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ABSTRACT

A reference monitor is a system which monitors actions of the target process
and checks if they are safe (i.e., not malicious). It can be used to ensure se-
curity when we run suspicious code or when we expose a network service with
potentially unsafe software. Unfortunately, a reference monitor itself may con-
tain some bugs that cause security problems since it is also a program. In this
thesis, we propose a reference monitor system with self-repairing feature. The
distinguishing features of the system are: (1) that each elementary mechanism
of a reference monitor is implemented with an independent module and (2) that
the system introduces a monitor process that watches and controls the modules.
Since the implementation of our system is modularized, it is uncommon that
the whole system is fell into malfunctioning as compared to traditional systems.
If one module crashes due to bugs or attacks, the monitor process automati-
cally reboots the module and the whole system comes back to the normal. We
first discuss the design of the system and the implementation of the prototype.
Then we compare our system with traditional reference monitors in several
respects including security and overhead added to target programs.

論文要旨

リファレンスモニタは、ターゲットプロセスの動作を監視し、セキュリティの
観点でそれが安全かどうかをチェックするシステムである。疑わしいコードを実
行する必要があるときや、安全でない可能性のあるソフトウェアによりネット
ワークサービスを公開する場合などに有用である。しかし、リファレンスモニタ
もプログラムである以上、セキュリティ上の問題につながるようなバグを含む可
能性がある。本論文では、自己修復の機能を持ったリファレンスモニタシステム
を提案する。このシステムの特徴は、リファレンスモニタの各要素機能が独立し
たモジュールによって実装されている点と、それらが正常に動作しているかどう
かを監視するモニタプロセスを導入している点である。我々のシステムは実装が
モジュール化されているため、リファレンスモニタ全体が機能停止に陥ることが
従来のシステムに比べて少ない。
もし外部からの攻撃やバグなどの理由により、あるモジュールがクラッシュし

た場合には、モニタプロセスがそのモジュールを再起動することにより、システ
ム全体を正常状態に戻すことができる。本論文ではまずシステムの設計に関して
論じ、実際に作成したプロトタイプシステムについて述べる。その後、安全性や
オーバーヘッドなどの点で、従来のリファレンスモニタと我々のシステムを比較
する。
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Chapter 1

Introduction

”Every software may contain some bugs.” — This principle has not
changed since computers were invented. Bugs are not the problem only
of public domain software, but also of commercial software and OSes.
They may lead to unexpected crash of applications, system stall, and
sometimes even serious security problems.

As we have had more and more opportunities today to execute a
number of large-scaled and complicated software distributed over the
Internet, we are confronting a great threat caused by bugs. On the other
hand we have experientially perceived that the larger software grow, the
more difficult it gets to keep them bug-free. Chou et al.[3] showed that
the rate at which the number of bugs per thousand lines of code can be
indeed reduced by some support, but this rate is still far outpaced by
the rate at which software size increases. Therefore, as we add many
new functions to the system, the number of bugs increases as a result.

Several solutions to this problem have already been proposed by
many researchers[10]. One of them is to confine untrusted programs by
using reference monitors, such as Janus[4] or SoftwarePot[6, 11]. Refer-
ence monitor is a system which monitors actions of the target program
through systemcall hook or some other techniques, and checks them
against the security policy specified by the user. When it detects a ma-
licious action, it forces the target to terminate or to skip the action and
avoids security problem.

Unfortunately, reference monitors may also contain some bugs just
like other programs. At least their possibility of having bugs seems to
be as high as other programs, so long as they are implemented using C
or C++ language. If bugs in reference monitors are exploited, there is
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a certain possibility that their security checks become bypassable and
they may lose their meaning. In spite of this fact, most existing reference
monitors, to our knowledge, still seem to be designed postulating that
they are flawless and dependable.

So we aim to make reference monitors more solid and safe. In this
thesis we propose a new design of reference monitor and introduce our
prototype implementation called ”SeRene system”. This is a highly-
modularized reference monitor system which admits that it has some
bugs. Instead, it has self-repairing feature to cope with them.
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Chapter 2

Design and implementation of SeRene

reference monitor

2.1 Basic idea

Figure 2.1 illustrates the popular system structure of traditional
(i.e., existing) reference monitors.

The OS kernel

Systemcall
trap module

The target
process

Query for the policy

Trap
systemcalls

Userland
Kernel mode

File access

Check

Network

Check

etc.

