
Concurrent Objects
-- Introspect, Extrospect & Prospect --

Aki Yonezawa

Dept. of Computer Science &

Information Technology Center

University of Tokyo

Plan of Talk
• Background

– How I came up with the idea - Introspect

• Tetrahedron of Language Research – my tenet
– Computational Reflection

– Linear Logic Semantics

– Implementations on Massively Parallel Machines

(Introspect & Prospect)

– Mobile Concurrent Object - JavaGo

– Applications:

• N-body, Space-Station,…

• Massive Use of Concurrent Objects
– Linden‟s Second Life - Extrospect

• Prospect

Dahl’s BookThank to B.Liskov’s

Lecture (1974)

Nygaard‟s BookThank to C.Hewitt’s

suggestion (1976)

after Simula67, and Early 70’s
• Smalltalk – 1972 language interface to dynabook

• CLU (abstract data types) - 1973

• Minsky‟s Frame - 1974

• Hewitt‟s Actor – 1973 universal modular forms for AI

• Capability-based OS - 1975

• Entity-Relationship Model – 1973 data model

Structuring and Modularizing programs and
knowledge representations

Both Modeling and Programming

Early 70s in Tokyo, I worked on languages and

theorem proving. Then, I started being
interested in:

1. modeling worlds and

simulate them on computers!

2. powerful programming frameworks!

Our goal in programming research & OO

• Reducing the complexity of software systems, while
maintaining reasonable performance

• Making
software systems and software construction

simpler and more manageable

enabling construction of
more powerful software systems

Object Orientation

emerged!!

For modeling and programming,…
• Concurrent Object

= Encapsulated(Stateful Object + thread)

• Asynchronous message passing among concurrent objects

• Different Approach
-C.Hewitt and H.Baker:
Laws for communicating Parallel Processes, IFIP1977

-G.Agha: A Model for Concurrent Computation in Distributed Systems,
MIT Press 1987

My idea formed around 1974

Concurrent
Object ＝

Object

cpu/thread

my Modeling of Real World

in Concurrent Objects

Modeling

Representing

domain

concurrent

Real World

Concurrent Objects &

Message Passing

WEB

Entities,people,

machines & their

interactions

Natural Modeling of a World

• Natural modeling reduces complexity

• Naturalness means directness!

– 1:1 mapping

from domain objects to software modules

• Ole Madsen said:
– Objects and Classes are well-suited for modeling physical entities

and associated concepts

– “Concurrency” is MUST for modeling

DOMAIN software

objects

1:1

Modeling a Post Office (‟77)

counter-sectionMail Box in

PostOffice

door

clients

Example:

Modeling Post Office in COs

• Post Office Building the door

 door concurrent object

• Counter with clerks

 counter concurrent objects

• Mail Box

 mailbox concurrent object

• Customers

 customer concurrent objects

not messages!

Modeling Movement of Customers

• Two ways:

1. a customer object is transmitted
in a message

2. a customer object moves by itself

Object (or its code) migrates!!

Learning from Ambient

• Non-local customers do not know the internal
geography of the local post office.

Customer object does not know

the location/name of counter objects

Customer objects must learn the location of
the counter object from the Door object

ambient

Tetrahedron of

my Language Research

1.Implementation
2.Formal Semantics

3.Appli/Programming

When you design a language, then

must be worked out!

Design

Application

Implementation

Semantics

Overview of my Research

since 1984
• Language Design

 ABCL language series (JP Briot, Shibayama) 1984-

 Inheritance Anomaly (S.Matsuoka, JP Briot) 1985-1989

 Reflection (T.Watanabe) 1988

• Semantics

 fragment of Linear Logic (N.Kobayashi) 1991-

• MPP Implementations

 StackThread scheme (K.Taura) 1993-

• Mobile objects and its implementation

 JavaGo (T.Sekiguchi, H.Masuhara) 1999

• Appli/Programming

 N-body, Space station dynamics, CFG-parser… 1997

E.Shibayama J-P. Briot S.Matsuoka N.Kobayashi

K.Taura H.Masuhara T. Watanabe T.Sekiguchi

Collaboraters

Message Passing in ABCL/1

• Message passing is asynchronous.

