
A Framework Using a Common Language to Build Program

Verifiers for Low-Level Languages

低級言語のプログラム検証器を構成するための
共通言語を用いたフレームワーク

by

Toshihiro Yoshino

吉野 寿宏

A Master Thesis

修士論文

Submitted to

the Graduate School of Information Science and Technology

the University of Tokyo

on February 7, 2006

in Partial Fulfillment of the Requirements

for the Degree of Master of Information Science and

Technology

in Computer Science

Thesis Supervisor: Akinori Yonezawa 米澤 明憲
Professor of Computer Science

ABSTRACT

Program verification is a technique to theoretically ensure that a program satisfies certain
properties. For example, a type checker of typed assembly language (TAL) is one of such
verifiers. The type checker ensures various useful properties by verifying type safety, including
memory access safety which assures a program never accesses outside of the allocated memory
area.

One problem of code verifiers for low-level languages (such as assembly languages and
machine languages) is that it is generally hard to develop a verifier. This is mainly because
low-level languages are very specific to the underlying architectures (i.e. CPUs). Therefore,
each time we construct a verifier for a low-level language, we have to describe the semantics
of the language and confirm the correctness of the description, which is a large burden in
implementation. Also existing verifiers often do not consider portability and incorporate
architecture-specific features even into the core of their verification logics.

To address this issue, we develop a general framework to verify low-level code. Our goal
is to construct a common basis for developing code verifiers for low-level languages. We
split a verifier into three parts: (1) a common language, (2) semantics-preserving program
translators for the language and (3) a verification logic. In this framework, a program is
verified after translated into the common language. If a program translator has semantics-
preserving property, which is formalized in this paper, verification of the translated program
is equivalent to that of the original program. Thus once a verifier is built for the common
language, it is able to verify programs in the source low-level languages. For proof of concept,
we implement translators from x86 and SPARC assembly to the common language, and also
show semantics-preserving property of the translators.

論文要旨

プログラム検証は、プログラムがある性質を満たすことを理論的に検証する手法である。型付
きアセンブリ言語 (TAL)の型検査器はそういった検証器の一つで、例えばプログラムが自分に割
り当てられた範囲外のメモリを読み書きしないという、メモリアクセスの安全性などの有用な性
質をプログラムに対して保証することができる。
しかし、TAL をはじめとする低級言語の検証器は、システムを作成するコストが高いという欠

点がある。これは、アセンブリ言語などの低級な言語は、アーキテクチャへの依存性が高いため
である。検証器を作成する際には言語の意味論を記述し、その記述の正しさを毎回確認しなけれ
ばならないが、この作業にかかるコストが非常に大きい。さらにこれまでの実装では、システム
の移植性を重視せず、検証器の中核部分にまでアーキテクチャ依存の部分が組み込まれてしまう
ことも多かった。
この問題を解決するために、低級言語コードを検証するための一般的なフレームワークを構築

する。我々の目的は、低級言語のための検証器を作成するための共通基盤を構築することである。
このフレームワークは、C 言語ライクな共通言語と、その言語に対する「正しい」プログラム変
換器、そして検証ロジックから構成される。このフレームワークでは、まず検証対象のプログラ
ムを共通言語に変換してから検証を行うが、プログラム変換が正しいならば、共通言語の上での
検証は元のプログラムを検証することと同等である。したがって、一度共通言語の上に検証器が
作成されたならば、変換元のプログラム言語におけるプログラムを検証することができるように
なる。その後我々は、実際に x86 や SPARC のアセンブリ言語からの変換器を記述し、変換の正
しさを示す。

Acknowledgements

First of all I would like to acknowledge the thesis supervisor, Professor Akinori
Yonezawa.

Mr. Toshiyuki Maeda and Mr. Yutaka Oiwa gave me considerable advices about
technical topics. Without their contribution, this thesis could not have been com-
pleted.

Also I appreciate all other supports by Yonezawa laboratory members and my
friends who was actively discussing with me. Their comments were always suggestive,
and I was able to refine my paper through the discussion.

I would like to thank my parents from my heart, too. They encouraged me when
I was in trouble, and were always solicitous for me.

Deep gratitude for everyone who supported me to write this thesis in some ways.
Thank you.

Contents

1 Introduction 1

2 ADL: The Common Language 4

2.1 Abstract Machine Model . 4
2.2 Language Syntax . 6
2.3 Language Semantics . 8

2.3.1 Expressions . 9
2.3.2 Commands . 11

2.4 A Simple Example . 11
2.5 Discussion . 13

3 Program Translators 18

3.1 Modeling an Instruction . 18
3.2 Translator Interfaces . 23
3.3 Semantics-Preserving Property . 26
3.4 Mapping A Real Architecture to ADL 28

4 Program Verifiers 35

4.1 Mathematical Properties of Verifiers 35
4.2 Verifier Interfaces . 36
4.3 An Example Verifier . 37

4.3.1 Type-Level Abstract Interpreter 37
4.3.2 Using Type-Level Abstract Interpreter as a Verification Logic . 40
4.3.3 Associating with the Value Interpreter 41
4.3.4 Proof of Soundness . 43

5 Related Work 48

6 Conclusion 50

7 Future Work 51

i

A Implementation of an Interpreter 53

A.1 Program Containers . 53
A.2 Interpreter Classes . 53
A.3 Usage of the Interpreter . 56

B Implementation of Program Translators 57

B.1 Program Translator for x86 . 57
B.1.1 Modeling x86 Architecture . 57
B.1.2 Addressing Modes . 58
B.1.3 Instructions . 58

B.2 Program Translator for SPARC . 61
B.2.1 Handling a Zero Register . 61
B.2.2 Handling Delayed Branch . 62

ii

List of Figures

1.1 Construction of a verifier using our framework 2

2.1 ADL values . 4
2.2 Storages in the abstract machine . 5
2.3 ADL syntax . 7
2.4 ADL semantics: expressions . 9
2.5 ADL semantics: arithmetics . 15
2.6 ADL semantics: boolean expressions 16
2.7 Kind relations . 16
2.8 ADL semantics: commands . 17

3.1 BNF syntax of terms and patterns . 19
3.2 Pattern matching algorithm . 20
3.3 Code template syntax . 21
3.4 Code template instantiation rule . 22
3.5 Diagram for conservative simulation relation 27
3.6 Simulation relation for composed programs 28
3.7 Architecture model . 29
3.8 Conservative simulation diagram in ADL 32
3.9 Possibly substituted values . 33

4.1 Type-level abstract interpreter: types 37
4.2 Typing rules for values . 39
4.3 Typing rules for data . 39
4.4 Typing rules for expressions . 40
4.5 Typing rules for boolean expressions 40
4.6 Typing rules for commands . 41
4.7 Type encode/decode functions . 42
4.8 Typine rule for code blocks . 42
4.9 Typing judgement for the entire program 42
4.10 Judgements for abstract machine states 42

iii

A.1 Classes for representing an ADL program 54

B.1 A register in x86 architecture . 58
B.2 Processor behavior for complex delayed branch 63

iv

Chapter 1

Introduction

Program verification is a technique to theoretically ensure that a program satisfies
certain properties. This technique is widely used especially in the field of security.

For example, typed assembly language (TAL), first proposed by Morrisett et al.[16,
15], is one of the systems that perform program verification. It is an assembly language
extended with static type checking, like bytecode verification on Java VM[23, 13]. A
TAL type checker ensures various useful properties by verifying type safety, including
memory access safety which assures a program never accesses outside of the memory
area allocated for the program.

Verifying low-level language programs directly has an advantage that we can re-
duce the trusted computing base (TCB). Conventionally, program verification is done
mostly in higher-level or abstract languages, such as C, ML and lambda calculi. In
this approach, a program has to be compiled after verification, thus we have to trust a
compiler in addition to a verifier. On the other hand, programs in low-level languages
like assembly languages and machine languages can be run on a real architecture with-
out large modification, because an assembler is usually much simpler than compilers.

One common problem of code verifiers for low-level languages is the hardness in
development. This is mainly because such languages are very specific to the underlying
architectures (i.e. CPUs). There are many kinds of low-level languages and each of
them has its own syntax and semantics. Thus each time we build a verifier for a
low-level language, we first have to model its underlying architecture and describe the
semantics of the language. These steps require substantial effort, because we then
have to assure that the description is correct before we use it. Otherwise we cannot
trust the verifier.

Also porting a verifier from one architecture to another generally requires a great
amount of work. Existing verifiers often do not consider portability and incorporate
architecture-specific features even into the core of their verification logics. Such sys-

1

Success

or Fail

Program

p

Program

p'Translator

Verification

Logic

Common Language

Semantics

in Source
(Low-Level) Language

in Common Language

(2)

(3)

(1)

A Verifier Using Our Framework

Figure 1.1: Construction of a verifier using our framework

tems, even though an implementation is given, cannot be ported easily. We will have
to re-implement a large part of the system when we try to port them; this is just
reinvention of a wheel and we consider this as a large burden in implementation. Thus
it is important to make a verification logic explicitly architecture-independent.

In this paper, we propose a framework using a common language to build program
verifiers for low-level languages, named L3Cover. Our goal is to construct a common
basis for code verifiers which helps the user develop a code verifier for low-level lan-
guages.

In our framework, a complete verifier is split into three parts as in Figure 1.1:
(1) a common language, (2) a semantics-preserving program translator from a low-
level language to the common language and (3) a verification logic for the common
language. Given a program, the translator first translates it to the common language,
and then the verification logic is used for the translated program. Their designs are
independent from each other; this is crucial to make the system extensible. As many
researches have been done on program verification logics, we do not discuss how we
construct every verification logic, and we can simply apply the results of preceding
researches. Thus in this research, we focused mainly on the common language and
program translators.

In the rest of this paper, we explain the design and implementation of the frame-
work for each component.

First we define the syntax and semantics of the common language ADL in Chapter
2. As program verifiers and translators are built using this semantics, ADL is exactly
the core of L3Cover framework. We design it as an imperative language with C-like
syntax, so that it is more expressive than assembly-like languages. We implemented
an interpreter of the common language using the defined semantics in order to discuss

2

the correctness of translation. See Appendix A for the detailed information.
Next in Chapter 3, we discuss program translators. They are another important

component of the system. Because a verifier is defined only for ADL, we have to
translate a program to be verified into the language before using a verification logic.
Therefore it is important to assure that translators preserve the semantics for any
program. We discuss what is the correctness and how to build a correct, trusted
translator.

For proof of concept, we implement translators from the subset of Intel x86 assem-
bly and SPARC assembly. See Appendix B for the detailed information.

And finally in Chapter 4, we discuss verification logics. In this paper, we just
model a verification logic as a blackbox function. Although assuring properties for a
verifier is left for users, we define several properties which must be assured to build a
sound verifier. Then we design an example verifier, and show that it is sound.

We use Java to implement the framework. The reasons we choose Java are the
following threefold.

First, Java is an object-oriented programming language with class inheritance.
Since our goal is to build a common basis for building a code verifier, the system must
be extensible; it must be designed so that we can easily replace a verification logic and
a program translator. We can utilize class inheritance for this purpose.

Second, Java bytecode is portable (in other words, architecture-independent).
Therefore we can execute a verifier on any platforms for which a Java VM is im-
plemented. This is a great advantage, because in many cases we want to verify a
program on the same architecture as one which the program is written for.

Third, Java has plenty of class libraries to help the implementation. Fundamental
data structures like list and map are already implemented as a default class library.
We can avoid reinvention of a wheel by simply using these classes.

3

Chapter 2

ADL: The Common Language

This chapter describes the common language called ADL. ADL stands for architecture
description language. The primary concern in designing the language is to be neutral
to any specific architectures. We define the syntax and the semantics for the language.

2.1 Abstract Machine Model

There are many architectures today, such as Intel x86, PowerPC, ARM, SPARC, etc.
However most of them do not differ much in terms of how they compute: they have
several registers and memory to store data, and manipulate these data according to a
program also stored in memory. They are all von Neumann architecture machines.

From this observation, we designed ADL to be an imperative programming lan-
guage which manipulates the state of an abstract machine. The abstract machine has
registers, memory and temporary variables to store program and data, just like those
realistic architectures.

First we describe values used for computation in ADL. The language has three
kinds of values as shown in Figure 2.1: integers, pointers and junk. This figure also
expresses a value has type Value. Such types will appear when we write pseudo-code.

An integer n can express an arbitrary integer. The range is not limited for these
values, because such limitations may weaken architecture-independence. Suppose we
defined integers to be 32-bit values, whose range is r�231, 231 � 1s. Then it becomes

Integer n ::� � � � ,�1, 0, 1, 2, � � �
Pointer m ::� `� n

Value v ::� junk | n |m :: Value

Figure 2.1: ADL values

4

Byte Value b P r0, 255s
Atomic Value a ::� junk | b |mrns :: Atom

Data d ::� xa0, a1, � � � , an�1y :: Data

Memory Block k ::� xc0; c1; � � � ; cn�1y (Code Block)
| d (Data Block)

Register File R � tr1 ÞÑ d1, r2 ÞÑ d2, � � � , rN ÞÑ dNu
Memory M � t`1 ÞÑ k1, `2 ÞÑ k2, � � � u
Temporary Variable V � tA ÞÑ v1, B ÞÑ v2, � � � u
Machine State S � pR,M, V, mq

Figure 2.2: Storages in the abstract machine

hard, although not impossible, to express an architecture whose integers are 64-bit
wide within this limitation. Moreover, the result of a computation may often overflow
from an integer; for example, multiplication of two 32-bit integers produces a 64-bit
integer. To handle these cases, we will need to incorporate special primitives into
the language, and the definition of the language will be more and more complicated.
Therefore we think it is unadvisable to limit the range of integers here.