(Also checks return value)

Issue if allowed

In many cases, policy
check modules are a
part of one process.The monitorer process

Figure 2.1: Overview of traditional reference monitors

In many cases, a reference monitor consists of two modules; one is
systemcall hook module and the other is main module that manages the
security policy and decides the action for each systemcalls. The most
important problem of systems like this, we think, is that even a small
bug in any part of code can cause the whole system to crash.

Then how can we make such systems bug resistant?
Candea et al.[1, 2] suggest ”crash-only design” for Internet systems,

based on the idea of Recovery-Oriented Computing[7]. In this approach
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we do not try to reduce bugs, but we cope with them by microreboots,
in other words fine grain component-level restarts. Crash-only software
consider crashes, hangs or all other system failures to be facts, and
recover from the failure by microreboots.

2.2 Overview of SeRene system

The overview of the structure of our reference monitor SeRene is
illustrated in the figure 2.2. It looks similar to that of traditional system
mentioned before in total, except that the userland part, which corre-
sponds to the monitorer process in traditional systems, is divided into
some modules.

The OS kernel

Systemcall
trap module

The target
process

Query for the policy

Trap
systemcalls

Userland
Kernel mode

File access

Check

Network

Check
etc.

Also checks return value

Issue if allowed

Center module

Redirect notifications / Check whether alive

In our system, each
modules are distinct
processes.

Figure 2.2: Overview of SeRene system

Below is an example of the list of all modules in the system.

• Systemcall hook module

• Center module

• Submodules

– File access policy module1

– Network access policy module

1In the current prototype, file access policy module is not included for some rea-
sons. We discuss this problem later.
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– Generic systemcall policy module

The system is named ”SeRene” after its self-repairing feature. It is
designed so that the whole system will not be fell into malfunctioning by
crashes of submodules. Since each modules are distinct processes on the
platform, a crash of one module does not affect others. And if the center
module detects a module crash or stop, it tries to restart the module.

Modularized structure also increases the extendability. When any
existing submodules are insufficient for the user’s purpose, he or she
can create and add a new module without modifying code of the whole
system. The task he or she has to do for adding a new module is only
implementing a new module and writing its declaration to the policy
file. Recompilation of the whole system is not needed. Then the center
module reads the policy file and runs all the submodules listed there.

In the rest of this chapter we discuss detailed designs of each mod-
ules and the prototype system implemented on FreeBSD 5.2-CURRENT
platform running on IA-32 architecture.

2.3 Design of the systemcall hook module

2.3.1 Basic design

SeRene watches systemcall invocations of the target process by sys-
temcall hook module. For each systemcall that the target issues, this
module catches it and ask the upper layer (the monitorer process run-
ning on userland) what to do. The upper layer can allow or deny (return
error EPERM to the target) systemcall invocation, or it can also kill the
target process for serious conditions.

On several platforms such as Linux and FreeBSD, Loadable Kernel
Module (LKM) is suitable for this purpose. Since LKM runs under
the supervisor privilege, it can easily replace the systemcall entry table,
which allows us to add the hook to systemcalls without any special
patches to the kernel.

The upper layer receives the notification about these three events
happening on the target processes.

• Entry to systemcall (sent before the real systemcall routine)

• Exit from systemcall (sent after the real routine)
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• Process termination (sent when the target process invokes exit()
systemcall or it is killed by a signal2)

Most of the policy checks are done on systemcall enter events, be-
cause inspection of the systemcall arguments is required. Systemcall
exit events can be used when the return value from the systemcall is
needed for the check. These events stop the target until the upper layer
responds to them, thus the target is not allowed to invoke any unchecked
systemcall.

But unlike these two types of notification, process termination no-
tifications do not block, since they should not be restricted any more.

2.3.2 Communication specification

On installation, this module installs one new systemcall which cre-
ates a monitor context3. Monitor context is a file descriptor (often abbre-
viated as ”FD”) through which actions of target processes are notified.
Attaching or detaching a process to the monitor context can also be
done using ioctl() systemcall on this FD.

The upper layer communicates with the systemcall hook module by
read() and write() systemcalls on this FD. When a target process at-
tached with the monitor context terminates or invokes a systemcall, a
notification packet (structure is illustrated on figure 2.3) becomes avail-
able on the FD. The monitorer reads it, inspects it and finally writes the
response, which action has to be taken, to the FD. Since each monitor
context has only one queue attached, requests are processed in First-In-
First-Out (FIFO) order and monitor works well when there are multiple
target processes. If no more processes are associated with the context,
read() and write() systemcall on the FD returns zero immediately,
indicating end of monitor.