– more natural and more parallelism

• Three types of message transmissions:

– Send-and-no-block (past)

– Send-and-wait-for-reply (now)

– Send-with-future (future)

past now future

Our First Language ABCL/1 (1984)

• First concurrent object-oriented language..

• Each CO (concurrent object) has a single thread.

• At any time, a CO is in one of three modes:

(1) dormant, (2) active, (3) waiting

• No inheritance

Book in 1987

P.America

P.Cointe

G.Attardi

G.Agha & C.Hewitt

H.Lieberman

Implementation and Applications of

ABCL/1

• A Lisp-based implementation on SUN ws.

• Manual and programming guide were distributed

in OOPSLA‟86.

• A more complete implementation on

Lisp machine in 1987.

• CO based parser for Context Free Grammar

– English grammar with 250 no-terminal symbols in 1987.

– A popular paper published in Coling‟88 (Computational

Linguistic Conference in Budapest, 1988)

Concurrent OO Reflection

• Inspired by B. Smith, 3-Lisp

• Inspired by P.Maes and L.Steels, 3-KRS

– With Takuo Watanabe

Computational Reflection

Computation about Oneself: Introspection & Self Modification

S

A reflective system S can reason
about or act upon itself via the
causally-connected self-
representation M[S]=Model of S.

M[S]

Representation in a Reflective Tower (Smith, 1982)
S is reified as R[S] within the meta-circular processor
MCP1. MCP1 is also reified in MCP2, and so forth.
Reflective behaviors are realized as normal operations
in the meta-levels (MCPs).

MCPs: meta-
interpreters,
meta-objects

base-level

Pioneers:
3-Lisp (B. C. Smith, 1982)
3-KRS (P. Maes, 1986)

ABCL/R

One Concurrent Object A –> One Meta-Object (Model of A)

Watanabe & Yonezawa, OOPSLA '88

O

execution
engine
(eval)

an object (base-level)

state store
(env)

methods

message queue

incoming
message

reified
message

the meta-object of OEach concurrent object has its
own meta-object that reifies
its entire structure and solely
governs its computation.

reflective
message

Any object can send messages
to its meta-object. Reflective
behaviors are realized with
such inter-level messages.

The meta-object is a 1st class
object and thus has its meta-
object. This implies that the
reflective tower exists for every
object.

Decided to write an interpreter of CO!

How the Meta-Object Works (1)

(1) Suppose that an object O has just
received a message M. This is interpreted
as a reception of the reified message
[:message “M”] by the meta-object of O.

O

M

[:message “M”]

(2) On receiving the reified message, the
meta-object simply put it into its
incoming message queue. Then set its
execution mode to active.

[queue <== [:put ReifiedMessage]]
[mode := active]

The Metacircular Interpretation of Concurrent Objects

reified
message

meta-object

message-queue

How the Meta-Object Works (2)

The Metacircular Interpretation of Concurrent Objects

(3) The active mode meta-object retrieves
a message from the queue and looks up
an appropriate method for it.

(4) The meta-object then starts invoking
the method by sending a request to the
execution engine (eval) object.

[msg := [queue <== :get]]
[mth := [methodpool <== [:lookup msg]]]

[eval <= [:do (body-of mth) env cont]]

[:do body env cont]

execution engine (eval)

state store (env)

the method to
be invoked

The message to the eval object contains
the code, environment and continuation.

(5) The meta-object repeats the above
actions while the queue has outstanding
messages. When the queue gets empty,
the object becomes dormant.

Use of Meta-Objects

Reflection allows Parts and Message Handler of a CO to be modified!!

Meta-meta-objects
provides ways to change
the behaviors of meta-
objects on the fly.

By modifying the method that
handles reified messages, we can

add new message passing
protocols between objects.

Customized meta-objects
can introduce new
language features or
modified object semantics.

Inter-level message passing
is the primary mechanism
for providing explicit
reflective behaviors.