A pointer in ADL is in fat-pointer form: a pair of a label `, which identifies the
memory block to be accessed, and a byte offset n from the beginning of the block. In
many real machine languages[10, 11, 21], each label corresponds to an address which
itself is an integer, and pointers are not distinguished from (normal) integers. However
we employ this fat-pointer approach because it can simplify the semantics. Addition-
ally, we can distinguish one memory block from another by using this formalization of
pointers.

The last value, junk, is used to express an undetermined value. Its meaning is
explained later, but roughly speaking it appears when a computation produces a value
which cannot be determined without additional (or, architecture-specific) knowledge.

Next we formalize the abstract machine for ADL in Figure 2.2. It has three cate-
gories of storage as we discussed before: registers, memory and temporary variables.

Registers and memory are just as same as those used in many real architectures.
Registers are distinguished by their names. The number of registers is a parameter, so
that it can simulate many kinds of architectures. Memory consists of several memory
blocks identified by labels. Each block can hold a fixed length of data or program
code. The syntax of program code is defined later, in the next section.

As the size of these data storage is limited, a value must be encoded (and truncated
if needed) into a data denoted as d in Figure 2.2 when we store it to a register or a
memory block. An atomic value a expresses a one-byte-wide value, and a data d is

5

defined as an array of atomic values. Each of three constructors of an atomic value
obviously corresponds to those of a value described in Figure 2.1. Here mrns expresses
the n-th byte of a pointer m in byte-array representation.

Temporary variables can, on the other hand, hold a value (defined in Figure 2.1),
not a data. Typically they are used to store intermediate results of a computation in
order to simplify notations.

We have just said that we need to encode a value when we store it to a register
or memory. encode and decode functions are used for this purpose. encode function
encodes a value into a data, and inversely decode function decodes a value from a data.
They are also architecture-specific parameters. Endianness of value representation, for
example, is absorbed here.

encode is almost the inverse function of decode. However an encoded data can
contain more than one kinds of atomic values, and in such cases decode returns junk.
Also an encoded data has limitation in the width of data, encode may truncate a value.
The conditions that these functions must satisfy are formalized as below.

� decode d � junk when d is heterogeneous or includes junk

� encode n junk � xjunk, � � � , junkylooooooooomooooooooon
n times

� A byte array is decoded to an integer: decode xb0, � � � , bn�1y � n1

An integer is encoded into an array containing byte values: encode s n �
xb0, � � � , bs�1y

�
@n. encode n pdecode xb0, � � � , bn�1yq � xb0, � � � , bn�1y

� A pointer is encoded into an array containing pointer values: encode n p`� oq �
x`� or0s, � � � , `� orn� 1sy1

� decode x`�or0s, � � � , `�orn�1sy returns a pointer `�o iff. n is equal to the size
of pointer on the architecture (this is also an architecture-specific parameter).
Otherwise it should return junk.

2.2 Language Syntax

We show the syntax of ADL program in Figure 2.3. A program in ADL is constructed
by commands, like assembly languages of real architectures. There are seven primitive
commands in the language including assignment, unconditional jump and conditional
executions.

1Or alternatively it may return an array of junk. Since we discuss the conservative formalization,
such operations can be considered as bogus.

6

Left Value l ::� rirn, ns (Register)
| �rnsev (Memory Reference)

Expression ev ::� v (Literal)
| l (Left value)
| x (Variable)
| ev opb ev | opuev

(Arithmetic)
opb ::� � | � | � | { |% |& | | |ˆ
opu ::� � | ˜

Boolean Expr. eb ::� ev cmp ev (Comparison)
| eb ^ eb | eb _ eb (Logical Operator)
| !eb (Negation)

cmp ::� �� | ! � | � � �

Command c ::� nop (No Operation)
| error (Runtime Error)
| l � ev (Assignment)
| x � ev (Variable Definition)
| goto ev (Jump)
| if eb then c else c

(Conditional)
| if ev : kind then c else c

(Conditional by Kind)
kind ::� junk | int | pointer

Figure 2.3: ADL syntax

Expressions in ADL are similar to those in C. We can write complex expressions
using infix operators and parentheses. The notation of operators is also taken from
C, thus those familiar to C will be able to read or write ADL easily. Left values are
assignable values; they point either a register or a memory block. Numbers enclosed
in a bracket specify the offset (for registers only) and the size of data to be accessed.

There are two kinds of expressions: one is expressions evaluated to a value (ev).
The other is boolean expressions (eb) that are used only as a condition for conditional
commands. Boolean expressions are evaluated to either true or false, but actually the
language uses these values only internally.

Although ADL has only unconditional branch (goto command), conditional
branches can also be achieved by combining goto command and if command. In

7

several works[5, 16] on the program verification for low-level languages, there are both
unconditional and several conditional branch primitives in the language as in many
assembly languages. However this approach restricts the branch condition; we have to
combine multiple branch instructions when we want to branch by a complex condition.
Meanwhile, we can describe any conditions in one command by using if, and it will
reduce the program size.

Actually if can be said as a more general mechanism than such an approach. For
example, we can write also conditional assignment, which is conventionally expressed
by using a conditional branch and assignment statements in different basic blocks.

2.3 Language Semantics

We define the semantics for ADL conservatively in this section. ADL consists of two
levels of elements: one is expressions without a side effect, and the other is commands
which modify the machine state. First we put several restrictions on the machine
model. After that, we define the operational semantics for each level.

Jumps are restricted only to the top of a block This restriction clarifies that
a program is structured by basic blocks. It does not weaken expressiveness of the
language, because we just have to place a label for all positions of the code where a
branch instruction jumps to.

Many verification algorithms for low-level languages traverse a control flow graph
(CFG), whose nodes are basic blocks. By this restriction each memory block becomes
a basic block, therefore it becomes easier to design a verification logic.

Memory blocks are distant Any two memory blocks are neither adjacent nor
overlapped. It also means that we put no assumption on the memory layout of a
program.

In standard assembly languages, accessing beyond the boundary of a memory block
is not prohibited. And in such cases the contents of the next or posterior block is read,
as long as a pointer points within a valid page. Although the precision of simulation
goes higher by bringing this feature in, the semantics becomes much more complicated
at the same time. It has also disadvantage that it requires the knowledge on the
memory layout, which is not determined at the level of assembly language.

Moreover, this feature is often exploited by malicious code, and causes a serious
security problem called buffer overflow. Therefore it is safer to check the array bound-
ary.

Code and data are completely separated from each other A program cannot

8

(E-Val)
$ v ó v

assertpx P dompV qq V pxq � v
(E-Var)

pR, M, V q $ x ó v

assertpri P dompRqq Rpriq � xa0, � � � , an�1y
assertp0 ¤ o n^ 0 s ¤ n� oq

decode xab, � � � , ab�s�1y � v
(E-Reg)

pR,M, V q $ riro, ss ó v

pR, M, V q $ e ó v assertpv � `� o^ ` P dompMqq
Mp`q � d assertpd � xa0, � � � , an�1yq

assertp0 ¤ o n^ 0 s ¤ n� oq
decode xao, � � � , ao�s�1y � v1

(E-Mem)
pR,M, V q $ �rsse ó v1

C $ e ó v op v � v1

(E-UnArith)
C $ op e ó v1

C $ e1 ó v1 C $ e2 ó v2 v1 op v2 � v1

(E-BinArith)
C $ e1 op e2 ó v1

When an assertion failed in
evaluating e under the context C

(E-ExprError)
C $ e ó error

Figure 2.4: ADL semantics: expressions

read from or write to a code block, and similarly the control flow cannot jump into a
data block. This restriction simplifies the semantics, because we do not read or write
code from a program, and thus do not need to encode nor decode program as a byte
array.

In preceding researches like Foundational PCC[2] and TALT[5], program code was
formalized as a byte array just like normal data. Thus we had to implement an
instruction decoder function, although most programs do neither read nor write code.
ADL explicitly separates them, and we do not need to model instruction fetch and
decode phases any more.

About the appropriateness of these restrictions, we discuss later in Section 2.5.

2.3.1 Expressions

The semantics of expressions is shown in Figure 2.4. A triple C $ e ó v means that
an expression e evaluates to a value v under the context C � pR,M, V q. R, M and V

9

are registers, memory and temporary variables, respectively. The evaluation result v

can be either an ADL value (defined in Figure 2.1) or a runtime error value denoted
as error.

Because the contents of registers and memory blocks are encoded values, decoding
occurs automatically when we use their values, as defined in E-Reg and E-Mem rules.
When an expression does not satisfy all the assertions within the derivation tree for it,
a runtime error occurs (by E-ExprError rule). For example, an error occurs when
a program attempted to access beyond the size of a register, or when a program tried
to dereference a non-pointer value.

Figure 2.5 shows the arithmetics between two values. In this formalization, txu
rounds to negative infinity, i.e. it rounds a number to the largest integer less than or
equal to the number. All operations except addition and subtract are valid only for
integer arguments, otherwise they produce a junk value without causing a runtime
error. Only addition and subtract are allowed to manipulate pointer values. As these
rules are a bit complicated, they are shown in tables.

For bitwise operations, every number is treated as a virtually infinite bit sequence
in 2’s complement representation. Division and remainder for negative numbers satisfy
the following rules.

� Quotient q is the largest integer less than or equal to
n

p
, when the sign of n and

p are the same. Otherwise, q is the smallest integer greater than or equal to
n

p
.

In other words, the quotient is rounded toward zero.

� Quotient q and remainder r must satisfy n � pq � r for all n, p.

For example, pq, rq � p�1,�2q for pn, pq � p�7, 5q, instead of pq, rq � p�2, 3q. On the
other hand, pq, rq � p1,�2q for pn, pq � p�7,�5q.

junk value represents a value which cannot be determined under the model of ADL.
Suppose an expression like p`2� 0q� p`1� 0q. Apparently the result of this expression
depends to the memory layout of a program. As we do not put any assumption for
the memory layout, the value of this expression cannot be deteremined here.

Also suppose an expression like px � 3q&p 3̃q. This arithmetic is well-known as
alignment calculation. However, in order to perform these operations for a pointer, we
have to know the characteristics of pointers and the memory layout on an architecture.
By writing this, the programmer probably assumes that every memory block is placed
in 4-byte alignment. This expression can be simulated by introducing this assumption,
but this knowledge is obviously architecture-dependent.

10

The semantics for boolean expressions is shown in Figure 2.6. They are classified
into two categories: (1) comparison and (2) logical expressions.

Comparison takes two expressions (ev in Figure 2.3) and compares the result values.
It can be defined only on two integers or two pointers with the same label. If two values
are of different kinds or pointers with different labels, it causes a runtime error. In
order to avoid an error, ADL has conditional by kind of a value in addition to (normal)
conditional by comparison and logical operators. See Appendix B for several examples
of the use of this command.

2.3.2 Commands

Next, the semantics for commands is shown in Figure 2.8. A triple S $ c ó S1 means
that the state changes from S to S1 when a command c is executed. A state is either
pR,M, V, mq, a quadruple of registers, memory, variables and the next instruction
pointer, or error.

update function used in the figure is defined as follows. This function simply
substitutes the destination data with the encoded value.

update :: Data Ñ IntÑ IntÑ ValueÑ Data

update xa0, � � � , an�1y o s v �
if 0 ¤ o n^ 0 s n� o then

xa0, � � � , ao�1, a
1
0, � � � , a1s�1, ao�s, � � � , an�1y

else

error

where encode s v � xa10, � � � , a1s�1y

Finally we define step execution relation S ù S1 as follows. It is a binary relation
ù� S � S�, where S is a set of all possible states in the form pR,M, V, mq and
S� � S Y error.

m � `� i assertp` P dompMqq Mp`q � d

assertpd � xc0; c1; � � � ; cn�1y ^ 0 ¤ i nq
pR, M, V, `� pi� 1qq $ ci ó S1

pR,M, V, mqù S1

This rule automatically extracts an instruction from memory, and performs evaluation
of the instruction. Notice that we cannot advance any more if S1 � error R S.

2.4 A Simple Example

Suppose an architecture with 32-bit machine word; there are several 32-bit registers,
and the size of pointers on the architecture is also 32-bit. Below is a program which

11

computes the sum of all integers in a linked list. An identifier prefixed by % denotes a
register. Similarly, an identifier prefixed by & denotes a pointer to a label.

null: // the end of list

data: ...

main: /* Start Symbol */

%r1 = &data;

%r2 = 0;

goto &lp; /* Required because execution flow does NOT

automatically go into the next block */

lp: /* Sum of integers in a list */

%r2 = %r2 + *[4](%r1);

// *[4](...) references 4-byte value

%r1 = *[4](%r1 + 4);

// take cdr part

if %r1 - &null : int then

if %r1 == &null then goto &ed else nop

else

nop;

goto &lp;

ed: /* Tail of the loop */

goto &ed; // halt

An equivalent program will be written like the following in C.

struct list {

int car;

struct list *cdr;

};

struct list data = ...;

int main()

{

/* main */

struct list *cursor = &data; /* <= r1 */

int sum = 0; /* <= r2 */

/* lp */

do {

sum += cursor->car;

cursor = cursor->cdr;

} while(cursor != NULL);

/* ed */

for(;;) ;

}

One important thing is that the end of each code block has goto command to the
next block in spite that the next block is written directly adjacent to a block.

12

This is because we do not put any assumption in memory layout. We cannot figure
out which block is next to a block in this model. Thus we have to specify adjacency of
code blocks explicitly. Otherwise, execution flow falls off the end of a block, and the
interpreter goes to error state.