The systemcall hook module restricts the access to this FD in order
to ensure security. When requesting read or write, the caller must be
the owner (the creator) of the monitor context.

If the FD is closed by the owner before all target processes termi-
nates, the systemcall hook module forces all remaining targets to termi-
nate by sending SIGKILL signal to them.

2Currently, this notification is limited only to the case in which the target is killed
by the reference monitor for its security policy.

3Only one monitor context at the same time is allowed so far, for the ease of
implementation.
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2.4 Implementation of the systemcall hook module

In this section we introduce more detailed information about the
systemcall hook module, especially platform dependent techniques used
to implement the prototype.

2.4.1 Systemcall hook and monitored processes

The systemcall hook module traps systemcalls by replacing the sys-
temcall entry table where the address of all systemcalls are stored.
Since all processes are affected by this technique, we have to distin-
guish whether or not the caller process is a target. Although we can
use a list of target processes the systemcall hook module manages, this
check for each systemcalls surely slows down all processes running on
the machine. We solved this issue by adopting a new flag on p flag

field in proc structure, which is a bit-vector of status information about
the process. We assure that every target processes have P MONITORED

bit set, then unmonitored processes can be quickly determined.

We must consider fork() systemcall, which duplicates the caller
process, because a new monitor target is generated. If one of the target
processes invokes fork() systemcall, the systemcall hook module has
to automatically add the new copied process to the target list of the
monitor context which the caller is in. In FreeBSD kernel, at fork

handler is applicable for this operation. Whenever a process forks, the
kernel notifies all registered at fork handlers of process information.
Since the current system allows only one monitor context at the same
time, if a process is marked as monitored, it belongs to this context. Thus
what the handler does is simply marking a new process as monitored and
adding it to the target list.

2.4.2 Systemcall notification details

For RT SYSCALL ENTER notifications, the systemcall hook module
copies the systemcall arguments in data.args[] array.

In most cases, each of them corresponds the first four arguments.
But this is not the case with some special systemcalls that takes an
argument that is longer than the length of registers on the platform.
Because such argument does not fit into one register, we have to put
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some elements together to process these notifications.

There are three stores for return values in RT SYSCALL EXIT notifi-
cations. This is because the systemcall handler can return three values:
error code, first and second return values.

On FreeBSD platform, data.retval[2] is an error code of the sys-
temcall, which is a return value from the systemcall. If this element is
not equal to zero, it indicates that an error occurred. Then the error
code is stored into EAX register, and returned to the user process.

Other two elements, data.retval[0] and data.retval[1], are also
return values of the systemcall. They are a copy of td retval[] field
of thread structure (it is passed as an first argument for the systemcall
handler) which indicates the invoker of the systemcall. Systemcalls such
as open() or pipe() need to return file descriptor number, the field is
used for this purpose. On success (user process can determine whether
the systemcall succeeded or failed by checking the carry flag), instead of
error code, these values are returned using EAX and EDX registers. Since
kernel trap routine saves the value of these registers into td retval[]

field before calling the systemcall handler, the value of these register
remain unchanged unless the systemcall handler overwrites them or an
error occurs.

2.5 Design of submodules

SeRene must be used with one or more submodules, each of which
has its policy domain (e.g., file access, network access, and so on) and
checks the target process’ action according to its security policy. There
are several conventions for submodules.

• Every submodules MUST understand the policy file whose file-
name is specified in the command line argument. Its format is
introduced later in section 2.7.

• Every submodules MUST communicate with the center module
using a file descriptor whose number is specified in the command
line argument.

• Every submodules MUST understand the request packet and MUST
be able to talk the response packet in the figure 2.3.
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• Every submodules MUST send some message to the center module
at least one for a few seconds.

• Every submodules MUST be restartable at any time.

A submodule can be implemented using arbitrary programming lan-
guage, as long as it complies all of these conventions. In addition to the
affixed submodules, of course third-party submodules can also be used.

The module first reads the policy file and then enter the main loop.
It waits notifications and process them if received, until the supplied
file descriptor closes. Format of the packets which they read and they
should write is discussed before.

The last two conventions are for supporting the self-repairing fea-
ture. They have to send heartbeat messages (it must be one of invalid
response) to the center module periodically, unless they have received
policy query. We can use select() systemcall for this loop. To meet
these conventions, they must either be stateless or have their states
rather on persistent storage, such as hard disk, than on memory.