Applications of ABCL/R

• Dynamic Acquisition of Methods
– A simple example of inter-level messages

• On-the-fly Object Monitoring
– Meta-meta-objects are used to add/remove

monitoring in/out-messages in meta-objects.

• Modular Implementation of the Time-warp
Algorithm
– Customized meta-objects provide an encapsulated

implementation of the algorithm.
• Timewarp Algorithm: an optimistic algorithm for distributed

discrete event simulations (by D. Jefferson, 1985)

Watanabe & Yonezawa, REX/FOOL '90 (LNCS #489)

Group-Wide Reflection

A Collective Meta-Level for a Group of Concurrent Objects

Collective behavior of a group of concurrent
objects is represented as a coordinated action of
a group of meta-objects (meta-group).

Applications:

Dynamic Object Migration,
Adaptive Scheduling, etc.

The default behavior of meta-
group is proved to simulate the
behavior of base-level objects.

Reflective behaviors are realized
by inter-level messages.

meta-objects:
shared execution
engine, message
router, etc.

Book in 1990

• A collection of
our papers upto 1989,
Including “reflection”,
“CFG parser”, debugger,
language manuals etc.
• Excluded are
implementations:

1) StackThreads
2) JavaGo

and formal semantics

Linear Logic Semantics

• Wanted have formal/mathematical semantics

for Concurrent OO Languages

• R. Milner‟s π-calculus was a choice…

– British Empire of π-calculus was a bit…

– Familiar with Gentzen‟s sequent style logic

⇒

Girard‟s Linear Logic was my choice!

Semantics for

Concurrent Object Language

• Project started in 1991

• Goals:

– Formal foundations for

concurrent object-oriented languages,

to be used for:

• language design, including type systems
• justification of compiler optimizations

• program verification

•research prestige

N.Kobayashi

Linear Logic

• Resource-conscious logic [Girard 87]

A –o B linear implication

B can be obtained by consuming A

A B tensor product

A and B are available simultaneously

A & B

A and B are available, but not both

(you have to choose one of them)

!A

An unbounded number A is available

Essence of Linear Logic

• Example
– A: one dollar

– B: a coke (of one dollar)

– C: a chocolate (of one dollar)

A –o B valid

A –o C valid

A –o BC invalid
(you cannot buy both with one dollar!)

A –o B&C valid
(you can buy whichever you like)

Linear Logic Formulas

as Concurrent Objects
• m -o A

– An object that receives/consume message m, and
then behaves like A

• m A

– An object sends message m, and then behaves
like A

• Computation as deduction
(c.f. logic programming)

(m A) (m -o B) -o AB

sender receiver

Counter Objects

as Linear Logic Formulas

!n,inc,read.

(counter (n, inc, read) -o

reply.(inc (reply) -o

(counter (n+1, inc, read) reply()))

&

reply.(read (reply) -o

(counter (n, inc, read) reply(n))))

Types for Concurrent Objects
[OOPSLA 1994]

• Formula types as process types
– O

Type of formulas

 Type of objects and messages

– int O
Type of predicates on integers

 Type of communication channels that carry integers

e.g. x:int.(c(x) –o d(x+1))

– (int O) O
Type of predicates on predicates on integers

 Type of communication channels that carry channels of
type int O

e.g. x:int O.(c(x) –o x(1))

References

[1] Kobayashi and Yonezawa, Asynchronous
Communication Model based on Linear Logic,
Formal Aspects of Computing, 1995. (rec. by R. Milner)

(Basic computation model based on linear logic +
encoding of actors, CCS, etc.)

[2] Kobayashi and Yonezawa, Towards Foundations of
Concurrent Object-Oriented Programming –Types and
Language Design, Theory&Practice of Object Systems,
1995
(Typed higher-order computation model based on
higher-order linear logic + design of typed concurrent
OO language on top of it)

Serious Implementations

on Massively Parallel Machines

– With Kenjiro Taura, Univ. Tokyo & S. Matsuoka

• Developed series of implementations of

concurrent object-based languages on
massively parallel machines (MPP).

• Intended for high performance computing.