For example, suppose a linked list beginning from data contains two integers 1 and
2.

data:

.data[4] 1 // 4-byte data containing the integer 1

.data[4] &data2

data2:

.data[4] 2

.data[4] &null

First time the interpreter reaches the label lp, the register r1 points to data, and
r2 contains zero. After two commands are executed, r2 changes to 1 and r1 points to
data2. Since data2 and null have different labels, the expression %r1 - &null eval-
uates to junk. Thus nop command in the else-branch is executed, and the interpreter
goes back to the label lp.

Execution advances similarly, but this time r2 changes to 3 (= 1 + 2) and r1 points
to null. Here the content of r1 and null are comparable and returns an integer, thus
the then-branch of the outer if-command is executed. The expression %r1 - &null

obviously evaluates to 0, and also %r1 == &null holds. Then the goto-command in
the then-branch of the inner if-command is executed, and the interpreter jumps to
the label ed.

ed indicates the termination of a program. Since ADL does not have a primitive
to terminate a program, we simply implement it as an infinite loop.

2.5 Discussion

As we put several restrictions on the semantics, there are several kinds of programs
which cannot be expressed in this language.

One example of such programs is a program which dynamically generates the code
to be executed. This feature is utilized by several programs: for example, a CPU
emulator QEmu[3]. In many architectures, one large and flat memory space is shared
for code and data. Thus we can generate machine code on data area, and jump to this
generated code.

Most of these programs utilize this feature for the sake of performance. However,
the same thing (dynamically change the execution path) can be realized by another

13

method, such as using function pointers. Because patterns of generated code are fixed,
we can implement each pattern by a function. Thus we don’t think that treating code
as data is compulsory.

Another example is a program with unfettered pointer arithmetics. Pointer arith-
metics is tightly restricted in the defined semantics, because we did not assume any-
thing about memory layout of a program. Only addition and subtract can be per-
formed for pointers, whereas other operations produce junk value when given a pointer
value. For example, the code like the following is not allowed in ADL.

char *p = "Hello", *q = "World";

...

p += q - p;

... /* Here p == q is expected */

In many real architectures, p == q holds after executing the third line2, while
in ADL, q - p evaluates to junk, and thus p contains junk after the third line. The
important point is, though, that the evaluation results correspond naturally with those
in real architectures, unless they do not evaluate to junk.

Actually, most of the pointer operations are used for accessing arrays and struc-
tures. Thus we think the following two operations are sufficient for these purposes.

1. Adding an integer to a pointer

2. Calculating the offset of two pointers in the same memory block

We designed ADL so that it can perform both of these operations correctly.

Anyway, it is not completeness, but soundness that we pursuit. We do not think
it is necessary for the language to be able to simulate any programs which can be
expressed on any architecture. We would rather be conservative than permissive when
we try to ensure certain properties theoretically.

2According to the specification of C language[1], when subtracting a pointer from another pointer,
both of them shall point elements of the same array object, or one past the last element of the array
object. Therefore the result of the code above is unspecified in the specification, whereas it runs on
many C compilers on many architectures as expected.

14

v1 � v2

v1 z v2 junk n2 `2 � n2

junk junk junk junk

n1 junk n1 � n2 `2 � pn1 � n2q
`1 � n1 junk `1 � pn1 � n2q junk

v1 � v2

v1 z v2 junk n2 `2 � n2

junk junk junk junk

n1 junk n1 � n2 junk

`1 � n1 junk `1 � pn1 � n2q
n1 � n2 where `1 � `2

junk otherwise

v1 � v2

#
n1 � n2 where v1 � n1, v2 � n2

junk otherwise

v1{v2

#
n1 div n2 where v1 � n1, v2 � n2

junk otherwise

v1 % v2

#
n1 mod n2 where v1 � n1, v2 � n2

junk otherwise

�v

#
�n where v � n

junk otherwise

v1 & v2

#
n1 and n2 where v1 � n1, v2 � n2

junk otherwise

v1 | v2

#
n1 or n2 where v1 � n1, v2 � n2

junk otherwise

v1ˆv2

#
n1 xor n2 where v1 � n1, v2 � n2

junk otherwise

ṽ

#
not n where v � n

junk otherwise

v1 ! v2

#
n1 � 2n2 where v1 � n1, v2 � n2

junk otherwise

v1 " v2

#
t
n1

2n2
u where v1 � n1, v2 � n2

junk otherwise

Figure 2.5: ADL semantics: arithmetics

15

C $ e1 ó v1 C $ e2 ó v2

v1 ¾ v2 $ v1 cmp v2
(E-CmpTrue)

C $ e1 cmp e2 ó true

C $ e1 ó v1 C $ e2 ó v2

v1 ¾ v2 & v1 cmp v2
(E-CmpFalse)

C $ e1 cmp e2 ó false

C $ e1 ó v1 C $ e2 ó v2 v1 �¾ v2
(E-CmpError)

C $ e1 cmp e2 ó error

C $ e1 ó b b � true
(E-And1)

C $ e1 ^ e2 ó b

C $ e1 ó true C $ e2 ó b
(E-And2)

C $ e1 ^ e2 ó b

C $ e1 ó b b � false
(E-Or1)

C $ e1 _ e2 ó b

C $ e1 ó false C $ e2 ó b
(E-Or2)

C $ e1 _ e2 ó b

C $ e ó b b � error
(E-Not)

C $! e ó b

C $ e ó error
(E-NotError)

C $! e ó error

v1 ¾ v2 iff.

v1 z v2 junk n2 `2 � n2

junk never.

n1 never. always. never.

`1 � n1 never. never. `1 � `2

Figure 2.6: ADL semantics: boolean expressions

$ junk : junk $ n : int $ `� n : pointer

Figure 2.7: Kind relations

16

(E-Nop)
S $ nop ó S

(E-Error)
S $ error ó error

assertpri P dompRqq Rpriq � d � xa0, � � � , an�1y
assertp0 ¤ o n^ 0 s ¤ n� oq pR, M, V q $ e ó v

update d o s v � d1 R1 � pR� triuq Y tri ÞÑ d1u
(E-AssnReg)

pR, M, V, mq $ riro, ss � e ó pR1, M, V, mq

pR, M, V q $ e1 ó v pR, M, V q $ e2 ó v1

assertpv � `� o^ ` P dompMqq Mp`q � d

assertpd � xa0, � � � , an�1y ^ 0 ¤ o n^ 0 s ¤ n� oq
update d o s v1 � d1 M 1 � pM � t`uq Y t` ÞÑ d1u

(E-AssnMem)
pR, M, V,mq $ �rsse1 � e2 ó pR, M 1, V,mq

pR, M, V q $ e ó v V 1 � pV � txuq Y tx ÞÑ vu
(E-AssnVar)

pR,M, V, mq $ x � e ó pR, M, V 1, mq

pR, M, V q $ e ó v assertpv � `� 0q
Mp`q � d assertpd � xc0; � � � yq

(E-GoTo)
pR, M, V,mq $ goto e ó pR, M, V, `� 0q

pR,M, V q $ eb ó true pR,M, V, mq $ c1 ó S1

(E-IfTrue)
pR, M, V,mq $ if eb then c1 else c2 ó S1

pR, M, V q $ eb ó false pR,M, V, mq $ c2 ó S1

(E-IfFalse)
pR, M, V,mq $ if eb then c1 else c2 ó S1

pR,M, V q $ e ó v $ v : k

pR,M, V, mq $ c1 ó S1

(E-KindTrue)
pR, M, V,mq $ if e : k then c1 else c2 ó S1

pR,M, V q $ e ó v & v : k

pR,M, V, mq $ c2 ó S1

(E-KindFalse)
pR, M, V,mq $ if e : k then c1 else c2 ó S1

De in c. pR, M, V q $ e ó error
(E-ImpError1)

pR, M, V,mq $ c ó error

When an assertion failed in
executing c from the state S

(E-ImpError2)
S $ c ó error

Figure 2.8: ADL semantics: commands

17

Chapter 3

Program Translators

In this chapter, we describe program translators. We first define the model of source
languages and the translation algorithm. Then we discuss what is the correctness of
translation and how we can confirm it.

3.1 Modeling an Instruction

First of all, we start from modeling the source language of translation.
An instruction in many assembly languages and machine languages consists of two

elements. One is an operation, which decides what kind of computation is to be done.
The other is operands, which specify from where a value is loaded, and to where the
result is stored.

Thus we model an operation as a code template, and operands as template pa-
rameters. A code template is a command sequence including zero or more template
parameters inside. Given enough parameters, it is instantiated into concrete com-
mands. Each operand is any of the following: an immediate value, a register reference
and a memory reference.

We explain this formalization in detail with an example of mov(move) instruction,
which is a popular assembly instruction among many architectures. Essentially it is an
instruction which copies a value to another place. For instance, when we want to copy
the content of a register r1 to r2, we use this instruction as mov r2, r11. We can
also write mov r4, r3 to copy from r3 to r4, etc. Or in several architectures (such as
x86), we can even use mov instruction to load from or store to memory. Obviously it
is a daunting task to enumerate all the possible pairs of operands.

Actually, they all do the same thing: they just copy the content of the second

1Here we assume the destination operand comes before sources. However in several systems, for
example GNU as, the order is reversed.

18

Identifier id ::� [‘a’-‘z’] [‘a’-‘z’, ‘A’-‘Z’, ‘0’-‘9’, ‘ ’]*
Variables var ::� [‘A’-‘Z’] [‘a’-‘z’, ‘A’-‘Z’, ‘0’-‘9’, ‘ ’]*

Terms t :: Term

t ::� v

| id ‘(’ (t (‘,’ t)*)? ‘)’
Patterns p :: Pattern

p ::� v

| var

| id ‘(’ (p (‘,’ p)*)? ‘)’

Figure 3.1: BNF syntax of terms and patterns

operand to the first one. In ADL, such an operation is written as D = S, when an
instruction of the form mov D, S is given. Thus we can take this command as a
template code with template variables D and S. By associating a pattern with template
code, the translation rule for mov instruction can be defined as below. If we instantiate
it with parameters D = r2 and S = r1, it becomes a command corresponding to the
first example.

mov(D, S) { D = S; }

This description may also be instantiated with an impossible combination of
operands; for example, specifying memory to both of these two operands is invalid
even in x86. However it will not be a problem, because real programs do not include
such impossible instructions. The important thing about translators is that any valid
instruction is correctly translated.

We decided to utilize Prolog-style pattern matching mechanism to implement this
feature. A code template is associated with a pattern including zero or more pattern
variables, and it is matched against a term. Pattern variables correspond to operands.
Figure 3.1 illustrates the syntax of terms and patterns in Backus-Naur Form.

Next we define the pattern matching algorithm as in Figure 3.2. Given a pair of
term and pattern, match function returns a variable binding if matching succeeded.
Otherwise, error is returned.

We explain how it works by giving several examples.

� apbpcpqqq matches apXq with tX ÞÑ bpcpqqu.

� apcpqq does not match apbpqq, because the labels b and c differ.

� Neither apq nor apbpq, cpqq matches apXq, because the numbers of children differ.

19

match :: pTerm� Patternq Ñ pIdent Ñ Termq
match pt, pq � match1 H pt, pq

match1 :: pIdent Ñ Termq Ñ pTerm� Patternq Ñ pIdent Ñ Termq
match1 V pv, v1q � if v � v1 then V else error

match1 V pt,Xq � if X P dompV q then

if t � V pXq then V else error

else

V Y tX ÞÑ tu
match1 V pidpt1, � � � , tnq, idpp1, � � � , pnqq �

begin

V 1 :� V ;
for i � 1 to n do

V 1 :� match1 V 1 pti, piq
end;
V 1

end

match1 � error

Figure 3.2: Pattern matching algorithm

20

Expression e ::� v (Literal)
| rire, es (Register)
| �rese (Memory Reference)
| x (Variable)
| X (Pattern Variable)
| e op e | op e

Boolean Expr. eb ::� e cmp e

| eb lop eb | lop eb

Command c ::� nop | error
| e � e (Assignment)
| goto e (Jump)
| if eb then c else c (Conditional)
| if e : k then c else c (Conditional by Kind)

Figure 3.3: Code template syntax

When one variable appears more than once in a pattern, corresponding subterms
must have the identical form.

� apbpq, bpqq matches apX, Xq with tX ÞÑ bpqu.

� apbpcpq, dpqq, bpcpq, dpqqq also matches apX, Xq. In this case the variable binding
is tX ÞÑ bpcpq, dpqqu.

� Neither apbpq, cpqq nor apbpq, bpcpqqq matches apX,Xq, because two children of a

differ.

The syntax for code templates is shown in Figure 3.3. It is almost the same as ADL
except that an expression can take a pattern variable. Operands are encapsulated into
expressions e, because they can express all of three operand patterns.

However in order to allow a pattern variable to be used for the assignment destina-
tion, assignment takes two expressions in a code template. Left hand side expression
must be instantiated either to a left value or a (temporary) variable, otherwise pro-
gram translation will fail. The same argument also goes for offset and size of register
and memory reference.

Figure 3.4 describes the instantiation rules for code templates. IV vw instantiates
a command, a boolean expression or an expression with variable binding V . Here V

must be a map from identifiers to expressions, whereas pattern matching only returns
a map from identifier to term. Thus operand mapping, which translates a term into
an expression, takes place here.