We designed a library that helps this common processes. It imple-
ments the main loop, policy file parser and some useful subroutines. A
programmer has only to write a few functions that are called from inside
the main loop. The routine included in the library automatically reads
the policy file, negotiates with the center module and sends heartbeat
messages (one per second, in the prototype implementation).

Reading the target’s memory is often required for the check. The
library includes helper functions for this purpose. This can also be said
as an encapsulation of platform-dependent code, since such functions
may also be platform-dependent. Currently it uses process file system
(a.k.a. procfs) for memory access, and so it cannot check processes that
have setuid bit set.

Other kernel support will be needed for some checks. One good
example is file access control. When specifying file or directory, we can
use either absolute path or relative path. Whereas absolute paths can be
checked easily, relative paths have to be translated into absolute paths
before the check. To translate them, we have to know which directory
the target process is currently working on. We could trace chdir()

systemcall or fchdir() systemcall, but if a module is rebooted before
it stores the new working directory as its persistent data, it loses the
consistency and the check will not work well. Moreover, to support
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fchdir() systemcall, we have to maintain file descriptor table of all
target processes and also have to trace more extra systemcalls, such
as fork(), execve() and fcntl() (to detect use of FD CLOEXEC). Of
course, doing like this will surely slow down the whole system and we
should take the more simple solution.

Due to this difficulty, a file access policy module in the prototype
system cannot check working directory and does not work properly.

2.6 Design of the center module

The center module is the most important part of our system. It
first creates systemcall monitor context, runs all submodules listed in
the policy file and then executes the target program.

In our system, the center module itself does not have any security
policy.

It just dispatches notifications from the systemcall hook module to
its all submodules and puts together the responses from them. There are
several strategies in putting together the responses, we are now taking
the safest one: A systemcall is allowed only when all submodules permit
it.

Alternatively it is responsible to administrate submodules. When
some submodules seems failed, it has to reboot them to get the whole
system back to work properly.

During the normal time, every submodules send heartbeat messages
to the center module in their idle time. If the center module does not
receive any message from a module for a definite period of time (3 sec-
onds in the prototype implementation), it assumes that the module is
dead and needs to be rebooted. Rebooting a module is done by send-
ing SIGKILL signal and then executing the module again. The same
action happens when it detects termination of submodule, which can be
notified as SIGCHLD signal. After the reboot, the center module sends
unanswered notifications again. But if reboot does not repair the system
(in other words, the module still dies continuously in spite of reboots),
the center module gives up and finishes execution, stopping the target.

This policy may sound a bit unsuitable for our goal. However we
cannot simply desert a submodule, because security checks for the pro-
tection domain of the module become bypassable if we take this policy.
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So the policy we currently choose here is one that is considered to be
the safest strategy. Further research will be needed about this point.

In this design, the center module is still a single point of failure. But
it will be smaller and have simpler functions than complex submodules,
the probability of crash will also be lower than them. Or, we may be
able to prove that it is bug-proof by using some proving support tools.

2.7 Format of policy file

Figure 2.4 is an example policy file for SeRene system.
Policy file is comprised of some sections, each of which begins with

the section name followed by a colon.
In modules section, modules to use are specified. This section must

exist in any policy file. Otherwise, the system does not start.
Rest of the policy file is for submodules. How they are processed and

matched against the target’s actions depend on each submodules. Our
current submodules takes the action specified in the policy definition
that lastly matched to each notifications. For example, the net section,
which is for net submodule, means:

• Allow connect() systemcalls that connects the socket to 127.0.0.1.

• Allow socket() systemcalls that create TCP, UDP or UNIX socket.

• Deny all socket() and connect() systemcalls that do not meet
the two conditions above.
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typedef enum reqtype_t {

RT_SYSCALL_ENTER, /* enter a syscall */

RT_SYSCALL_EXIT, /* exit from a syscall */

RT_PROCESS_SIGNAL, /* caught a signal */

RT_PROCESS_EXIT, /* process exited */

} reqtype_t;

typedef enum reqexittype_t {

RET_EXITED,

RET_KILLED,

} reqexittype_t;

/* Request packet */

typedef struct request_t {

pid_t pid;

reqtype_t type;

unsigned int request; /* Syscall/Exit type */

union {

unsigned int args[4]; /* Syscall args */

unsigned int retval[3]; /* Syscall retval */

} data;

} request_t;

/* Response packet */

typedef enum response_t {

RESP_ALLOW,

RESP_DENY,

RESP_KILL,

} response_t;

#define RESP_MAX RESP_KILL

#define RESP_HEARTBEAT (RESP_MAX + 1)

Figure 2.3: Notification packet structure
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monitor:

module syscall

module net

syscall:

deny fork

allow getpid

net:

deny all

allow protocol tcp,udp,unix

allow connect 127.0.0.1

Figure 2.4: Example policy file
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Chapter 3

Experimental results

We implemented a prototype system on FreeBSD 5.2-CURRENT run-
ning on PentiumM 1.3GHz.

