change in the heap during the computation and that the whole
array is sorted (all the elements are arranged in ascending order). Note that the notations and
the type above are independent of implementation of sort program and can be used for other
sorting algorithms.

Now a straightforward implementation of bubble sort, which has the above type T, would be
as in Figure 5. The structure of the program is simple, nested loops. The loop counter i of the
outer loop starts at zero and goes up to the array length n. After the ith iteration of the outer
loop, the last i elements of the array are sorted (i.e. are not swapped any more), which is ex-

pressed as the proposition sorted(mem, p, k,n) in the loop invariant I, where k = n — i. The

loop counter j starts at zero and goes up to n — i — 1. In each iteration of the inner loop, the jth
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perm(hl, h2, p, n) :=
exists pf:(Mn:nat.nat). biject(pf, n) /\
forall i:nat.
(i<p\/ p+n<=1 -> share(hl, h2, i)) /\
(i < n -> forall v:nat.
seleqnc(hl, p + i, v) <-> seleqnc(h2, p + pf i, v))
biject(f, n) := forall k:nat. k < n ->
(exists l:nat. 1 < n /\ idne(f 1, k)) /\
(forall l:nat. 1 < n -> idnat(f k, £ 1) -> idnae(k, 1))

Figure 6: New notations for the type of sort function

and (j + 1)th elements are looked up and compared. If the jth element is larger, the two ele-
ments are swapped. Then at the end of the iteration, it is shown that the (j + 1)th element is
not less than any preceding elements, which is expressed as largest(mem, p,j') in J, as well as
that it is not larger than any succeeding elements, expressed as a implication from
sorted(mem, p, k, n).

The proposition i + succj’ < nis required in J to show that the loop counter is exactly n —
ly n — i — 1 when the inner loop ends. Without this proposition, we can only show that the loop
counter is not less thann — i — 1, but this is insufficient to show that the loop invariant of the
outer loop is satisfied when an iteration of the outer loop ends. To show that the loop invariant
holds, we need to show that the range of the array where sort is done is increased by one
element during the inner loop. This is done by showing largest(mem, p, j') and that j' is equal
ton—1i

In the above example, it is assumed that all the array elements are different. This is because
it is hard to assert that there is no such case that more than one element before sort is corres-
ponding to one element after sort. A possible solution to this is to use an additional array to
track indices of the swapped elements. Let A be the array we want to sort, which may contain
the same elements, and B be an additional array of the same length as that of A. Every element
of B is initialized to a natural number equal to its index. When elements of A are swapped,
elements of B are swapped correspondingly. Since the elements of B are all different, we can
assert a one-to-one correspondence on them between before and after sort. By considering

correspondence between the elements of A and of B, we can establish a one-to-one correspon-
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dence on the elements of 4, which establishes that A is correctly sorted.

Another possible solution is to extend the type system and allow conditionals in terms. In
the extended system, for example, a binary function that returns the minimal value of the
arguments would be:

Ax.Ay.if le(x, y) then x else y : Ilx: nat. ITy: nat. nat
Now we can redefine perm(h,, h,, p,n) as in Figure 6. The correspondence of elements is
established by showing existence of a bijective function which maps the index of an element
before sort to that of after sort. The expression biject(f,n) means that the function fis bijec-
tive if we account the domain and the codomain of the function to be restricted to natural
numbers less than n. Such a function can indeed be constructed as a term using conditionals.
Since this function maps the indices of the elements (not elements themselves), the values of

the elements are not important in verifying the assertion.

7 Related and Future Work

Nanevski et al,, the pioneers of HTT, have proposed several variations of HTT to extend the
capability of the type system for more sophisticated programs. In [15], polymorphism has been
introduced and the notion of separation logic [17, 20] has been adapted to allow assertion
about more complicated effects on heaps. In [16], HTT has been refined with the notion of
Extended Calculus of Constructions [12], clearing away the syntactic distinction between terms,
types and propositions. These improvements are mainly about fertility of types available in
HTT. This thesis, on the other hand, improves HTT with respect to the capability of dealing with
heaps.

Another direction of improvement in HTT may be as to the capability of terms. As illustrated
in Section 6, extension of terms with operations, such as conditionals, enables more compli-
cated calculation within terms. Since calculation available in the assertion logic depends on
that of terms, improvement of the capability of terms will allow more complicated assertion.