21

Expression
IV vvw � v

IV vrire1, e2sw � rirIV ve1w, IV ve2ws
IV v�re1speqw � �rIV ve1wspIV vewq

IV vXw � V pXq
IV ve1 op e2w � IV ve1w op IV ve2w

IV vop ew � op IV vew

Boolean Expression

IV ve1 cmp e2w � IV ve1w cmp IV ve2w
IV ve1 lop e2w � IV ve1w lop IV ve2w

IV vlop ew � lop IV vew

Command

IV vnopw � nop

IV verrorw � error

IV ve1 � e2w � IV ve1w � IV ve2w
IV vgoto ew � goto IV vew

IV vif eb then c1 else c2w � if IV vebw then IV vc1w else IV vc2w
IV vif e : k then c1 else c2w � if IV vew : k then IV vc1w else IV vc2w

Command Sequence

IV vc1; � � � ; cnw � IV vc1w; � � � ; IV vcnw

Figure 3.4: Code template instantiation rule

22

Finally a program translator is formalized as a pair of translation rules for oper-
ations and for operands. Each translation rule is a pair of a pattern and a template.
Given a term, the translator converts it into an expression or a command sequence.

trans op :: OperandRule Ñ TermÑ Expression

trans op R t � forpp, eq P R do

M � match pp, tq;
if M � error then

begin

V � tx ÞÑ trans op R Mpxq|x P dompMqu ;
IV vew

end

end; error

trans in :: pInstructionRule� OperandRuleq Ñ term Ñ rCommands
trans in pI,Oq t � forpp, csq P I do

M � match pp, tq;
if M � error then

begin

V � tx ÞÑ trans op O Mpxq|x P dompMqu ;
IV vcsw

end

end; error

trans op function, operand mapping, translates a term to an expression. And
trans in function, instruction mapping, translates a term to a command sequence.

3.2 Translator Interfaces

From the model described in the previous section, we designed and implemented several
classes for program translators.

The most important is TranslatorBase class below. It is the base class for all
translators.

public abstract class TranslatorBase {

// must be implemented in a subclass

public abstract Expression translateOperand(Term term)

throws TranslationException;

// must be implemented in a subclass

public abstract void translateInstruction(

ProgramGenerator output, EventQueue input,

Term term)

23

throws TranslationException;

protected void translateData(ProgramGenerator output,

Value value, int size)

throws TranslationException { ... }

public void performTranslation(ProgramGenerator output,

EventQueue input)

throws TranslationException { ... }

protected TranslationContext getContext(Map/*<String, Term>*/ map)

throws TranslationException {

TranslationContext context = new TranslationContext();

for(Iterator it = map.keySet().iterator(); it.hasNext();) {

String key = (String) it.next();

context.setVariable(key, translateOperand((Term) map.get(key)));

}

return context;

}

};

Subclass implementation will look like the following.

public class SomeTranslator extends TranslatorBase {

public Expression translateOperand(Term term)

throws TranslationException {

Map/*<String, Term>*/ map = new HashMap();

TranslationContext context;

// try a rule

map.clear();

if(pattern.matches(term, map)) {

context = getContext(map);

return ...;

}

// try another rule ...

...

throw new TranslationException("Pattern match failed");

}

...

};

translateOperand and translateInstruction implement the translation rules.
They correspond to trans op and trans in functions described in the previous section,
respectively.

Actually this implementation is more powerful than the formalization above;
for example, an instruction rule can generate a label in the middle of translation.
translateInstruction method takes ProgramGenerator class and EventQueue class
in addition to a term encapsulated in Term class. These classes abstract programs as
a stream containing three kinds of elements: instructions, data and labels.

24

public class ProgramGenerator {

public ProgramGenerator() { }

public Program getProgram() { ... }

public void setProgram(Program program) { ... }

public void startNextBlock(String labelName, int blockType)

{ ... }

public void addCommand(Command command)

throws TranslationException { ... }

public void addData(Atom[] data)

throws TranslationException { ... }

public void endGeneration() { ... }

};

public interface EventQueue {

public boolean isEmpty();

public Event peek(int index)

throws ArrayIndexOutOfBoundsException;

public void remove(int index)

throws ArrayIndexOutOfBoundsException;

};

Event class encapsulates an element of the source language: a term for an instruc-
tion, label name for a label or a pair of value and size for data. And EventQueue

contains an ordered sequence of these events. Sometimes translation logic requires
to look ahead of the event sequence; for example, we have to know the instruction
position (i.e. label) after a function call, to where the execution flow returns from a
function. This implementation allows look-ahead, and thus useful for implementing
realistic translators.

ProgramGenerator receives a sequence of ADL program elements, and stores them
into the specified program container (Program class). Adjacency of two code blocks is
automatically inside ProgramGenerator, thus a translator has only to generate code
corresponding to the source program without being meticulous.

TranslationContext is a map from name of variable to an expression. It is used
to express variable binding for template instantiation.

public class TranslationContext {

public Expression getVariable(String variableName)

throws TranslationException { ... }

public void setVariable(String variableName, Expression expr)

{ ... }

public void removeVariable(String variableName) { ... }

};

Among implementation steps of a translator, writing abstract syntax trees by hand

25

is a very large burden. To reduce the implementation cost, we built a compiler for
translation rules. Using this compiler, a rule description which consists of patterns
and ADL program templates is automatically compiled into Java implementation of a
translator.

We used this compiler to implement translators in Appendix B. It dramatically
simplified the implementation step.

3.3 Semantics-Preserving Property

In our framework, we decided to build verifiers for the common language introduced
in the previous chapter, not directly for a low-level language. However what we re-
ally want to verify is programs of realistic low-level languages (such as the assembly
language of an architecture). We have first to translate a target program into the
common language and then verify the translated program.

Consequently, program translators take the most important role in our framework.
If they do not correctly translate a program, verification will not be reliable; verification
on the common language will be irrelevant with the properties of original program.
Therefore, it is important and compulsory to check the correctness of a translator
before we use it.

First we have to construct a mathematical model of programming languages. Here
we assume the language is imperative, like C and assembly language. We model the
interpreter for an imperative language as follows.

Definition 3.1. We define an imperative language as pA,ñpq, where ñp: A Ñ A�

and A� � A Y error. It is a pair of the set of all states and step execution function
with a program p. Here we assume the function ñp is total for any p.

As step execution implements the execution rules, it is the mathematical model of
an interpreter. The assumption of totalness is equivalent to the strong termination
of step execution; in other words, each instruction in the language has to be strongly
terminating. Meanwhile, the entire program do not need to terminate. In such cases,
there is simply an infinite sequence of step execution without falling into error.

Next we discuss the correspondence between two programs in two different lan-
guages. To do this, we have to define the correspondence between states as a binary
relation �π� A� B with a parameter (if needed). We write S �π S1 when the states
S and S1 correspond to each other under the additional information π.

Before arguing the concrete definition of this relation on certain language and ADL,
we deliberate about general cases in this section. Now we define simulation relation
for two programs pA,ñpq and pB,ùp1q.

26

S'1 S'2 S'3 …S

p

≡π

errorerror

error

error

p'

p' p'

(a) Error is always simulated

S'1 S'2 S'3

T'1 T'2

error

…

…

S

T

p p' p'

p'

≡π

≡π

(b) Correspondence is preserved unless
an error occurs

Figure 3.5: Diagram for conservative simulation relation

Definition 3.2 (Conservative Simulation). We say a program p1 conservatively sim-
ulates p, or p1 � p, iff. we can define the relation �π which satisfies the following
conditions: for all S P A and S1 P B such that S �π S1,

1. If S ñp error, then S1ùp1
�error.

2. If S ñp T and T � error, then there exists a sequence S1 ùp1 T 1
0 ùp1 � � �ùp1

T 1
n and the next two properties hold.

(a) 0 ¤ @i n. T �π T 1
i ^ T 1

i � error.

(b) Either T 1
n � error or T 1

n � error^ T �π T 1
n.

The concept of conservative simulation is illustrated as a diagram in Figure 3.5.
Essentially it is a relation that the correspondence between states is preserved through
program execution. Moreover, there is an implication that execution of p1 evaluates
to error from any state corresponding to S when p evaluates to error from S, thus
we call the relation conservative.

Finally we can define the semantics-preserving property for a program translator
using this relation.

Definition 3.3 (Semantics-Preserving Property). We say a program translator is
semantics-preserving iff. for all program p, p1 � p holds whenever the translator
successfully translates p to p1.

If we define step evaluationñp as execution of one instruction, it usually terminates
(including the cases where a runtime error occurs), and thus the relation satisfies

27

S'1 S'2 S'3

T'1 T'2

error

…

…

S

T

p
p' p'

p'

≡π

≡π

U'1 U'2 …U

p
p' p'

≡π

Figure 3.6: Simulation relation for composed programs

totalness. And by the next theorem, once the simulation relation holds for primitive
instructions, it is preserved by program composition. Thus all we have to show for a
translator is that a primitive instruction is correctly translated into another language
as long as a translator can translate it.

Theorem 3.1. Suppose two programs p and p1 are given and p1 � p. For all n P N,
S P A and S1 P B such that S �π S1, if Sñp

nT then there exists S1ùp1
�T 1 such that

T 1 � error_ S1 �π T 1.

Proof. By induction and the definition of conservative simulation relation. Figure 3.6
illustrates the concept.

3.4 Mapping A Real Architecture to ADL

In this section, we describe how we can develop the correspondence between a real
architecture and ADL. And then we discuss how we can confirm that the correspon-
dence holds.

First we have to model an architecture from which we translate a program. From
the observation of several architectures, we constructed a formal model of an architec-
ture as shown in Figure 3.7. It is apparently similar to the definition of the abstract
machine in ADL. It has a register file containing several registers, and memory. The
difference from ADL is that it manipulates only byte values. Since only the definition
of states is important, we do not discuss the execution rule here.

28

Byte Value b P r0, 255s :: Byte

Byte Array d � xb0, � � � , bn�1y

Register File R :: tr1 ÞÑ d1, � � � , rN ÞÑ dNu
Memory M :: IntÑ Byte

Machine State S � pR, M, nq P A

Figure 3.7: Architecture model

Then we define the correspondence �π between states of the architecture described
above and the ADL abstract machine. In the subsequent discussion, we write the set
of all ADL abstract machine states as S, and the set of modeled architecture states as
A. The parameter for the relation is in the form π � playout, encode, codeptrq; it is a
triple of memory layout function layout :: Label Ñ Int, value encode function defined
in the previous chapter and code pointer mapping codeptr :: pLabel� Intq Ñ Int.

We start from defining the correspondence on a byte value in the source language
(Byte) and an atomic value in ADL (Atom).

Definition 3.4. We define b �playout,encode,codeptrq a iff.

1. a � junk, or

2. When a � b1 (byte value), b � b1, or

3. When a � `� nris (pointer), b � pencode P pplayout `q � nqqris

We can also define the correspondence between data (byte array) and memory
using this definition.

Definition 3.5. We say xb0, � � � , bn�1y �π xa0, � � � , an�1y iff. 0 ¤ @i n. bi �π ai.

Definition 3.6. We define memory correspondence M �π M 1 iff. @` P
t`1 P dompM 1q|M 1p`1q is datau . 0 ¤ @i n. Mpplayout `q � iq �π ai, where M 1p`q �
xa0, � � � , an�1y.

And finally, we can define the correspondence relation between states.

Definition 3.7. We define pR, M, nq �π pR1,M 1, V 1, `� n1q iff.

1. dompRq � dompR1q and @r P dompRq. Rprq �π R1prq, and

2. M �π M 1, and

3. n � codeptr p`, n1q where π � playout, encode, codeptrq.

Next we discuss the properties of the set of ADL states. We can define a partial
order � on the set S as below.

29

Definition 3.8. Let d � xa0, � � � , an�1y and d1 � xa10, � � � , a1n�1y. We say d � d1 iff.
0 ¤ @i n.

1. a1i � junk, or

2. a1i � ai

Definition 3.9. Suppose two states S, S1 P S and let S � pR, M, V, mq and S1 �
pR1,M 1, V 1,m1q. We say S � S1 for two states S, S1 P S, iff.

1. m � m1, and

2. dompRq � dompR1q, @r P dompRq. Rprq � R1pr1q, and

3. dompMq � dompM 1q, @` P dompMq. Mp`q � M 1p`q

Theorem 3.2. � is a partial order.

Proof. Reflexivity and transitivity are obvious. Antisymmetry can be proven through
the case analysis.

This order compares the abstractness of two states. Integers and pointers are sort
of concrete values, whereas junk corresponds to any atomic value, and so we call it
an abstract value. It is apparent by the definition above that the number of junk
included in S1 is greater than or equal to that in S when S � S1.

Here elements in S are classified by this partial order. We can classify them by the
number of junk included, and we write the set of elements which contain i junk’s as
Si. Then obviously Si and Sj are disjoint for all i � j, and S is the sum of all classes.

S � S0 Y S1 Y � � � Y SN

From these definitions, A is completely embedded into S0. We say a set B is
completely embedded into another set A when there exists a total, surjective function
from A to B.

Lemma 3.3. Suppose a total, surjective function f : A Ñ B can be defined on two
sets A and B. Then A can be splitted into several equivalence classes, and when we
write the set of these classes as A{ �, we can define a bijection between A{ � and B.

Proof. First we define the relation a � a1 for two elements a, a1 P A.

a � a1 ô fpaq � fpa1q

This relation is obviously reflexive, transitive and symmetric. Thus it is an equivalence
relation.

We then define a map g : A{ �Ñ B as follows. g is obviously surjective.

gprasq � fpaq

30

By the properties of equivalence classes, a � a1 ñ ras X ra1s � H. If we assume
a � a1 and gprasq � g1pra1sq, then fpaq � fpa1q holds from the definition of g. This is a
contradiction, and thus gprasq � g1pra1sq must hold. Therefore g is also injective, and
this implies g is bijective.

Theorem 3.4. A total, surjective function hπ : S0 Ñ A can be constructed with a
parameter π, by defining hπpS1q � S where S �π S1.