For precice comparison between our system and the traditional sys-
tem, we also derived the traditional-design system which does not have
userland module divided from the self-repairing system. By comparing
their results, we can measure the difference which is purely caused by
the design.

3.1 Test of systemcall monitoring and policy checking

First we show how security checks hook work. In this example, we
are using the policy file in the figure 2.4.

We try to connect 127.0.0.1(authorized host) and 192.168.1.101(un-
authorized host) using telnet.

% ./serene test.plc telnet 127.0.0.1

SeRene System ver 0.01

Copyright(C) 2003 Toshihiro Yoshino

DEBUG: Executing command: telnet 127.0.0.1

Trying 127.0.0.1...

Connected to localhost.

Escape character is ’^]’.

Trying SRA secure login:

User (tossy-2): ^C%

% ./serene test.plc telnet 192.168.1.101

SeRene System ver 0.01
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Copyright(C) 2003 Toshihiro Yoshino

DEBUG: Executing command: telnet 192.168.1.101

Trying 192.168.1.101...

telnet: connect to address 192.168.1.101: Operation not permit

ted

telnet: Unable to connect to remote host

As mentioned before, the policy file means these three conditions:

• Allow connect() systemcalls that connects the socket to 127.0.0.1.

• Allow socket() systemcalls that create TCP, UDP or UNIX socket.

• Deny all socket() and connect() systemcalls that do not meet
the two conditions above.

Thus telnet succeeded as usual when we tried to connect to 127.0.0.1.
On the other hand, we could not connect to 192.168.1.101, because
connection to this host does not match with the first two conditions and
the third action is applied.

By specifying debug option -d 3 on the command line, SeRene dis-
plays some information for each events and we can look them through.

% ./serene -d 3 test.plc telnet 192.168.1.101

SeRene System ver 0.01

Copyright(C) 2003 Toshihiro Yoshino

Boot submodule ’syscall’

Module syscall booting...

Boot submodule ’net’

Module net booting...

pid9350 ENTER(close) arg1=0x3

pid9350 EXIT(close) retval=0x0

pid9350 ENTER(write) arg1=0x2

DEBUG: Executing command:pid9350 EXIT(write) retval=0x0

...

pid9350 ENTER(write) arg1=0x1

Trying 192.168.1.101...

pid9350 EXIT(write) retval=0x0
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pid9350 ENTER(socket) arg1=0x2

pid9350 EXIT(socket) retval=0x0

pid9350 ENTER(getuid) arg1=0x0

pid9350 EXIT(getuid) retval=0x0

pid9350 ENTER(setuid) arg1=0x3e9

pid9350 EXIT(setuid) retval=0x0

pid9350 ENTER(setsockopt) arg1=0x3

pid9350 EXIT(setsockopt) retval=0x0

pid9350 ENTER(connect) arg1=0x3

pid9350 ENTER(write) arg1=0x2

telnet: pid9350 EXIT(write) retval=0x0

pid9350 ENTER(write) arg1=0x2

connect to address 192.168.1.101pid9350 EXIT(write) retval=0x0

pid9350 ENTER(write) arg1=0x2

: pid9350 EXIT(write) retval=0x0

pid9350 ENTER(write) arg1=0x2

Operation not permitted

pid9350 EXIT(write) retval=0x0

...

pid9350 ENTER(exit) arg1=0x1

pid9350 Process exitting

DEBUG: All target process exited.

In this case, the network policy module denies connect() system-
call, it fails with EPERM. Notice that, since the control does not enter the
real connect() systemcall, exit notification for connect() systemcall is
lacking.

3.2 Secutiry

Next we intentionally implemented a buggy module buggy, which
crashes after it processed 100 notifications, in order to demonstrate
whether self-repairing feature works. Source code of buggy module is
presented at appendix A. With this module, we inspected how our sys-
tem recovers from crash.