Other recent researches on combination of functional and imperative programming include

work by Honda et al. [10, 1], which integrates higher-order functions into Hoare logic, whereas
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HTT integrates Hoare logic into functions. Krishnaswami [11] have proposed an extended
version of separation logic, which is very similar to HTT but is so simple that it does not sup-
port pointer arithmetic. The type system by Birkedal et al. [2] also extends separation logic
with higher-order procedures, though computation cannot return a value as the result in their
system. Bulwahn et al. [3] have employed the monad of heap in their system and claimed
applicability to practical verification tools, but it seems hard in their system to assert inva-
riance of part of a heap that is not involved in a computation. Moreover, it seems impossible in

these systems to allocate adjacent locations as an array.

8 Conclusions

In this thesis, an extended version of HTT was defined to allow typing of programs which
deal with adjacent heap locations, where the number of updated locations may be specified at
runtime. Changes from the original type system include redefinition of the alloc command,
which allocates multiple adjacent locations, and addition of the le and It operators, which are
useful for loop condition. Treatment of heaps in the assertion logic was also redefined so that
each predicate asserts about one location rather than the whole heap. As a result, adjacent
multiple locations whose number is specified at runtime can be allocated and used as an array
in HTT. This thesis also described how to assert inequality of natural numbers and how it is
used in combination with quantifiers to assert about adjacent locations and their contents.
Soundness of the extended HTT with respect to evaluation was established, assuming sound-

ness of the assertion logic.
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Appendix 1. Type System of HTT

A1.1. Hereditary substitution

[x = M]$(x) = M:S
[x = MI§() =y ify #x
[x » M]S(KN) = K'N' if [x = M]¥(K) = K’ and [x = M]¥(N) = N’
[x » MIS(KN) = 0':5, if [x » MIS(K) =Ay.M' :: §; > S,
where S; » S, < Sand [x » M]§(N) = N
and [y » N']§ (M") = 0’
[x = M]X(K) = fails otherwise
[x = M](K) =K' if [x = M]§(K) = K’
[x » M]P(K) = N’ if [x » M]S(K) = N' == §'
[x > MIZ(0) =0
[x » M]P(Ay.N) = Ay.N' if [x » M]¥(N) = N’
choosing y ¢ FV(M) U {x}

[x » M]P(dia E) = dia E’ if[x » MIS(E) = E
[x » M]2(true) = true
[x » M]T (false) = false
[x » M]3 (zero) = Zero
[x » M]P(succ N) = succN' if[x » M]T(N) =N’
[x o MIP(N; + Ny) = plus(N, N)

if [x > MIZ(N,) = Nj and [x = MI2(N,) = N
[x » M]P(N; X N,) = times(N;, N;)

if [x > MIZ(N,) = Nj and [x = MI2(N,) = N
[x = MIP(eq(Ny, Ny)) = equals(N}, N})

if [x > MIZ(N,) = Nj and [x = MI2(N,) = N
[x — M]fgn(le(Nl,Nz)) = lessequal(Ny, N;)

if [x > MIZ(N,) = Nj and [x = MI2(N,) = N
[x — M]fgn(lt(Nl,Nz)) := lessthan(NJ, N)

if [x > MIZ(N,) = Nj and [x = MI(N,) = N
[x » M]T(N) = fails otherwise
[x — M]S(N) =N’ if [x = M]P(N) = N’

[x » M]S(letdiay = KinE) :=letdiay = K'in E’

if [x = M]X(K) = K" and [x = M]$(E) = E' choosing y & FV(M) U {x}
[x » M]$(letdiay = KinE) = F'

if [x » M]X(K) = dia F :: S, and [x = M]$(E) = E

and ©5; < Sand(y - F)g (E')

choosing y & FV(M) U {x}

[x » M]S(E) fails otherwise
[x - MJ3(a) =a

[x = M]%(bool) := bool

[x = M]%(nat) = nat

[x » M]%(unit) = unit
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[x » M]3(Tly: A.B) =1ly:A". B’
if [x » M]3(A) = A" and [x » M]2(B) = B' choosingy € FV(M) U {x}
[x » M]5({P}y: A{Q}) = {P'}y: A'{Q"}
if [x » M]3(A) = A" and [x » M]SP(P) =P and[x M]E(Q) =Q
choosing y ¢ FV(M) U {x}