One of the earliest attempts

for high performance

parallel language on

distributed memory MPPs

[ACM PPoPP’93, ACM PLDI’97,

ACM PPOPP’99]

ABCL on Fujitsu AP1000 (1992-)

© Information Processing Society of Japan

AP1000 with 512 nodes

In 1992,

• Variety of directions/beliefs in processor
architecture

– Dataflow: *T, EM4, J-Machine

– MPPs: AP1000, CM5, -- ccNUMA: DASH

• Variety of original programming languages

– OO: ABCL, Concert, …

– Functional: Multilisp, Id, Sisal -- Logic: KL1

• We picked up our own language, ABCL/f to
implement!!

What we have investigated

• Execution model of concurrent objects is:
– “objects, each with its own thread, are

exchanging messages”

• This could be literally implemented as:
– concurrent object = data + a thread of control

• But this simply doesn‟t work with
overwhelming resource usage of threads.

usual threads libraries provide

Ideas tested

• Attempt 1: what‟s known as “thread pool”

– Better than nothing, but the effect is limited

• Attempt 2: associate a thread with

“asynchronous methods”, not “concurrent

objects”

– Still too many threads with millions async. calls

• Attempt 3: “StackThreads” approach

– Speculatively execute all threads with one stack

“StackThreads”, our Approach

• Exec all threads on a single stack

• But how to “switch” between threads?

– Simple! Manipulate intra-stack pointers, and

remove the thread‟s frame from top of the stack.

• Very cheap & fast

threads obtained!!

=>

A huge number of

fine-grained threads

is now usable.

StackThreads (cont‟d)

• Reimplemented with a regular GNU C

compiler as a backend (PLDI „97)

• Extended to shared memory multiprocessors

with work stealing (PPoPP „99)

– Again with a regular GNU C backend

– This time with a spaghetti stack (frames not

copied)

– But this time for parallel C/C++ for sales reasons

• See http://www.yl.is.s.u-tokyo.ac.jp/sthreads/

• This is a library that supports fine-grain

multithreading in GCC/G++, still

downloadable.

http://www.yl.is.s.u-tokyo.ac.jp/sthreads/
http://www.yl.is.s.u-tokyo.ac.jp/sthreads/
http://www.yl.is.s.u-tokyo.ac.jp/sthreads/

Prospect:

parallel languages are back

• “parallel languages” used to be niche!

• but, people seems to start enjoying

parallel platforms with the advent of

– multi-socket multicore machines,

– 8 way multicore/node 1000 nodes are

something you can buy from Amazon EC2

today

Prospect:
Super Lightweight Concurrency is back

• But, lightweight threads are available cheaply.

• “Super lightweight concurrency” is an old idea,

but still a critical technique the PL community

can contribute to, and

it will be used extensively in near future.

Applications

- N-body simulation via Barnes-Hut algorithm

- CO-based Parser for Context-Free Grammar

- Linden‟s “Second Life” / Online Virtual World

N-body simulation by Concurrent Objects

• concurrent objects represent:

- stars(masses)

- center of gravity of stars

• each concurrent object carrys:

- xyz-position, velocity, weight

• employed Barnes-Hut method

• in 1995, computed with

massively parallel machine

(AP1000) of 512 SPARC nodes,

StachThreads based

implementation was used!!!

http://upload.wikimedia.org/wikipedia/commons/7/74/Triangulum.nebula.full.jpg

Barnes-Hut Algorithm

• Barnes-Hut algorithm performs

an N-body simulation.

• Notable for having order O(n logn), compared
to direct-sum algorithms which would be O(n2).

• The simulation volume is usually divided up into
cubic cells via an octree,

– so that only particles from nearby cells need to be
treated individually, and

– particles in distant cells can be treated as a single
large particle centered at its center of gravity.

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/N-body_simulation
http://en.wikipedia.org/wiki/N-body_simulation
http://en.wikipedia.org/wiki/N-body_simulation
http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Octree
http://en.wikipedia.org/wiki/Point_particle

Dynamics and Control of

SpaceStation

• Rigid bodies and joints

are represented as COs.

• COs caluculate torques

and forces for stabilizing

spacestation.