We used bug.plc (see figure 3.1 for its contents) for this test.
First we tried to monitor a program with the traditional system.

Here we used -d 2 debug option, which tells the system that messages
about submodules should be output.
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monitor:

module syscall

module buggy

Figure 3.1: bug.plc: policy file used for the test of self-repairing feature

% ./trad -d 2 bug.plc ../test/getpid 1000

Traditional Reference monitor ver 0.01

Copyright(C) 2003 Toshihiro Yoshino

Boot submodule ’syscall’

Boot submodule ’buggy’

DEBUG: Executing command: ../test/getpid 1000

Oh, no!

Segmentation fault (core dumped)

Process killed according to the security policy.

As easily expected, the traditional reference monitor crashed due to
a module’s bug. Then the target process is killed because the monitor
context is closed on termination.

Next we tried the same test with our system.

% ./serene -d 2 bug.plc ../test/getpid 1000

SeRene System ver 0.01

Copyright(C) 2003 Toshihiro Yoshino

Boot submodule ’syscall’

Module syscall booting...

Boot submodule ’buggy’

Module buggy booting...

DEBUG: Executing command: ../test/getpid 1000

Oh, no!

Module buggy died

Module buggy rebooting...

Module buggy booting...

Oh, no!

Module buggy died

Module buggy rebooting...

Module buggy booting...
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Oh, no!

...

Module buggy rebooting...

Module buggy booting...

pid10666 Process exitting

DEBUG: All target process exited.

Debug message indicates that the buggy module indeed crashed. But
since each modules in our system are distinct processes, this crash did
not strike any other modules. The center module then properly detected
the module’s death and started rebooting it. After a reboot, the buggy
module begins to process notifications again as if nothing had happened
to it.

The buggy module crashes again after processing the next 100 mes-
sages, so this procedure has to be repeated until the target program
exits.

3.3 Overhead to programs

Then we measured the overhead added to target programs. Pro-
grams used for this test and output scripts are present at appendix B.
The result is shown in table 3.1.

Program No monitor Traditional RM Our system
getpid
(100,000 times) 0.05 1.43 9.86 (6.90)
(500,000 times) 0.29 7.04 49.47 (7.03)
socket

(500 times) 0.08 0.15 0.34 (2.27)
(5,000 times) —- 1.56 3.74 (2.40)

Note: Parenthesized numbers are the ratio of execution time, between
our system and traditional system.

Table 3.1: Execution time with/without a reference monitor system (in
seconds)

The getpid program simply calls getpid() systemcall repeatedly.
Since this is one of the most lightweight systemcall, we can say that this
is the worst case in which overhead is very high; Approximately it took
25 ∼ 30 times longer than usual in traditional system. In comparison

18



between traditional system and self-repairing system, overhead in the
latter system is about 7 times larger than the former.

However the overhead of inter-process communication (IPC) can
be cancelled by some other factor. For example, if systemcall takes
long time before completing its operation, the difference of execution
time between two systems becomes relatively lower. The socket program
creates a socket and tries to connect it to the discard port (port number
9) on 127.0.0.1 (in other words, localhost) by using socket() and
connect() systemcall many times. We measured overhead again, and
this time our system took only 2.3 times longer than traditional system.

From these results we can conclude that the overhead for real pro-
grams depends on which systemcalls they use and how frequent they call
systemcalls. Generally speaking, the overhead will decrease further from
the results above, because real programs perform many calculations and
userland operations between two subsequent systemcalls which these test
programs do not perform.

Overhead is also subject to the number of modules used. Table 3.2
shows how overhead changes if we use more submodules.

Program Default 5x Default 10x Default
getpid(10,000 times) 1.28 (1.0) 4.82 (3.8) 9.21 (7.2)
socket(250 times) 0.22 (1.0) 0.64 (2.9) 1.23 (5.6)

Note: Parenthesized numbers are the ratio of execution time, in that
case and in default case.

Table 3.2: Execution time with our system adding modules more (in
seconds)

Execution time written in ”Default” column is that when we use
the policy file on the figure 2.4, in which there are only two submodules.
”5x Default” and ”10x Default” are the environment where we use 10
and 20 submodules each. For example in ”5x Default”, we duplicated
module declarations for 5 times.

The result shows that overhead is almost proportional to number of
submodules. This is because the notification of every systemcall is sent
to every submodules in the current implementation.