[x - M]E(T) =T

[x — M]E(J.) =1

[x — M]E(P AQ) =P AQ" if[x+ M]E(P) = P"and [x » M]c(Q) = Q'
[x » MIS(PVQ) =P'vQ if[x - M]Z(P) =P and[x - M]5(Q) = Q'
[x = M]$(P > Q) =P'> Q" if[x~ M]5(P) =P and[x » MIZ(Q) = Q'
[x » M]5(=P) = =P’ if [x » M]Z(P) = P’

[x = M]g(idA(NpNz)) = id 4 (Ny, Ny)

if [x » M]3(A) = A" and [x » M]F(N;) = N; and [x » M]$(N,) = N,
[x - M]g(selqu(h, Nl,Nz)) = seleqy/ (h, N{,N;)
if [x » M]3(A) = A" and [x » M]F(N;) = N; and [x » M]$(N,) = N,

[x - M]E(Va type. P) = Va: type. P’ if [x — M]E(P) =P’
[x — M]E(Ha type. P) = Ja: type. P’ flx - M]E(P) =P’
[x = M]Y(Vh: heap. P) := Vh: heap. P’ if [x » M]5(P) =P’
[x — M]E(Hh heap. P) := Jh:heap. P’ flx - M]E(P) =P’
[x » M (Vy: A.P) =Vy: AP’
if [x » M]3(A) = A" and [x » M]E(P) = P’ choosing y & FV(M) U {x}
[x » M]2(3y: A.P) =3Jy:A". P’
if [x » M]3(A) = A" and [x » M]E(P) = P’ choosing y & FV(M) U {x}
N if M = zero
M if N = zero
plus(M, N) := succ(plus(M’,N)) if M = succM’
lsucc(plus(M,N’)) if N = succ N’
M+ N otherwise
Zero if M = zero or N = zero
times(M, N) = plus(M ,times(M’, N)) ?fM = succ M
plus(times(M,N"),N") if N = succN’
M x N otherwise
( true if M = N = zero
false if M = zeroand N = succ N’
equals(M, N) := false if N = zeroand M = succ M’

equals(M,' N') if M’ = succM'and N = succN'
eq(M,N) otherwise

true if M = zero
false if M = succM’and N = zero
lessequal(M, N) := lessequal(M,’ N') if M' = succM'and N = succN’
le(M,N) otherwise
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true if M = zeroand N = succ N’

false if N = zero
lessthan(M, N) := lessthan(M,’ N') if M' = succM'and N = succ N’
1t(M,N) otherwise
nat~ := nat,bool™ := bool, unit™ := unit

(Mx:A.B)" ==A" - B~
({P}x: A{Q})™ = o(47)
A1.2. Monadic substitution

(x:A—» M)F =[x » M: AJF

(x:A-letdiay=KinE)F :=letdiay=Kin(x:Aw~ E)F

(x:A » c;E)F =c;(x:A - E)F

(x o> M)g(F) =F if [x > MIS(F) = F'
(x »letdiay =KinE);(F) :=letdiay=KinF’ if(x » E)¢(F) =F'
(x = ¢;E)s(F) =c F' if (x » E)s(F) = F'

A1.3. Context formation
FActx AR A< typelA] F A ctx

F - ctx F (A x: A) ctx F (A o) ctx
AW -Tpctx AW P < prop [P
AW - petx AW (T, P) petx

A14. Typeformation

Ao, A - a < type [a] A F bool < type [bool]

A F nat & type [nat] A - unit & type [unit]
A+ A<typel[A'] Ax:At+ B < typelB']
A+ x:A.B < type [[Ix: A’ B']

A;mem - P < prop[P'] A+ A <typeld'] A x:A’;init, mem + Q < prop [Q’]

A+ {P}x: A{Q} < type [{P"}x: A'{Q"}]
A 1.5. Proposition formation
ArActype[d] A-M e A[M] A-N<A[N']
AW +id,(M,N) < prop [id, (M',N")]

hewy A+ M &< nat [M']
A-A<type[A'] AFN&A[N']
A; W+ seleqy(h, M, N) < prop [seleqyr (h, M',N")]