Proof. First we show that exactly one such element S P A exists for all S1 P S0.
Assume two states S1, S2 P A satisfy S1 �π S1 and S2 �π S1. Since S1 P S0, S1 does
not contain junk. Thus from the definition of �π, a value contained in S must be
fixed. Therefore S1 � S2 must hold, and hπ is definitely a total function.

Then we prove hπ is surjective by reduction to absurdity. Assume hπ is not surjec-
tive, thus there is a certain S such that ES1 P S0. hpS1q � S. However we can construct
a state S1 P S corresponding to S by mapping atomic values to bytes with the same
values. Obviously S �π S1 for any π, and this leads to contradiction.

From now on, we refer to the function defined in Theorem 3.4 when we write hπ or
simply h. π is abbreviated when it is apparent from the context. And also by Lemma
3.3 and Theorem 3.4, there exists an inverse function h�1

π : AÑ 2S0 such that h�1
π is

total and injective. We refer to this function when we write h�1
π or h�1.

The next lemmas are obvious from the definition of � and �π.

Lemma 3.5. S1 � S ñ hπpS1q �π S, for all S P S, S1 P S0 and π.

Lemma 3.6. For all S1 P A and S P S, S1 �π S ñ DS2 P h�1
π pS1q s.t. S2 � S.

Now we go on to discuss how we can prove the correctness of translation. According
to Theorem 3.1 in the previous section, we have only to prove correctness for each
instruction patterns, because we define ñ as execution of one instruction in a real
architecture. Consequently, discussing correctness just about programs containing
only one instruction is sufficient.

Then we can define the termination of an execution for such programs. What we
have to show becomes the preservation of correspondence �π after termination. From
now on we defineù� as execution until the control flow reaches the end of a program.

Suppose two programs p and p1 are given, where p is defined on an architecture A
and p1 on ADL. Then we define simulation relation only on S0 and A.

Definition 3.10 (ADL Simulation). For any memory map π and a state S1 P S0, let
hπpS1q ñp T and S1ùp1

�T 1. We write p1 � p, or p1 conservatively simulates p, iff.
the next two hold.

1. If T � error, then T 1 � error.

31

S'

T'

T'1 T'2

h

h-1

…

S

T

p

p'

≡π

≡π

Figure 3.8: Conservative simulation diagram in ADL

2. Otherwise, @T 2 P h�1pT q. T 2 � T 1

The concept of this relation is shown as a diagram in Figure 3.8.

Definition 3.11 (Homomorphic program). We say a program in ADL is homomor-
phic (about the order �), iff. the next two hold if S � S1.

1. If S ù error, then S1 ù error.

2. If S ù T and T � error, T 1 � errorñ T � T 1 where S1 ù T 1.

Definition 3.12. We say v � v1 for two values v and v1 iff. either v1 � junk or
v � v1.

Theorem 3.7. A program in ADL is homomorphic, if it utilizes conditional by kind
command only in the following forms.

1. if e : junk then error else c or if e : k then c else error.

2. if e : junk then l � junk else c or if e : k then c else l � junk, where defvcw �
tlu. Here l is either a left value or a temporary variable.

where k � junk.

Proof. We show each command is homomorphic by case analysis. It is obvious from the
semantics except for conditional by kind. Thus we assume the command is conditional
by kind of the forms above.

Since S � S1, v � v1 where S $ e ó v and S1 $ e ó v1. If v � v1, the result state is
equal, so we assume v � v1. Then from the definition of order, v � junk^ v1 � junk.

32

defvnopw � H

defverrorw � H

defvl � ew � tlu

defvx � ew � txu

defvgoto ew � H

defvif eb then c1 else c2w � defvc1w Y defvc2w

defvif e : k then c1 else c2w � defvc1w Y defvc2w

Figure 3.9: Possibly substituted values

Case 1: if e : junk then error else c or if e : k then c else error.
In this case, S1 ù error.

Case 2: if e : junk then l � junk else c or if e : k then c else l � junk.
The storage referenced by l will contain junk after executing under the state
S1. Then obviously T � T 1 by the definition of order.

Proposition 3.1. If p1 is homomorphic, p1 � pñ p1 � p.

Proof. We take an arbitrary S P S and S1 P A such that S1 �π S. Then we show (gen-
eral) conservative simulation relation holds by these assumptions implies the condition
for it.

First, because A is completely embedded into S0, there are functions h : S0 Ñ A
and h�1 : AÑ 2S0 by Lemma 3.3 and Theorem 3.4. And by Lemma 3.6, there exists
S2 P h�1pS1q such that S2 � S.

1. Error is always simulated.
We assume S1 ñp error. Then from the definitions of ADL simulation and homomor-
phic property, S2ùp1

�error and thus Sùp1
�error.

2. Correspondence is preserved unless an error occurs.
Here we assume T 1 � error and T � error. What we have to show is T 1 �π T where
S1 ñp T 1 and Sùp1

�T .
From the definition of ADL simulation, T 2 � error and U � T 2 for all U P h�1pT 1q

where S2ùp1
�T 2. Since we assume p1 is homomorphic, T 2 � T holds. As � satisfies

transitivity, @U P h�1pT 1q. U � T . By Lemma 3.5, it implies T 1 �π T .

Here what we have to confirm for a program translator is as follows.

33

1. It generates homomorphic programs only.

2. It translates an instruction correctly, unless it fails.

Homomorphic property is easy to confirm, because we have only to check the use
of conditional by kind. This is implied by Theorem 3.7. And also by Theorem 3.1,
program composition preserves the correspondence. Thus we just have to show the
correctness for each instruction pattern.

Unfortunately, the correctness is very difficult to prove automatically, because our
target (the thing which defines the semantics of a low-level language) is often black-
boxed as hardware, not a program. We may need to take so-called brute force approach
to try every possible input state to a program. It is theoretically possible, as the do-
main of inputs is finite, but not practically feasible in many cases. However we will
be able to get certain clues by an empirical approach to check several states for each
instruction pattern.

In the area of compiler certification, many researches[6, 8, 9, 14, 17, 18] have
already been done to prove automatically the correctness of program translation. Most
of these researches discuss the correctness on certain logical framework, thus they
implicitly require the description of the target language. However if we describe an
architecture, there is also a need to show the correctness of description. Or inversely,
even though we trust the specification, we yet have to confirm whether the underlying
architecture (hardware) correctly implements the specification. Therefore, in spite of
their contributions, the problem is deep-seated and still alive.

34

Chapter 4

Program Verifiers

This chapter discusses program verifiers. First we deliberate about theoretical topics of
program verifiers and translators. We define the soundness and show that semantics-
preserving program translators preserve this property. Then we define several inter-
faces for implementing a verifier. Finally we give the description of a simple verifier
as an example, and show that it is sound.

4.1 Mathematical Properties of Verifiers

A verifier restricts the possible states for each point of execution by certain logic.
Therefore we model it as an oracle.

Definition 4.1. We define a verifier for ADL as an oracle V : S Ñ Bool, which takes
an interpreter state and returns whether it is legitimate or not.

Although it is the developer’s responsibility to show certain properties for a verifier,
here we define several important properties for program verifiers here.

Definition 4.2 (Progress). For all S such that V pSq, S ù T and T � error.1

Definition 4.3 (Preservation). For all S such that V pSq and S ù T where T �
error, then V pT q.

Definition 4.4 (Soundness of a Verifier). We say a verifier is sound iff. a program
satisfies progress and preservation whenever verification succeeded for it.

Soundness property means that the set tS P S|V pSqu is closed about program ex-
ecution relation ù. When such a set cannot be constructed for a program, we say
the program failed the verification.

1Notice that the ADL state S contains a program p inside. Thus V is parameterized implicitly by
a program p.

35

If a verifier V is sound and a program translator used is semantics-preserving, then
we can define a sound verifier Vπ for the source architecture of translation.

Definition 4.5. We construct a verifier Vπ : AÑ Bool as follows.

VπpSq ô DS1 P S such that S �π S1 ^ V pS1q

Proposition 4.1. A verifier Vπ is sound for any π, if a verifier V is sound and a
program translator used is semantics-preserving.

Proof. By the definition, there exists S1 P S such that S �π S1. And from the
soundness, error is not reachable from the state S. Then there exists T P A such that
S ñ T and T � error, since the program translator is semantics-preserving.

Also it implies T �π T 1 where S1 ù� T 1. And from the soundness of the verifier
V , T 1 satisfies V pT 1q, and therefore VπpT q holds.

4.2 Verifier Interfaces

In our framework, a verification logic is hidden, or blackboxed, from the framework, so
that we can easily replace the logic one from another. We model a verification logic as
a function that takes a program and additional information (if needed), and returns a
verification result, either success or failure.

When a program is verified, many verification logics require certain information
in addition to the program. For instance, a type checker requires type information
for each component of the program. In ADL, this additional information is typically
associated with each memory block.

Thus we designed the interface for verifiers and their factories as follows.

public interface Verifier {

public MachineParameter getMachineParameter();

public void verify(Program program, Signature signature)

throws VerificationException;

};

public interface VerifierFactory {

public Verifier createVerifier(MachineParameter machine);

};

verify method implements a verification logic. It is called from the framework with
a translated program and additional information, which we call a verification signature.
If the verification failed by certain reason, it throws VerificationException. This
exception may contain information about the reason why the verification failed. Unless
an exception is thrown, the verification succeeded for the program.

36

Because many verifiers also require information about the underlying architec-
ture, MachineParameter has to be given to create a verifier. A factory takes
MachineParameter as an argument to create a verifier object.

Signature class below describes a verification signature. It is a (partial) function
from labels to annotations, each of which expresses information for one memory block.
Annotation class is the base class for every annotation.

public class Signature {

public Signature() { ... }

public Annotation getAnnotation(String labelName)

throws VerificationException { ... }

public void addAnnotation(String labelName, Annotation annotation)

throws VerificationException { ... }

};

// Base class for annotation

public class Annotation {};

4.3 An Example Verifier

In this section, we construct a very simple verifier as an example, and show that it
satisfies the soundness property defined before.

4.3.1 Type-Level Abstract Interpreter

Data Types τd :: DataType

τd ::� junk | byte | τd ptr

| ε (Empty Type)
| τd � τd (Product)
| codepΓq (Code Type)

Value Types τv :: ValueType

τv ::� junk | int | τd ptr

Type Context Σ � pΦ,Λ,∆q � pΓ, Λq
Γ � pΦ,∆q
Φ � tr1 ÞÑ τd, � � � , rN ÞÑ τdu (Register Types)
Λ � t`1 ÞÑ τd, � � � , `N 1 ÞÑ τdu (Memory Types)
∆ � tx1 ÞÑ τv, � � � , xN2 ÞÑ τvu (Variable Types)

Figure 4.1: Type-level abstract interpreter: types

37

First of all, we give a description of types in Figure 4.1. There are two levels of
types: data types denoted as τd correspond to a data in a register and a memory block,
and value types denoted as τv an ADL value.

A type context Γ in a code type codepΓq is a precondition for the code associated
with the type. It expresses constraints that the machine state must satisfy to execute
the code. Type contexts are for describing types of register and temporary variables.
Meanwhile, types of memory blocks are described by a verification signature and fixed.

Product type is used to express that two types are concatenated in the order.
Associativity obviously holds for product types.

τ1 � pτ2 � τ3q � pτ1 � τ2q � τ3

Also it is obvious that an empty type ε is two-sided identity for product operator.
Therefore product types form a monoid.

τ � ε � τ

ε� τ � τ

To simplify the notation, we define exponentiation of a type as described below,
which corresponds to a n-element array of type τ .

τn �
n timeshkkkkkkkkikkkkkkkkj

τ � τ � � � � � τ

We define type size function σ :: DataType Ñ Int as follows. It is used to calculate
the width of a data type in the subsequent formalization.

σpεq � 0

σpjunkq � 1

σpbyteq � 1

σpτ ptrq � P

σpτ1 � τ2q � σpτ1q � σpτ2q

where P is an architecture-specific parameter which represents the size of pointers on
the underlying architecture. Notice that we define the function only on data types,
and code type does not appear in the equations above.

Now we go on to describe typing rules. We start from showing those for values
and data as in Figure 4.2 and 4.3. A triple Λ $ v : τv means that a value v has type
τv under the memory context Λ. Similarly a triple Λ $ d : τd for data d and type τd.
Memory context is required because it may be referenced by a pointer value.

Next we define typing rules for expressions, boolean expressions and commands.
They all look similar to the evaluation rules described in Section 2.3. Figure 4.4 and 4.5

38

$ junk : junk $ n : int

Λp`q � τ0 � τ σpτ0q � n

Λ $ `� n : τ ptr

Λp`q � codepΓq

Λ $ `� 0 : codepΓq ptr

Figure 4.2: Typing rules for values

$ xy : ε $ xjunky : junk $ xby : byte

Λp`q � codepΓq

Λ $ x`� 0r0s, � � � , `� 0rP � 1sy : codepΓq ptr

m � `� n Λp`q � τ0 � τ σpτ0q � n

Λ $ xmr0s, � � � ,mrP � 1sy : τ ptr

Λ $ d1 : τ1 Λ $ d2 : τ2

Λ $ d1 �� d2 : τ1 � τ2

Figure 4.3: Typing rules for data

illustrate the typing rules for expressions and boolean expressions. Expressions that
do not match these rules are considered invalid, and verification fails for a program
containing such an expression.

Figure 4.6 defines the typing rules for commands. A triple Σ $ c ó Σ1 represents
that when a command c is executed under the type context Σ, and if the control flow
reaches the next command, then the type context becomes Σ1. There is a case where
Σ1 � K, and it means that the control flow never reaches there.

Two functions δ and ε defined in Figure 4.7 correspond to decode and encode

functions. These functions abstract the value encode/decode phases which take place
in evaluating expressions and commands.