Of course overhead also depends on the complexity of policy checks.
Thus we cannot easily say how much overhead is added to the real pro-
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grams. But if we dare to conclude something from this result, overhead
of a reference monitor increases to approximately twice the original when
we add self-repairing feature to it. Due to rapid progress on hardware
speed, this overhead would not be too large to apply to the real programs
which emphasize security.
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Chapter 4

Related works

First of all we have to say that we are deeply inspired by the idea of
”recursive recovery” and ”crash-only software”, introduced by Candea
et al.[1, 2].

Although we used only very simple part of this technique, their
idea as a whole is much more complex but solid. They suggest multi-
level modularized system in which an acyclic graph that expresses the
dependency of modules can be constructed, and the recovery module
should use this graph for determining which modules to be recovered.
They applied their technique to a Java-based software system Mercury, a
prototype ground station system for communicating with data satellites.

It is also very common in other fields to divide a system into some
independent modules in order to achieve higher security and robustness.
qmail[8], a widely used mail transport agent (MTA), is an example of
such systems. It consists of some program modules which do not believe
each other, and the whole system remains safe even if several modules
are hijacked.

In designing reference monitor and interfaces, we referred Janus[4,
9]. This is an orthodox style reference monitor. Currently it is imple-
mented on Linux running on the x86 architecture[5].

Its kernel module interface gave us many hints for designing the
systemcall hook module.

21



Chapter 5

Future work

5.1 Limitations of the current system

As shown by experiment, under the worst case that the target pro-
gram simply repeats issuing very lightweight systemcalls, current imple-
mentation of SeRene system slowed down the program execution time
up to about 200 times the normal.

This is mainly because every submodule gets the full notification
about systemcalls in the current system, despite that each of them are
interested on very small subset of systemcalls. We may be able to reduce
the overhead if we change the implementation so that each submodules
tells the center module on which systemcalls they are interested.

Although we have mainly aimed to cope with crashes caused by
system bugs in this thesis, there is still another possible pattern of ex-
ploitation: highjacking. Since the current implementation of SeRene
system does not suspect submodules, the system also believes a module
regardless it is highjacked or not, as long as it complies the conventions
listed in the section 2.5. Thus specially crafted highjacking can allow
the attacker to call arbitrary systemcalls.

Unfortunately detection of highjacking is itself a hard problem, which
is a very famous problem ”Byzantine General’s problem” in distributed
systems. There is a well-known algorithm for this problem, but it re-
quires very high technical level and high implementation cost. First we
must prepare more than one submodules for each protection domains,
and they interact with each other to determine if there is a malicious
module. These submodules must not be the same, because the same
submodule is highjacked in the same manner.

22



5.2 Future work

Implementing other submodules, especially file access policy module,
is the most important task for us. Due to lack of modules, we have to
admit the current prototype is still far from practical system. To make
the system more useful, it is needed to add functions to the current
system.

Moreover, what the current prototype can do for check is only watch-
ing the arguments and return values of systemcalls. Substituting such
values will be useful. For example, it allows the system to map the file
to another, just like chroot utility on UNIX systems.

In spite of our efforts, the center module still remains a single point
of failure. Proving that it is bug-proof or reducing the probability of
crash is also important task for us.

SeRene system is a collection of modules which process their tasks
with communicating each other. Thus it is, in these respect, very similar
to distributed systems. The prototype is considered to be a very com-
mon server-client model, which inevitably includes some single points
of failure. Methods to create fault-tolerant distributed systems may be
applicable to our system. For example, peer-to-peer(P2P)-like system
structure, which does not have any center module, will increase the sys-
tem’s robustness, but at the same time the complexity, too.

Alternatively, we may be able to adopt so-called ”higher-order refer-
ence monitor”, a reference monitor that watches another reference mon-
itor. This method is based on the assumption that a reference monitor
accesses only very small resources on the machine. Of course heteroge-
neous reference monitor set would be feasible, but it requires multiple-
stage systemcall hook by some kernel modules at the same time. This
might cause the OS to crash, or at least to slow down. Therefore, we
could say that the homogeneous reference monitor set would rather be
better, in which we can use the same kernel module for all reference
monitors.

Arranging strategy is also an open question. Although we said that
the current prototype takes the safest strategy in arranging the policy,
choosing other strategy, such as majority vote, can increase the system’s
flexibility, but this may sacrifice security a bit.
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Chapter 6

Conclusion

We designed and implemented a prototype system of self-repairing refer-
ence monitor. In this way, the possibility that reference monitor crashes
caused by bugs can be reduced.