AW T < prop[T] AW HLe prop [1]
AW+ P <prop [P'] AW Q < prop [Q']
AYEFPAQ < prop [P AQ']

AW P <prop[P'] AW+ Q < prop [Q']
AYEPVQ < prop[P'VvQ]

AW P <prop[P'] AWEQ < prop[Q']
AW P DQ < prop [P D Q]
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AW+ P < prop [P]
A; W+ =P < prop [—P']

A oW+ P < prop [P'] A, ;W + P < prop [P]
AW Vo type. P < prop [Va: type. P']  A; W + Ja: type. P < prop [Ja: type. P']
AW, h - P < prop [P'] AW, h - P < prop [P']

A; W + Vh:heap. P < prop [Vh.heap. P'] A; W + Jh:heap. P < prop [3h. heap. P’]

Ar-A<type[Ad'] Ax:A P &prop[P'] ArA<typel[A'] Ax:A' + P < prop [P']
AW Vx: A.P < prop [Vx: A'. P’] AW 3x: AP < prop [Ax: A'. P']

A1.6. Typing of terms

A+ () unit[()] A+ true & bool [true] A + false < bool [false]
A+ M &< nat [M']
A + zero < nat [zero] A+ succ M < nat [succ M']
A+M&nat[M'] A+-N<&nat[N'] ArM <nat[M'] A+ N <nat[N']
A+ M+ N < nat [plus(M',N")] A+ M X N < nat [times(M',N")]
A+-M&nat[M'] A-N<&nat[N'] A+-M&nat[M'] A+ N &nat[N']
A+ eq(M,N) < bool [equals(M’,N")] A+ le(M,N) < bool [lessequal(M’,N")]

A+M&nat[M'] A+ N & nat[N']
A+ 1t(M,N) < bool [lessthan(M’, N")]

A AN Fx= AR
Ax:A+M & B[M'] AFK=>Ix:AB[N'] A+M<A[M'] 1E
ArFAx.M & Tlx: A.B [Ax.M'] A+-KM = [x = M']5(B) [apply,(N',M")]
A+K=A[N'] ArActype[d] A+-M <A [M']

AF K < Alexpand,(N)] AFM:A= A [M]
apply (K, M) =KM
apply,(Ax.N,M) =N’ if [x » M]J(N) = N'
apply,(N, M) fails otherwise
expandpoo1 (K) =K
expand,(K) =K
expandypic(K) =K
expandp,.4 g (K) = Ax.expandg (K M) if expand,(x) = M choosing x & FV(K)
expandgpyy.a(0}(K) = dia(letdiax = K in M) if expand,(x) = M
expand, (N) =N

A1.7. Typing of computations
MPHE=x:ARI[E']l] A x:4;init, mem;R + Q
MPHE < x:A.Q[E']
ArM&A[M]
AP +M= x:A. P Aidy(expand,(x), M) [M']

consequent

comp
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A; hid(init, mem) AP - E < x: A.Q [E'] I
A+ diaE < {P}x: A{Q} [dia E'] 0
A+ K= {R}x:A{R,} [N'] A;initmem;P + R, Ax:A;PoR,+E = y:B.Q[E’]
A; P+ (letdiax = KinE) = y:B.(3x: A. Q) [reduce,(N', x, E")]
A+M & nat[M'] A x:nat;Posp(x =allocM') -E = y:B.Q [E']
A; P+ (x =alloc M; E) = y:B.(3x:nat. Q) [x = alloc M'; E’]

{E

alloc

A+ A & type [A'] A; init, mem; P + seleq (mem, M', —)
A+-M&nat[M'] Ax:A;PAsp(x=[M]y)FHE=y:B.Q[E]
AP (x=[M]g;E)=y:B.(3x: A".Q) [x = [M'] 4, E']

lookup

A+ A< type[A]