A function υ below returns the least upper bound for two type contexts using the
subtype relation defined next.

υpΣ1,Σ2q � lub tΣ1, Σ2u

The subtype relation for type contexts is similar to that for record types. We define
the rule as follows.

tx1 ÞÑ τ1, � � � , xn�m ÞÑ τn�mu : tx1 ÞÑ τ1, � � � , xn ÞÑ τnu

Here : is obviously a partial order; reflexivity, transitivity and antisymmetry are
obvious from this rule. Therefore pS, :q forms a poset where S is the set of type
contexts. K is the minimum element, i.e. K : Σ holds for all Σ, and no state is typed
as K. Since S also has the :-maximal element J � ptu, tu, tuq, pS, :q is a lattice,
and the least upper bound always exists.

39

Λ $ v : τ
(T-Val)

pΦ, Λ, ∆q $ v : τ

∆pxq � τ
(T-Var)

pΦ, Λ,∆q $ x : τ

Φpriq � τ0 � τ1 � τ2 σpτ0q � o^ σpτ1q � s τ � δpτ1q
(T-Reg)

pΦ, Λ,∆q $ riro, ss : τ

Σ $ e : pτ1 � τ2q ptr σpτ1q � s τ � δpτ1q
(T-Mem)

Σ $ �rsspeq : τ

Σ $ e : int
(T-UnArith)

Σ $ op e : int

Σ $ e1 : int Σ $ e2 : int
(T-BinArith)

Σ $ e1 op e2 : int

Σ $ e : pτ1 � τ2q ptr σpτ1q � n
(T-AddrAdd)

Σ $ e� n : τ2 ptr

Figure 4.4: Typing rules for expressions

Σ $ e1 : int Σ $ e2 : int
(T-Cmp)

Σ $ e1 cmp e2 : bool

Σ $ e : bool
(T-UnLog)

Σ $ lop e : bool

Σ $ e1 : bool Σ $ e2 : bool
(T-BinLog)

Σ $ e1 lop e2 : bool

Figure 4.5: Typing rules for boolean expressions

4.3.2 Using Type-Level Abstract Interpreter as a Verification

Logic

We can define a verification logic using the type-level abstract interpreter described in
the previous subsection.

A typing rule for code blocks is shown in Figure 4.8. This rule indicates that
there is a sequence of type contexts tΣ0, Σ1, � � � ,Σnu. Since typing rules of the type-
level abstract interpreter are all deterministic, such a sequence is statically determined
by giving the first type context and a command sequence. The last condition Σ1 �
K _ Σ2 � K _ � � � _ Σn � K means that the control flow will never fall off the end of
this code block.

Figure 4.9 illustrates the typing judgement for the entire program. If this judge-
ment is constructed without any inconsistency, we say a program is well-typed, or it
passed the verification.

When a program is well-typed, a sequence tΣ0, Σ1, � � � , Σnu is assigned to each code
block. We refer to this sequence by writing ιpM, Λ, `q in the subsequent discussion.

40

(T-Nop)
Σ $ nop ó Σ

pΦ, Λ,∆q $ e : τ ∆1 � p∆� txuq Y tx ÞÑ τu
(T-AssnVar)

pΦ,Λ, ∆q $ x � e ó pΦ, Λ, ∆1q

pΦ,Λ, ∆q $ e : τ Φpriq � τ1 � τ2 � τ3

σpτ1q � o^ σpτ2q � s

Φ1 � pΦ� triuq Y tx ÞÑ τ1 � εpτ, sq � τ3u
(T-AssnReg)

pΦ,Λ, ∆q $ riro, ss � e ó pΦ1,Λ, ∆q

Σ $ e1 : pτ1 � τ2q ptr Σ $ e2 : τ

σpτ1q � s εpτ, sq � τ1
(T-AssnMem)

Σ $ �rsspe1q � e2 ó Σ

pΓ, Λq $ e : codepΓ1q ptr Γ : Γ1

(T-GoTo)
pΓ, Λq $ goto e ó K

Σ $ e : bool Σ $ c1 ó Σ1 Σ $ c2 ó Σ2

Σ1 � υpΣ1,Σ2q
(T-IfThenElse)

Σ $ if e then c1 else c2 ó Σ1

Σ $ e : τ $ τ : k Σ $ c1 ó Σ1

(T-IfKindTrue)
Σ $ if e : k then c1 else c2 ó Σ1

Σ $ e : τ & τ : k Σ $ c2 ó Σ1

(T-IfKindFalse)
Σ $ if e : k then c1 else c2 ó Σ1

$ junk : junk $ int : int $ τ ptr : pointer

Figure 4.6: Typing rules for commands

4.3.3 Associating with the Value Interpreter

In order to show certain properties for a verification logic, we have to associate verifi-
cation information with an (value-level) interpreter state.

Here we assume a program is well-typed ($ M : Λ, as defined in the previous
subsection), and discuss the correspondence between type contexts and ADL abstract
machine states.

Typing judgements for abstract machine states are shown in Figure 4.10. Since
memory has already been proven to be well-typed on checking the program, we do
not need to define the judgement here. Thus if registers and temporary variables are
well-typed, we say the state is well-typed.

41

Type decode function δ :: DataType Ñ ValueType

δpbytenq � int

δpτ ptrq � τ ptr

δp q � junk

Type encode function ε :: ValueTypeÑ DataType

εpint, nq � byten

εpτ ptr, nq �

#
τ ptr n � P

fail otherwise
εp , nq � junkn

Figure 4.7: Type encode/decode functions

Σ0 � pΓ,Λq
Σ0 $ c0 ó Σ1

Σ1 � K ñ Σ1 $ c1 ó Σ2

pΣ1 � K^ Σ2 � Kq ñ Σ2 $ c2 ó Σ3

...
Σ1 � K_ Σ2 � K_ � � � _ Σn � K
Λ $ xc0; c1; � � � ; cn�1y : codepΓq

Figure 4.8: Typine rule for code blocks

dompMq � dompΛq @` P dompΛq. Λ $Mp`q : Λp`q

$M : Λ

Figure 4.9: Typing judgement for the entire program

dompRq � dompΦq @r P dompΦq. Λ $ Rprq : Φprq

Λ $ R : Φ

dompV q � domp∆q @x P domp∆q. Λ $ V pxq : ∆pxq

Λ $ V : ∆

Λ $ R : Φ Λ $ V : ∆ $M : Λ

$ pR,M, V, mq : pΦ,Λ, ∆q

Figure 4.10: Judgements for abstract machine states

42

4.3.4 Proof of Soundness

In this subsection, we show the soundness for the type system that we have designed
hitherto.

First we have to say the correctness of type functions. These properties are obvious
by their definitions.

Lemma 4.1 (Type Size Function). If Λ $ d : τ , then σpτq � |d|.

Lemma 4.2 (Type Decode Function). If Λ $ d : τ , then Λ $ decode d : δpτq.

Lemma 4.3 (Type Encode Function). If Λ $ v : τ , then @n. Λ $ encode n v : εpτ, nq.

The next lemma is the inverse of the typing rule of data concatenation.

Lemma 4.4 (Data Splitting). If Λ $ d1��d2 : τ1�τ2 and σpτ1q � |d1|^σpτ2q � |d2|,
then Λ $ d1 : τ1 and Λ $ d2 : τ2 hold.

Proof. Obvious by case analysis for the construction of type τ1.

Then we prove several lemmas which guarantee the abstract interpretation corre-
sponds to the (value-level) interpretation. We need a lemma for each interpretation
unit, i.e. language element.

Lemma 4.5. If Γ,Λ $ e : τ and $ C : Γ, Λ, then v � error and Λ $ v : τ where
C $ e ó v.

Proof. By induction over the typing tree of an expression. Let Γ � pΦ,∆q and C �
pR,M, V q.

Case 1: e � v

Trivial.

Case 2: e � x

From the definitions, v � V pxq and τ � ∆pxq. Then Λ $ v : τ by well-
typedness.

Case 3: e � riro, ss
From the definitions, τ � δpτ1q and v � decode xao, � � � , ao�s�1y where
Φpriq � τ0 � τ1 � τ2, Rpriq � xa0, � � � , an�1y and σpτ0q � o ^ σpτ1q � s.
By Lemma 4.1, σpΦpriqq � σpτ0q � σpτ1q � σpτ2q � n. Since the type size
function returns natural number only, obviously o � σpτ1q ¥ 0, s � σpτ2q ¥ 0
and σpτ3q ¥ 0. And s ¡ 0 by induction hypothesis, which implies 0 ¤ o
n^ 0 s ¤ n� o.
By Lemma 4.4, Λ $ xao, � � � , ao�s�1y : τ1 holds. Therefore Λ $ v : τ by
Lemma 4.2

43

Case 4: e � �rsspe1q
By induction hypothesis, C $ e1 ó ` � o and Λ $ ` � o : pτ1 � τ2q ptr where
σpτ1q � s. Then by the typing rules, Λ $ xao, � � � , ao�s�1, ao�s, � � � , y : τ1�τ2

where Mp`q � xa0, � � � y. By Lemma 4.4, Λ $ xao, � � � , ao�s�1y : τ1 holds.
Therefore Λ $ v : τ where v � decode xao, � � � , ao�s�1y and τ � δpτ1q by
Lemma 4.2.

Case 5: e � op e1

From the definitions, v � op v1 and τ � int where C $ e1 ó v1. By induction
hypothesis, Λ $ v1 : int, thus the arithmetic operation returns an integer.
Obviously Λ $ v : τ .

Case 6: e � e1 op e2

(a) When T-BinArith rule is used, v � v1 op v2 and τ � int where C $
e1 ó v1 and C $ e2 ó v2. By induction hypothesis, both v1 and v2 are
integers, and the result is also an integer. Therefore $ v : int.

(b) When T-AddrAdd rule is used, C $ e1 ó ` � o, e2 � n, Λ $ ` � o :
pτ1 � τ2q ptr and σpτ1q � n by induction hypothesis. From the typing
rule, Λ $ xao, � � � y : τ1 � τ2 where Mp`q � xa0, � � � , y. By Lemma 4.4,
Λ $ xao�n, � � � y : τ2. Therefore Λ $ v � `� po� nq : τ � τ2 ptr.

Lemma 4.6. A well-typed boolean expression will never fail an assertion.

Proof. By induction over the typing tree of an expression.

Case 1: If an expression is comparison, both of two operands are integer by Lemma
4.5. Then comparison is always possible.

Case 2: If an expression is logical expression, obvious by induction hypothesis.

The next lemma discusses the correspondence for command execution.

Lemma 4.7. Assume $ pR, M, V q : Σ, Σ $ c ó Σ1. If pR, M, V,mq $ c ó
pR1,M 1, V 1,mq, then Σ1 � K and $ pR1, M 1, V 1q : Σ1.

Proof. By induction over the typing tree of c.

Case 1: c � nop

From the definitions, pR1, M 1, V 1q � pR,M, V q and Σ1 � Σ.

44

Case 2: c � error

This command is not typed.

Case 3: c � x � e

From the assumption, an expression e is well-typed. Thus by Lemma 4.5,
pR, M, V q $ e ó v and Λ $ v : τ . From the definitions, V 1 � pV �txuqYtx ÞÑ
vu and ∆1 � p∆�txuqY tx ÞÑ τu. Then obviously Λ $ V 1 : ∆1, which implies
$ pR1,M 1, V 1q : Σ1.

Case 4: c � riro, ss � e

Similar to the argument on referencing a register in an expression. See the
proof of Lemma 4.5.

Case 5: c � �rsspe1q � e

Similar to the argument on referencing a memory block in an expression. See
the proof of Lemma 4.5.

Case 6: c � goto e

This command modifies the instruction pointer, and therefore we do not need
to discuss here.

Case 7: c � if e then c1 else c2

From the assumption, a boolean expression e is well-typed, thus by Lemma
4.6, e will never evaluate to error. By induction hypothesis, Σ $ c1 ó Σ1 and
Σ $ c1 ó Σ2.
Since Σ1 � υpΣ1, Σ2q and υ computes the least upper bound, Σ1 : Σ1 and
Σ2 : Σ1. pR1, M 1, V 1q is either the state after c1 or c2, it obviously satisfies
$ pR1,M 1, V 1q : Σ1.

Case 8: c � if e : k then c1 else c2

From the assumption, an expression e is well-typed. By Lemma 4.5,
pR, M, V q $ e ó v and Λ $ v : τ .

(a) Assume $ τ : k. In this case c1 is executed, and by induction hypothesis
$ pR1,M 1, V 1q : Σ1.

(b) Otherwise, c2 is executed. The rest is similar to the argument in the first
case.

Finally we can prove soundness by using these lemmas.

Theorem 4.8 (Progress). Assume $M : Λ, $ S : Σi where S � pR, M, V, `� iq and
tΣ0, Σ1, � � � u � ιpM, Λ, `q. Then S ù T and T � error.

45

Proof. Let c � Mp`qris. We show that the evaluation S $ c ó T will never return
T � error by induction over the typing tree of a command c.

Case 1: nop

Trivial.

Case 2: error

From the well-typedness, this case is impossible.

Case 3: x � e

From the well-typedness, x P domp∆q � dompV q where Σi � pΦ, Λ, ∆q. By
Lemma 4.5, e never evaluates to error. Thus the execution does not fail.

Case 4: riro, ss � e

Similar to the argument on referencing a register in an expression.

Case 5: �rsspe1q � e

Similar to the argument on referencing a memory block in an expression.

Case 6: goto e

By the assumption, Σ $ e : codepΓ1q ptr. And by Lemma 4.5, pR, M, V q $
e ó ` � n. Since address calculation is impossible for code pointers, n must
be 0. From the well-typedness, a block identified by ` must contain program
code. Then all the assertion is satisfied.