Mobile Concurrent Objects

• ＪａｖａＧｏ Language and its implementation

that enables programmers to write concurrent

objects moving around network nodes (1999)

L2

L1

…

(go-to L1)

Realization of Self-migration/mobile

Concurrent Objects – JavaGo Language

H.Masuhara

T.Sekiguchi

JavaGoX: transformation for

transparent thread migration

• Java‟s support for mobile objects
– dynamic class loading

– “serialization” of object states

• JavaGoX enables efficient migration of running
objects
– by inserting code for saving/restoring execution stack

into heap

– implemented as a bytecode transformation system

Cf. Sakamoto, Sekiguchi, Yonezawa: Bytecode Transformation for
Portable Thread Migration in Java, in ASA/MA'00, 2000 for detail.

Massive Use of Concurrent Objects

Back to Original Motivation of COs

Linden‟s Second Life …

is a natural outcome from the motivation of COs:

Real World

Concurrent Objects &

Message Passing

WEB

Entities,people,

machines &

their interactios

Concurrent Objects in Second Life

• Linden’s online Virtual World that millions
people participate in!

When a man gets

In Ferris Wheel, it

starts to rotate.

elevator

•Objects and avatars

are represented and
programmed as

concurrent objects!!

Image from “Programming Second Life with the

Linden Scripting Language” by Jeff Heaton

(http://www.devx.com/opensource/Article/33905)

COs in Second Life

• Jim Purbrick, Mark Lentczner,

“Second Life: The World’s Biggest Programming
Environment”,

Invited Talk at OOPSLA2007, said:
– Objects and avatars cooperate and coordinate

each other by exchanging messages.

– each object or avatar is programmed to
• Have its own state,

• Have its own method to respond to an incoming message,

• Have different responses to different states, and

• Have its own thread.

– About 2 millions of objects are programmed in
Second Life and they are in action.

COness!

Second Life‟s new scripting engine on Mono*

They have a new implementation of Second Life!

• for accommodating many more

“sims (simulated objects/Cos)”

– a region constantly runs

1000s of scripts;

• for migration of sims between

“regions”

– even when they are running

*Mono: MS CLI compatible

open source runtime

*Purbrick (babbagelinden)‟s blog on “Microthreading Mono”, May 2006

server server

Mono VM Mono VM

region region

simsimsimsimsimsimsimsim

simsimsimsimsimsimsimsim

VM threads

Application of JavaGoX‟s

transformation method to Second Life

• our JavaGoX [ASA/MA‟00]

– a bytecode transformation system

that enables migration of running objects on JVM

• Second Life employs similar transformation

for their new Mono-based script

execution engine

– for migrating objects

between “regions”

• a region is managed

by one server

Image from “EVOLVING NEMO” in New World Notes at Second Life Blog

(http://secondlife.blogs.com/nwn/2005/06/evolving_nemo.html)

Sims//COs

region

Prospects

Why COs for Second Life

• The idea of concurrent objects has been

adopted in Second Life because:

– COs can directly simulating virtual world objects,

– which enables

easy modeling and

easy/safe concurrent programming!

Why COs for Erlang and Revactor

• Erlang: popular for distributed, fault-tolerant

as well as WEB applications

• Revactor: actor/CO model implementation for Ruby,

popular for web applications

• Both use

– asynchronous message passing communication

not via shared variables,

– super-light-weight thread with mailbox and send & receive

• Why:

– No need for lock/release operations

=> Easy/safe concurrent programming!!!

Multi-Core Machines are Coming

• 2, 4, or 8 way multicore/node now available

• To maximally exploit such machine power,

need to manage super-light-weight threads

with no shared memory communication

with tiny cost!!

• Now this is possible!!

We are winning…

“Concurrent Object” enjoys:

– natural and powerful modeling,

– easy and safe concurrency/thread managing,

– super-light weight thread implementation

technology (such as StackThreads) is available,

– multi-core hardware architectures more popular.

We will be able to do much finer, more powerful

modeling/simulation/programming

of {real and virtual worlds} such as

physical, social, organizational,…,phenomena!!

Thank you for your attention!!