A+ M < nat[M'] A; init, mem; P + M' € mem

AFN&AM] APosp((M']y =N')FE=y:B.Q[E]
AP+ ([M]p=N;E)=y:B.Q[[M']y =N E']

mutation

ArFA<typel[A'] AP Aidyyq (M, true) - E; = x: A" Py [E]
A+ M <bool [M'] A; P Aidyee (M, false) - E, = x: A'. P, [ES]
Ax:A;P, VP, FE=y:B.Q[E]
AP+ (x = ify(M, Ey, E5); E) = y: B.(3x: A'. Q) [x = ify (M', EL, E}); E]

if

A+ A < type [A]
ArMeA [M]
A x:A" N < bool [N']
A x:A',y: A';init, mem + [ < prop [I']
A; init, mem; P + [x » M',y M’]E,([init ~ mem]l’)
Ax:A,y: A, z: A init, mem; [y o z[I' o [x o z]I' - I’
A x:A',y: A';init, mem; I' + [init » mem, x - y]I'
A, x: A'; hid(init, mem) A [y & x]I' Aidpgq (N, true) - F = y: A" 1" [F']
Ay:A;Pox M’]Z,(l’) Aidpge ([x » yIN', false) - E = z: C.Q [E']

A; P + (y =loopy(M,x.N,x.F);E) = z:C.(3y: A". Q) [y = loopf;,(M’,x.N’,x.F’);E’] loop
A+ Tx: A.{R,}y: B{R,} < type [Tlx: A".{R1}y: B'{R}}]
ArM<e A [M]
A; init, mem; P + [x — M’]E,(R{)
A, f:(Ix: A {R1}y: B'{R3}), x: A"; hid(init, mem) A R] < y: B'.R; [E']
Ay:[x - M1y (B);Polx e M’]E,(Ré) FF=2zC.Q[F] fix
A P+ (v = fiXnea(ryyysry (X E,M); F) = z:C.(3y: [x » M1%,(B). Q) [G]
where G isy = fanx:A'_{R;}y:B'{R;}(f-x- E',M"); F'
PoQ := Jh: heap. [mem — h]P A [init » h]Q
sp(x = alloc M) = Vn:nat. (n < xVx+ M < n > share(init, mem, n)) A
(x £nAn<x+M > =indom(init, n) A seleqypic(mem,n, ()))
sp(x = [M],) = selqu(mem, M, expandA(x))
sp([M], = N) = seleq,(mem, M, N) A Vn:nat. —id,,(n, M) D share(init, mem, n)
reduce, (K, x, E) :=letdiax =KinE
reducey(dia F,x,E) = E' if(x » F),(E) =E'
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reduce, (N, x, E) fails
A 1.8. Sequent calculus

otherwise

init cut
AT, pEp T AR S8 PR U

AV S PR o b ANV EL AYL,PPEL, AV HP,PT,
AW TLPEDL, AL P, AWTLPET AW T =P T,

AV, LEDL AL T
NY;TL,P,QRDL, AW P, AW RQT,
ANW;TLPAQ HT, AW FPAQT,
AW T, PR, AWYTL,QRT, AWy -P,Q,T,
AT, PVQ T, AW FPVQ,T,
AL -PL, AWTL,QRL, AW;TLP QT
AWYTL,PDQFRT, AW P DQ,T,
NW;T, =P, AW, P ET,
AW, =P T, AWT FPT
A+Actype[A] AW;T,[a- AP T, AoW;T; -PT,

AW T, Vastype. P =T, AW T F Va:type. P, T,
AoW;T,P T, A+ A ctype[A] AW;TF [a- AlP, T,
AW T, Jaz type. P Ty AW T 3z type. P, T,

h'ELIJ A,l'p,rl,[hHh’]PFFZ A;lp,h;r‘]_'_P,Fz
A;W; Ty, Vh:heap.P - T, A;W; Ty - Vh:heap. P, T,

AW T, PET, hew AW +[hoh]PT,
A;W; Ty, 3h:heap. P + T, A;W; Ty - 3h:heap. P, T,

ArMeAM] AY¥T,x»MEP)FT, AxiAWTFPT,

AW T, VAP T, AW T HVX: AP T,
Ax:A;WTL,PFT, AFMEeAM] AT F[x - MEP),T,
AW T, 3x:A.PHT, AW T F3x:APT,

AW Ty, id, (M, N) - [x & NS (p), T
AW Ty Fidy(M, M), T, A;W;Ty,id, (M, N) + [x - M1 (p), T,