And we have shown that there are some advantages to modularize
the system structure.

1. Single point of failure can be reduced.

If a submodule crashes, the whole system is not affected by it.
Then the center module detects it and reboots the dead module.

2. The system becomes flexible and extendable.

The user can easily extend a system by implementing his/her own
submodules. Submodules can be programmed in any programming
language, as long as they conforms all conventions.

On the other hand, this modularization also increases overhead.
However it is feasible in the case where security is important than speed,
such as the Internet services.

Although our result is very preliminary, we feel that it would be a
milestone on the road toward the method to secure reference monitors
from bugs.
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Appendix A

The buggy module sourcecode

#include <stdio.h>
#include "common.h"
#include "protocol.h"
#include "libmodule.h"

#define LIMIT 100
static int counter = 0;
static char *null = NULL;

static response_t
reqproc(const request_t *req)
{
if(++counter >= LIMIT){
fprintf(stderr, "Oh, no!\n");
*null = ’\0’;
counter = 0;

}
return RESP_ALLOW;

}

static BOOL
config_handler(const char *secname, const policy_t *pol)
{ return TRUE; }
static BOOL
mod_init(BOOL is_init, pid_t monitor)
{ return TRUE; }

MODULE(buggy, mod_init, config_handler, reqproc);
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Appendix B

Overhead test programs and results

B.1 getpid : calls getpid() repeatedly

B.1.1 Sourcecode

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char *argv[])
{
unsigned int num = 1000;
if(argc > 1) num = atoi(argv[1]);

while(num-- > 0) getpid();
return 0;

}

B.1.2 Result

% time ../test/getpid 100000
0.000u 0.059s 0:00.05 100.0% 6+211k 0+0io 0pf+0w

% time ./trad test.plc ../test/getpid 100000
Traditional Reference monitor ver 0.01

Copyright(C) 2003 Toshihiro Yoshino

DEBUG: Executing command: ../test/getpid 100000
0.107u 0.796s 0:01.43 62.2% 42+285k 0+0io 0pf+0w

% time ./serene test.plc ../test/getpid 100000
SeRene System ver 0.01
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Copyright(C) 2003 Toshihiro Yoshino

DEBUG: Executing command: ../test/getpid 100000
1.959u 7.860s 0:09.86 99.4% 31+250k 0+0io 0pf+0w

B.2 socket : connects to localhost repeatedly

B.2.1 Sourcecode

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <netdb.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <netinet/in.h>

const static char *host = "127.0.0.1";
const static unsigned short port = 9;
static struct sockaddr_in sin;

void check()
{
struct protoent* pe = getprotobyname("tcp");
int fd;

if(!pe){
fprintf(stderr, "getprotobyname() could not fine tcp proto

col\n");
exit(255);

}
if((fd = socket(PF_INET, SOCK_STREAM, pe->p_proto)) < 0){
perror("socket()");
exit(255);

}
if(connect(fd, (struct sockaddr *) &sin, sizeof(sin)) < 0)
perror("connect()");

close(fd);
}

int main(int argc, char *argv[])
{
unsigned int i, num = 100;
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if(argc > 1) num = atoi(argv[1]);

memset(&sin, 0, sizeof(sin));
sin.sin_family = AF_INET;
sin.sin_len = sizeof(sin);
sin.sin_port = htons(port);
if(inet_aton(host, &sin.sin_addr) != 1){
fprintf(stderr, "Error in address conversion\n");

}else
for(i = 0; i < num; i++){
printf("Try%d\n", i);
check();

}
return 0;

}

B.2.2 Result

% time ../test/socket 250
Try0
Try1
Try2
...
Try247
Try248
Try249
0.000u 0.010s 0:00.04 25.0% 12+456k 0+0io 0pf+0w

% time ./trad test.plc ../test/socket 250
Traditional Reference monitor ver 0.01

Copyright(C) 2003 Toshihiro Yoshino

DEBUG: Executing command: ../test/socket 250
Try0
Try1
Try2
...
Try247
Try248
Try249
0.006u 0.012s 0:00.07 14.2% 192+1248k 0+0io 0pf+0w

% time ./serene test.plc ../test/socket 250
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SeRene System ver 0.01
Copyright(C) 2003 Toshihiro Yoshino

DEBUG: Executing command: ../test/socket 250
Try0
Try1
Try2
...
Try247
Try248
Try249
0.018u 0.116s 0:00.17 70.5% 37+310k 0+0io 0pf+0w
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