Case 7: if e then c1 else c2

By Lemma 4.6, e evaluates to either true or false. And by the induction
hypothesis, T1 � error and T2 � error where S $ c1 ó T1 and S $ c2 ó T2.
Therefore T � error.

Case 8: if e : k then c1 else c2

By Lemma 4.5, v � error and Λ $ v : τ where pR, M, V q $ e ó v and
Σ $ e : τ .

(a) If $ τ : k, c1 is executed. By the induction hypothesis, S $ c1 ó T and
T � error.

(b) Otherwise, c2 is executed. By the induction hypothesis, S $ c2 ó T and
T � error.

Theorem 4.9 (Preservation). Assume $ M : Λ, $ S : Σi where S � pR, M, V, `� iq
and tΣ0, Σ1, � � � u � ιpM, Λ, `q. If S ù T and T � error, then either:

1. T � pR1,M 1, V 1, `1 � 0q and $ T : pΓ1,Λq where Λp`1q � codepΓ1q.

46

2. T � pR1,M 1, V 1, `� pi� 1qq, Σi�1 � K and $ T : Σi�1.

Proof. By case analysis of the command executed.

Case 1: Assume the control flow jumps to another memory block. In ADL, at most
one side effect occurs in an command, thus pR1,M 1, V 1q � pR, M, V q. From
the well-typedness, $ pR, M, V q : pΓ, Λq and Γ : Γ1 where Λp`1q � codepΓ1q.

Case 2: Otherwise, the control flow falls to the next instruction whose address is `�
pi � 1q. From the definition, S $ c ó T where c � Mp`qris. Then obviously
by Lemma 4.7, Σi�1 � K and $ T : Σi�1.

Proposition 4.2. The type system described in this section is sound.

Proof. Obvious by Theorem 4.8 and 4.9. We just define V pSq where S � pR,M, V, `�iq
like this:

V pSq ô $ M : Λ^ $ S : ιpM, Λ, `qris

47

Chapter 5

Related Work

The approach to split the implementation of a verifier using a common language is also
taken in Foundational TAL by Crary[5]. Inspired by Appel’s Foundational PCC[2], he
built a type system for an assembly-like language TALT, and described it in a logical
framework Twelf. Then he proved by a theorem prover that the type system satisfies
several properties including GC safety.

His primary concern was to reduce trusted computing base (TCB), and to realize
this he constructed a system to verify the program safety on a logical framework. How-
ever the correspondence between the real assembly languages or machine languages
and TALT has not yet been discussed in his paper.

Many researches have also been done on proving that the semantics is preserved in
a program translation, especially in the field of compiler optimizations.

Lerner et al.[12] discussed the correctness of compiler optimizations with a lan-
guage named Cobalt. Cobalt is a domain-specific language designed for implementing
optimizations as guarded rewrite rules. They presented a strategy for automatically
proving the soundness of optimizations and analyses using Cobalt. Necula[17] built a
translation validation infrastructure (TVI) for the GNU C compiler. He designed an
intermediate language IL similar to the language that the GNU C compiler uses, and
constructed a framework to check two IL programs have the same semantics.

Rinard[20] tried to build a credible compiler. It produces a machine-checkable proof
which demonstrates the correctness of compilation, in addition to compiled code. The
user does not need to trust the compiler, just verifies the proof and knows that the
compilation is correctly performed.

However it is difficult to extract the semantics for a low-level language, because it
is often implemented as hardware. These researches assume that the semantics of the
language is given on certain logical framework. Even if we describe the semantics, it is
still required to show the correctness of the description (or alternatively, the correctness

48

of the hardware). Thus our work is also aimed to develop a formal foundation for
verifying the correctness of a program translator when the semantics is blackboxed.

CPU emulators, such as Bochs[19], PearPC[7] and QEmu[3], are similar to our
research in that both they and our framework translate low-level programs to certain
common language. They are using C or C++ as a common language to achieve
architecture-independence1. Their correctness is discussed only informally, by the
observation that many realistic applications seem to run correctly.

We would be able to modify their code to produce C- or C++-code from a program
on a target architecture, though, we think neither C nor C++ is appropriate as a
common language which we build a verifier for. This is mainly because the semantics
of these languages are too complicated, and the semantics is not completely fixed.
Additionally, we can cast an integer to a pointer anytime, and we can also perform
unfettered pointer arithmetics. Some of these operations are bogus, and to avoid such
bogus operations, we restricted the pointer arithmetics in ADL, and we think it is
reasonable. We think ADL is a small but enough expressive, safe subset of C, and it
is more approproate than C to build a verifier for.

1Actually the semantics is a bit different among many platforms. One example is the size of int.
Also, the semantics of C has many unspecified operations.

49

Chapter 6

Conclusion

We presented a framework using a common language to build program verifiers for
low-level languages. It is aimed to construct a common basis to help developers of a
verifier for low-level languages, such as assembly language and machine language. In
particular, we focused on the design of a common language and program translators.

First we designed the common language ADL, presented the syntax and semantics
and implemented an interpreter to confirm the correctness of translation. The user of
this framework can build a verification logic or a program translator using the defined
semantics.

Then we formalized program translators and discussed their properties. We showed
what properties must be proven and how we can confirm the correctness of a translator.
For proof of concept, we implemented translators from the subset of Intel x86 and
SPARC assembly languages.

Finally we modeled verification logics as blackboxed oracles, and showed the sound-
ness is preserved through program translation using semantics-preserving program
translators. We defined the soundness property required for a verifier. As an example,
we constructed a very simple type system and showed that it satisfies the soundness.

Recent researches in the area of program verification and compiler certification have
shown considerable progress. However there still seems to be a large gap between the
target language of verifiers and the language in which most of the realistic programs
are written. Our work is, therefore, aimed to fill this gap.

We believe that our framework helps the developers to build code verifiers for
low-level languages.

50

Chapter 7

Future Work

In this paper, we checked a partial correctness of implemented translators by our hand,
using the ADL interpreter and the GNU gdb debugger on the real architectures. This
required a large amount of work, and thus we feel that we will need to construct a
testing framework. As an ADL interpreter is already implemented as a part of the
framework, and there are several multi-architectural CPU emulators like QEmu[3], we
would be able to build a system that automatically performs tests.

Or alternatively, we may as well trust the specification of assembly languages and
that the hardware correctly implements the specification. If so, we would be able to
apply the result of translation validation researches here.

Currently ADL does not support dynamic allocation of memory. Thus we have to
statically prepare every memory block used in a program with enough sizes before-
hand. This limitation may weaken the expressiveness of the system, because there is
a possibility that the size of a memory block actually allocated in a real architecture
may not be equal to the modeled program. Or we can handle this by implementing a
heap manager in ADL, however it spoils the separatedness between memory blocks.

In order to implement dynamic memory allocation, we have to incorporate a special
instruction like malloc (as in typed assembly languages[16, 15, 5]), or more generally
we have to extend an ADL interpreter so that it can call external native subroutines.
Both extensions will be straightforward, however at the same time we will need to
describe mathematical models of every external handler to do that.

Similarly in current implementation of ADL, the stack is handled just as other
memory blocks. We may be able to allocate a large memory area of fixed length also
for the stack, and use it from one side. If it grows too deep, the stack pointer falls off
the stack area at certain time and overflow can be detected. Although this behavior
is popular among many realistic platforms, the stack should virtually be an infinite
structure, which is automatically extended and shrunk when needed, for building a

51

theoretical model.

Also L3Cover framework does not consider concurrent, multi-threaded programs
at this time. As interference between two or more concurrent threads is the most
important feature in these programs, we will have to model this behavior correctly.

Threads in concurrent programs communicate each other using shared memory
areas. As the timing is critical to the way reading from and writing to these memory
areas are serialized, we must simulate randomized behavior here. If we naively try
to enumerate all the possibilities, the number of states increases according to the
exponential order. Therefore a substantial effort is required to treat such programs[4,
22].

52

Appendix A

Implementation of an

Interpreter

A.1 Program Containers

First we have to define classes to represent a program in ADL. We implemented one
class for each language element as shown in Figure A.1.

The complete program (code and data) is stored in Program class which cor-
responds to memory. As a program is also stored in memory in this model, it
is designed to be a container for memory blocks. It contains a map from labels
(java.lang.String) to memory blocks (MemoryData).

We used java.math.BigInteger class for representing integers. We can construct
an instance of java.math.BigInteger class from 2’s complement representation of
an integer, which is popular among many architectures. In this formalization we just
have to concern the byte ordering. And it is encapsulated into Int class.

Memory blocks and registers are distinguished by names. We simply used
java.lang.String class for this purpose.

A.2 Interpreter Classes

There are several architecture-specific parameters to an interpreter.

� Names and sizes of registers

� Size of pointers

� encode and decode functions which convert values and data

53

Class name Corresponding language element

Int Integer n

Pointer Fat pointer m

Atom Atomic Value a

Atom[] Data d

Value Values v

LeftValue Left Values l

Expression Expression ev

BooleanExpression Boolean Expression eb

Command Command c

Command[] Command Sequence c�

MemoryData Memory Data k

Program Memory M

Figure A.1: Classes for representing an ADL program

We designed MachineParameter and ValueCodec interfaces to encapsulate these in-
formation.

ValueCodec interface implements encode and decode functions, and
MachineParameter interface contains the rest of above. MachineParameter

also has a method to return ValueCodec, thus it is the complete object to represent
all architecture-specific parameters.

public interface ValueCodec {

public Atom[] encode(Value value, int size);

public Value decode(Atom[] data);

};

public interface MachineParameter {

public String[] getRegisterNames();

public int getRegisterSize(String registerName);

public int getPointerSize();

public ValueCodec getValueCodec();

};

Given a MachineParameter, we can construct a concrete interpreter class. Thus
we employed factory pattern here.

public interface ExecutionEngine {

public void initialize(Program program,

InstructionPointer programCounter)

throws ExecutionException;

public InstructionPointer getProgramCounter();

54

public void setProgramCounter(InstructionPointer programCounter);

public ExecutionContext getContext();

public ExecutionEngine step() throws ExecutionException;

};

public interface ExecutionEngineFactory {

public ExecutionEngine createExecutionEngine(

MachineParameter parameter

)

throws ClassCastException;

};

step method in ExecutionEngine class implements step execution S ù S1, where
S is represented by an instance of ExecutionContext interface and the instruction
pointer. When S1 � error, it throws an ExecutionException. If an exception is
thrown, we cannot continue execution any more, and the results for the subsequent
calls to interpreter methods are unspecified.

The current execution context can be obtained through calling getContext

method. It returns an instance of ExecutionContext interface. This class contains
three kinds of storages: registers, memory and temporary variables.

public interface ExecutionContext {

public Register getRegister(String registerName)

throws ExecutionException;

public MemoryBlock getMemoryBlock(String labelName)

throws ExecutionException;

public Value getVariable(String variableName)

throws ExecutionException;

public void defineVariable(String variableName, Value value)

throws ExecutionException;

public void forgetVariable(String variableName)

throws ExecutionException;

};

ExecutionContext is created in the call to initialize method of
ExecutionEngine class. Since it may contain implementation-specific informa-
tion in addition to the states described above, it is defined as an interface. Concrete
classes for ExecutionEngine and ExecutionContext must correspond to each other.

Instruction pointer is encapsulated into an InstructionPointer class. It is a pair
of label and instruction index, just like Pointer class.

public class InstructionPointer {

public InstructionPointer(String labelName, int index) { ... }

public InstructionPointer(String labelName) { this(labelName, 0); }

public String getLabelName() { ... }

public int getIndex() { ... }

};

55

A.3 Usage of the Interpreter

To use the interpreter described above, first obtain an instance of
ExecutionEngineFactory interface. Then call createExecutionEngine method with
an instance of MachineParameter which contains information about the architecture
to be simulated. This method returns an instance of ExecutionEngine interface,
which is the core of the interpreter.

After that, call initialize with a Program class to be executed and
InstructionPointer class which contains the first instruction pointer. Here the ex-
ecution engine class is initialized and we can start the interpretation. Calling step

method advances execution by one instruction.
We can easily inspect the machine state by calling getContext method and

getInstructionPointer method between calls to step method.

Thus, top level code will look like the following.

// prepare required information

ExecutionEngineFactory eef = ...;

MachineParameter mp = ...;

Program prog = ...;

// initialize the engine

// and start execution from a block labeled "_start"

ExecutionEngine interp = eef.createExecutionEngine(mp);

interp.initialize(prog, new InstructionPointer("_start"));

try {

while(true) {

// do some inspection here

// ...

// and step one instruction

interp.step();

}

} catch(ExecutionException exn) {

// an error occurred

...

}

56

Appendix B

Implementation of Program

Translators

B.1 Program Translator for x86

Intel x86 architecture[11] is the most popular architecture in the personal computer
market. x86 is one of CISC architectures, on which complex instructions and address-
ing modes are implemented.

B.1.1 Modeling x86 Architecture

x86 architecture, or also known as IA-32 architecture, has 8 general purpose registers:
EAX, EBX, ECX, EDX, ESI, EDI, EBP and ESP. They are 32-bit each and we can
freely use them as operands to instructions. Also x86 has 8 floating-point registers,
but as a prototype implementation, we do not handle floating-point instructions here.

In addition to these registers, x86 has a flag register EFLAGS. It consists of many
flags, but typical programs do not need most of them. Here we just focus on ZF (zero
flag, set when the result is zero), CF (carry flag), OF (overflow flag) and SF (sign flag,
set when the result is negative). We prepare one-byte-wide register for each of these
flags.