A x: A;W; Ty Fidg(M,N),T,
A Wi Ty F idpy.as(Ax. M, Ax.N), T,

A; W; Ty, seleqy (h, M, Ny ), seleqy(h, M, N,) +1d,4(Ny, N,), T,

A; ¥; Ty, 1d 4 (zero, succ M) + T,

A; W5 Ty 1d (suce M, succ N) +1dy (M, N), T,
A+M &nat[M] MY TLPE[x - succx]gat(P),l"z
AY;T, [x - zero]gat(P) Flx - M]Eat(P), T,

A; W; Ty, 1dy 001 (true, false) + T
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A+ M < bool [M]
AW T, [x - true]gool(P), [x — false]gool(P) Flx o M]EOO](P), I,

Appendix 2. Operational Semantics of HTT

A2.1. Heap formation
Fy<heap HA<type[d] Fl<nat[l] FveA[M] v ¢dom(y)
- < heap F(x,l >, v) < heap
A2.2. Typing of control expressions
A+ B < type [B'] APk E<y:B'.R
AMPHE<x:AQ[E'l] y@FV(A)UFV(Q) Ay:B;R+F <x:A.Q[F']
APrH->E<ex:AQ AP ri;(v:B.F;-) > E € x:A.Q
A 2.3. Typing of abstract machines
sIxIFkesE<ex:A.Q
Fx.ke>FE&<x:AQ

A 2.4. Evaluation

K o K’ Mo, M Mo, M
KMo K'M (v:AM S, (v:AM' M:A S, M- A

(Ax.M : Ix:A.B) v O [x » v: A]M : [x » v: A]B
K‘ﬁkK’M K‘ﬁkU:A
Ko, KM KOS, v

Moy, M
succ M <, succ M’
Moy, M Noy N
M+No M +N v+No, v+N v+ v, 5, plus(vy, vy)
Mo, M N o, N’
MXNo, M XN vXNoy,vXN' v, +v, o times(vy, vy)
Mo, M Noy, N
eq(M,N) >, eq(M',N) eq(v,N) o eq(v,N") eq(vy,v,) & equals(vy,v,)
Mo, M Noy, N
le(M,N) &, le(M',N) le(v,N) oy le(v,N") le(v,,v,) ©p, lessequal(vq, v,)
Mo, M N o, N’
It(M,N) o, It(M',N) 1t(v,N) o It(v,N') It(v,,v,) ©p lessthan(vy, v,)
Moy, M
HES Mo,y kM y,x:AE ke vo, y ke [x o v AlE
K oK'

vk letdiax =KinE <, y,k > letdiax =K'inE

. keletdiax = (diaF):{P}x: A{Q} mE &, y,(x:A.E;x) > F
Mo, M
ke x=allocM;E S, y,k>x =allocM; E
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{il<i<l+vindom(y)=0
ko x=allocv;E . (X, »unit Oy -, L+ v —1 o405 0), 6 = [x » Linat]E
Mo, M
XK x=[MGE S x> x=[M];E

FA<typeld'] Iy veEy)
ke x=[l45E 9y, k&> [x » v:AlE
Mo, M N o, N’
Xk [Mlp=N,E . k> [M],=N;E y,ke [v]y=N;E >, y,k>[v]y=N";E

+ A < type [A]
ol v X2 ke [Ua=vE e (Xl Pa v x2) k> E
Mo, M
Ko x=ify(M,E|,E;); E S, x,k &> x = ify(M',E{,E,); E

x ke x =1f,(true, E;, E;); E &g y, x:A.E; k> E;

x, k> x =1f,(false, E1,E;); E ©¢ x, x:A.E;k > E,
Mo, M
Xk = x =loop(M,x.N,x.F); E &, x,k & x = loop,(M,x.N,x.F); E

Xk & x = loopl, (v, x.N,x.F); E
Se X,k & x =1f,([x » v:AIN,(z: A » [x » v: A]F)(y = loop)(z,x.N,x.F);y),v); E
Mo, M
ke y=fix,(f.x.F,M);E &, y,k >y =fix,(f.x.F,M'); E

nKkoy= ﬁXl'[x:A.{Rl}y:B{RZ}(f-x-E' V), E 9. x,y:[x » v:A]lB.F;x) > [x » v: A, f » N]E
where N = Az. dia(y = fiXnx.a4r,)y:B(R} (- x.E.z);y) : x: A.{R,}y: B{R,}
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