In x86, address is actually 48-bit long; 32 bits come from the computation result
and 16 bits from one of segment registers. Essentially a segment register is used to
explicitly separate code, data and the stack. However they are not separated well;
in many OSes, flat memory model is employed. Therefore we just ignore segment
registers in implementing a translator.

57

 31 0 8 716 15

AH AL

AX

EAX

Figure B.1: A register in x86 architecture

B.1.2 Addressing Modes

One feature of x86 is the abundance of addressing modes. Addressing modes are
patterns of operands. An immediate value, a register or even reference to a memory
cell can be described in the architecture.

For registers, we can specify a part of a register instead of referencing the entire
values contained in a register (see Figure B.1 for detailed information). As x86 is a
little-endian architecture, LSB comes to the first of byte array, and MSB to the last.
Thus AX is 2-byte data starting from the index 0 of EAX register. Similarly AL and
AH can be expressed as a byte data at the index 0 and 1, respectively. For example,
we can express this feature as follows with the syntax of ADL.

#operand {

eax = %eax;

ax = %eax[0, 2];

al = %eax[0, 1];

ah = %eax[1, 1];

...

}

In x86, memory references are not restricted to use with a special load/store in-
struction. We have to include them into the operand mapping.

#operand {

mem(Base, Size) =

*[Size](Base);

mem(Base, Offset, Size) =

*[Size](Base + Offset);

mem(Base, Offset, Index, Scale, Size) =

*[Size](Base + Offset + Index * Scale);

}

B.1.3 Instructions

mov instruction

This instruction copies the content of one operand to another. As it does not affect
any flags, we have only to write assignment.

58

mov(D, S) {

D = S;

}

add instruction

This instruction works like += operator in C; it adds the content of the second operand
to the first. And simultaneously it modifies flag registers appropriately.

add(D, S)

// calculate results

$s = (1 << sizeof(D) * 8) - 1; // all 1’s with the operand size

$_cftmp = (D & $s) + (S & $s);

$_oftmp = (D ^ S) & (($s >> 1) + 1);

D = D + S;

// ZF

if D : int then

if D == 0 then %_zf = 1 else %_zf = 0

else if (D - &null) : int then // = if comparable to &null

if (D - &null) & $s == 0 then %_zf = 1 else %_zf = 0

else

%_zf = junk;

// SF

if D : int then

if D < 0 then %_sf = 1 else %_sf = 0

else if (D - &null) : int then // = if comparable to &null

if (D - &null) & (($s >> 1) + 1) != 0 then %_sf = 1 else %_sf = 0

else

%_sf = junk;

// CF

// - set if carry to the 32nd bit as unsigned values

if $_cftmp : int then

if $_cftmp >= ($s + 1) then %_cf = 1 else %_cf = 0

else

%_cf = junk;

// OF

// - set if signed result overflow

// = original two input but output has the same sign

if $_oftmp : int then /* both D and S has int */

if $_oftmp == 0 && ((D ^ S) & (($s >> 1) + 1)) != 0 then

%_of = 1

else

%_of = 0

else

%_of = junk;

}

Computation rules for flags are conservatively implemented. When a pointer is
given as an operand, flags become junk except the cases where null appears. null is
the only label whose pointer is statically determined, and we assume its value is 0.

59

Since two pointers with different labels are not comparable, we have to use con-
ditional by kind when comparing pointers. As shown in Section 2.3, subtracting a
pointer from another returns an integer if they are of the same label, otherwise junk is
returned. This operation can be done without generating a runtime error, conditional
by kind of this result is appropriate for comparing pointers.

jmp, jcc instructions

jmp instruction is unconditional jump. It simply corresponds to goto command.

jmp(OP) {

goto OP;

}

Conditional jumps looks flag registers. For example, jz instruction below branches
when the result of the antemortem arithmetic operation is equal to 0.

jz(OP) {

if %_zf : int then

if %_zf != 0 then goto OP else nop

else

error; // undecidable !!

}

As we have shown in add instruction, there is a possibility that flag registers contain
junk. In such cases, we cannot decide which branch to take; selecting one branch
statically may lead to the discordance on simulation relation. Therefore we have to
give up simulation and generate a runtime error.

push, pop instructions

These instructions are used to operate on the stack. push inserts data to the top of
the stack, and pop retrieves data from the stack.

In x86, stack pointer is always ESP register. This register always points the current
top of the stack. When we push a data to the stack, first the stack pointer is subtracted
by the size of the data, and then the data is stored.

push(D, Size) {

%esp = %esp - Size;

*[Size](%esp) = D;

}

pop(D) {

D = *[sizeof(D)](%esp);

%esp = %esp + sizeof(D);

}

Size is needed for push because it may take an immediate value. Meanwhile, pop
does not require operand size.

60

call instruction

This instruction is a good example which looks ahead of the input sequence.
call instruction is used to make a function call. It first pushes the address after

the instruction to the stack (return address), and then jumps to the specified address.
And when we return from a function, return address is popped from the stack. Thus
we have to know the instruction position (i.e. a label) which comes directly after the
instruction.

We assume each call instruction has a label adjacent to it. If there is no label
after a call instruction, a translator throws an exception to indicate that the program
translation failed.

call(OP) {

// Obtain the address of the next instruction (i.e. where to return)

<% Event nev = input.peek(0);

if(nev.getType() != Event.TYPE_LABEL) throw new TranslationException();

Expression _retaddr =

new Expression(Value.Pointer(new Pointer(nev.getLabelName()))); %>

// Push it to the stack

%esp = %esp - 4;

*[4](%esp) = <%= _retaddr %>;

// And jump to the function

goto OP;

}

ret() {

$retaddr = *[4](%esp);

%esp = %esp + 4;

goto $retaddr;

}

Blocks enclosed in <% ... %> and <%= ... %> are Java code, like those in Java
Server Pages (JSP).

B.2 Program Translator for SPARC

SPARC architecture[21] is one of RISC architectures. In this section, we introduce
how we can write translator rules for several architecture-specific features.

B.2.1 Handling a Zero Register

Zero register is a register whose value is always zero. SPARC also has g0 register as a
zero register, like many RISC architectures. It always reads the value 0, and writing
to it is discarded.

We do not need a storage for the register g0. In operand mapping, we just return
the constant zero.

61

#operand {

g0 = 0;

g1 = %g1;

...

}

Writing rule is described in the instruction mapping as follows.

#instruction {

mov(S, g0) { }

mov(S, D) { D = S; }

add(S1, S2, g0) { }

add(S1, S2, D) { ... }

...

}

We leverage template priority to implement the zero register. Because translators
simply generate the code corresponding to the first pattern that matched to the given
term, the rule written anterior has a priority.

B.2.2 Handling Delayed Branch

Delayed branch is to delay completion of branching by several instructions. It is
popular among RISC architectures, and often incorporated for pipeline efficiency. For
example in SPARC, branch is always delayed for one instruction. It means that an
instruction after a branch instruction is always executed before branch is completed.

A simple solution is to transpose a branch instruction and delayed slot. However
this is not the complete solution; it cannot handle the cases where the instruction in
the delayed slot modifies the operand to the branch instruction. Thus first we have
to save the branch target to somewhere. Temporary variables are appropriate for this
purpose.

The rule below is for ba instruction (branch always).

ba(OP) {

// first determine where to go

$__next = OP;

// execute delayed slot

<% Event dslot = input.peek(0); input.pop();

if(dslot.getType() != Event.TYPE_INSTRUCTION)

throw new TranslationException();

if(isBranch(dslot.getInstruction()))

throw new TranslationException();

translateInstruction(output, input, dslot.getInstruction()); %>

// and branch

goto $__next;

}

62

mov 0, %o0

mov 0, %o0ba label1

Fetch/Decode Execute Next IPIP

test+0 test+4

test+4 test+8

ba label1ba label2test+8 label1+0

ba label2or %o0,1,%o0label1+0 label2+0

label2+0 or %o0,1,%o0or %o0,2,%o0 test_end+0

or %o0,2,%o0test_end+0 retl

(a)

(b)

(c)

Figure B.2: Processor behavior for complex delayed branch

In this case we need to use Java code inside the command template. In order to
achieve this, we take JSP-like solution to escape from ADL program.

We assume a branch instruction never comes to the delayed slot in the rule above.
This is because a branch instruction in the delayed slot leads to difficulty. The assembly
code below is an example of such a complex branch.

.global test

test:

mov 0, %o0

ba label1

ba label2

or %o0, 4, %o0

ba test_end

nop

label1:

or %o0, 1, %o0

ba test_end

nop

label2:

or %o0, 2, %o0

test_end:

retl

nop

Figure B.2 shows the processor behavior for this program.
First branch for label1 is taken, but the next instruction, branch to label2, is

still fetched because of delayed branch ((a) in the figure). Then the execution goes
to the next instruction, and hereat an instruction is fetched from label1 ((b) in the
figure). Since the instruction currently executed is also a branch, the next instruction
pointer becomes label2.

After that, the first instruction of the block named label1 is executed. The in-
struction next executed is fetched from label2 at this moment ((c) in the figure). And

63

finally the register o0 contains the value 3.

The behavior like this is difficult to model. Especially when the branch target is
dynamically determined (for example, it is passed using a function pointer), it is hard
to simulate using statically generated code. However, in most cases delayed slot is
filled using a non-branch instruction. Thus we decided to reject such programs.

64

References

[1] American National Standards Institute. ANSI/ISO/IEC 9899-1999: Program-
ming Languages — C. American National Standards Institute, 1430 Broadway,
New York, NT 10018, USA, 1999.

[2] Andrew W. Appel. Foundational Proof-Carrying Code. In Proceedings of the 16th
Annual Symposium on Logic in Computer Science, pp. 247–256. IEEE Computer
Society Press, June 2001.

[3] Fabrice Bellard. QEmu. http://fabrice.bellard.free.fr/qemu/.

[4] A. T. Chamillard. Improving Static Analysis Accuracy on Concurrent Ada Pro-
gra: Complexity Results and Empirical Findings. Technical Report UM-CS-1995-
049, Amherst, MA, USA, 1995.

[5] Karl Crary. Toward a Foundational Typed Assembly Language. In Proceedings
of the 30th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pp. 198–212, New York, NY, USA, 2003. ACM Press.

[6] Maulik A. Dave. Compiler verification: a bibliography. SIGSOFT Softw. Eng.
Notes, Vol. 28, No. 6, pp. 2–2, 2003.

[7] Sebastian Biallas et al. PearPC: PowerPC Architecture Emulator. http:

//pearpc.sourceforge.net/.

[8] Susan L. Gerhart. Correctness-preserving program transformations. In POPL
’75: Proceedings of the 2nd ACM SIGACT-SIGPLAN symposium on Principles
of programming languages, pp. 54–66, New York, NY, USA, 1975. ACM Press.

[9] Gerhard Goos and Wolf Zimmermann. Verification of Compilers. In Correct
System Design, Recent Insight and Advances, (to Hans Langmaack on the occasion
of his etirement from his professorship at the University of Kiel), pp. 201–230,
London, UK, 1999. Springer-Verlag.

[10] IBM Corporation. PowerPC Microprocessor User’s Manual.

65

http://fabrice.bellard.free.fr/qemu/�
http://pearpc.sourceforge.net/�
http://pearpc.sourceforge.net/�

[11] Intel Corporation. IA-32 Intel®Architecture Software Developer’s Manual.

[12] Sorin Lerner, Todd Millstein, and Craig Chambers. Automatically proving the
correctness of compiler optimizations. In Proceedings of the ACM SIGPLAN 2003
conference on Programming language design and implementation, pp. 220–231,
New York, NY, USA, 2003. ACM Press.

[13] Xavier Leroy. Java Bytecode Verification: Algorithms and Formalizations. Jour-
nal of Automated Reasoning, Vol. 30, No. 3-4, pp. 235–269, 2003.

[14] Xavier Leroy. Formal certification of a compiler back-end or: programming a
compiler with a proof assistant. In POPL’06: Conference record of the 33rd
ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pp. 42–54, New York, NY, USA, 2006. ACM Press.

[15] Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman, Richard Samuels, Fred-
erick Smith, David Walker, Stephanie Weirich, and Steve Zdancewic. TALx86: A
Realistic Typed Assembly Language. In Proceedings of the 1999 ACM SIGPLAN
Workshop on Compiler Support for System Software, pp. 25–35, May 1999.

[16] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to
Typed Assembly Language. ACM Transactions on Programming Languages and
Systems, Vol. 21, No. 3, pp. 528–569, May 1999.

[17] George C. Necula. Translation validation for an optimizing compiler. In Proceed-
ings of the ACM SIGPLAN 2000 conference on Programming language design
and implementation, pp. 83–94, New York, NY, USA, 2000. ACM Press.

[18] A. Pnueli, M. Siegel, and E. Singerman. Translation Validation. Lecture Notes in
Computer Science, Vol. 1384, pp. 151–166, 1998.

[19] The Bochs Project. Bochs: The Open Source IA-32 Emulation Project. http:

//bochs.sourceforge.net/.

[20] Martin Rinard. Credible Compilation. Technical Report MIT/LCS/TR-776, Mas-
sachusetts Institute of Technology, 1999.

[21] Sun Microsystems, Inc. UltraSPARC Processors Documentation.

[22] Richard N. Taylor. Complexity of Analyzing the Synchronization Structure of
Concurrent Programs. Acta Informatica, Vol. 19(1), pp. 57–84, April 1983.

[23] Frank Yellin. Low Level Security in Java. http://java.sun.com/sfaq/

verifier.html.

66

http://bochs.sourceforge.net/�
http://bochs.sourceforge.net/�
http://java.sun.com/sfaq/verifier.html�
http://java.sun.com/sfaq/verifier.html�

