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Abstract

The recent advances in static program analysis, especially in type theory,
have been widely accepted as a fundamental technology for software de-
velopment. For example, many real-world applications are written in strictly-
typed programming languages (e.g., Java, C# and Objective Caml). One
strength of the strictly-typed programming languages is that programs writ-
ten in them never go wrong, that is, the programs cause no unexpected
errors, thanks to type safety ensured by their type checkers.

However, there is one kind of software that does not fully utilize the
type theory: operating systems (OS). Traditional and current OS kernels
have been written in the C programming language (weakly-typed unsafe
programming language) and untyped assembly languages. Therefore, it is
very hard to ensure and verify safety of the OS kernels.

One of the reasons why OS kernels have not been written in strictly-
typed programming languages is that it has been believed that it is hard or
impossible because strictly-typed programming languages do not seem to
provide means to implement important mechanisms of OS kernels: mem-
ory management and multi-thread management mechanisms.

This thesis breaks the mistaken believes about types and operating sys-
tems by showing how to write an OS kernel in a strictly-typed program-
ming language. More specifically, this thesis proposes a new strictly-typed
assembly language which is flexible and expressive enough to implement
OS kernels. The key point of the language is that its type system sup-
ports variable-length arrays, explicit alias tracking and integer constraints
between variables. Therefore, practical memory management (i.e., mal-
loc/free) and multi-thread management mechanisms can be implemented
in the language and fully type-checked. This thesis also introduces a pro-
totype OS kernel implementation written in the language.

The safety ensured by the type checker of the language is memory safety
and control-flow safety. The memory safety means that a program accesses
only memory which the program is permitted to access, while the control-
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flow safety means that a program jumps to only valid code which the pro-
gram is permitted to execute. More sophisticated and complicated safety
(e.g., deadlock freedom and resource usage safety) can be ensured by ex-
tending the type system, but it is out of the scope of this thesis. In addition,
this thesis also discusses the previous works in the area of formal verifica-
tion of OS.
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Chapter 1

Introduction

Today, computers (e.g., PCs, cell-phones and electronic wallets) are widely
used in the world and their network becomes one of the indispensable so-
cial infrastructures. Therefore, the importance of ensuring safety of soft-
ware is commonly recognized. For example, many programs come to be
written in strictly-typed languages (e.g., OCaml [17], C# [59], Java [60]
and so on [88, 66, 29, 97, 87, 64]), because the program that is written in
a strictly-typed language raises no unexpected errors (e.g., segmentation
faults and stack overflows) at runtime. As of writing, according to Source-
Forge.net [84], which is the world’s largest open source software devel-
opment web site, 6 out of 10 applications are written with strictly-typed
languages.

However, there is one kind of programs that have not been written
in strictly-typed languages: operating system (OS). For example, today’s
commonly-used OSes (e.g., Linux [8], FreeBSD [67], Solaris [65] and Win-
dows XP [80]) are written in weakly-typed languages (C [57] and assembly
languages). In addition, programs that have similar functionality as OSes
(e.g., standard runtime libraries [36], language interpreters [97, 87, 64] and
Internet servers [35, 19, 56]) are also written in the weakly-typed languages.

Therefore, it seems very hard to ensure and/or verify safety of OSes.
One approach for ensuring the safety is to use model checking [51]. Model
checking is a method of formally verifying finite models of programs ac-
cording to specified formal specifications. One problem of model-checking
is that it does not scale with large programs because of the state explosion
problem. Thus, ensuring the safety with model checking is a difficult task.

Another approach is to directly prove the safety with proof assistants [11,
10]. One problem of this approach is that proof assistants are still too

10



difficult to use for average programmers. In addition, in this approach,
programs and proofs are constructed independently. Therefore, if the pro-
grams are modified, we need to prove the safety again. This doubles the
cost of building OSes.

Compared to the above two approaches, writing an OS with a strictly
typed language is more effective and efficient. If an OS is written in a
strictly typed language, safety of the OS is ensured by the type checker
of the language automatically. In addition, programmers need not to prove
the safety separately from the OS. Thus, programmers can concentrate on
building the OS.

One of the reasons why OSes have not been written in strictly typed
languages is that it is believed that important OS facilities, such as mem-
ory management (i.e., malloc/free), multi-thread management and device
drivers, cannot be written in them. In fact, exiting strictly typed languages
typically depend on external memory management mechanisms, such as
garbage collection.

To solve the problem, we have designed the strictly and statically typed
assembly language (named TALK) that is powerful enough to implement
memory management and multi-thread management, and actually imple-
mented them in TALK. The memory management and multi-thread man-
agement are considered as the core of all kinds of OSes, and the other fa-
cilities are built on the core. Thus, writing the core in strictly and statically
typed languages is a significant step for establishing a practical way to en-
sure and verify the safety of OSes.

The safety properties ensured by the type system of TALK is the basic
type safety: memory safety and control-flow safety. The memory safety
means that a program accesses only memory which the program is permit-
ted to access, while the control-flow safety means that a program jumps to
only valid code which the program is permitted to execute. It might be ar-
gued that the safety ensured by the type system of TALK is too simple for
OSes. In fact, there are many sophisticated and valuable safety properties
that should be satisfied by OSes, such as the deadlock and/or livelock free-
dom, the multi-thread safety on SMP, the correctness of the file system, the
safety of resource usage, the secure information flow, and so on. However,
we still believe that TALK has made a significant step toward the goal of
ensuring the safety of OSes, because the sophisticated safety properties are
typically built on the basis of the basic type safety. For example, the basic
type safety is assumed by the type system of [33] that ensures the deadlock
and race freedom, the type system of [54] that ensures the resource usage
safety, and the type system of [72] that ensures the secure information flow.
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We believe that TALK can be extended with the type systems for ensuring
the more sophisticated safety properties, but it is out of the scope of this
thesis.

More specifically, the contribution of this thesis is that we have de-
signed the new type system that is flexible and powerful enough to im-
plement memory management code that satisfies the memory safety and
the control-flow safety. The key of the type system is that it integrates
the following four mechanisms: (1) the support for variable-length arrays
as language primitives, (2) integer constraints between variables, (3) ex-
plicit alias tracking between pointers, and (4) split and concatenation of
the variable-length arrays. Although the integer constraints and the ex-
plicit alias tracking have been separately studied by different research ar-
eas, we have first realized that integrating them with the variable-length
arrays and their split/concatenation enables us to write practical memory
management code in strictly-typed languages.

A statically typed language is employed because programs written in a
statically typed language are type-checked at compile time, that is, we can
prevent runtime errors. Dynamically typed languages can detect runtime
errors, but it is sometimes useless when implementing OSes. For example,
let us think of a program which switches contexts of threads. Detecting
errors in the program at runtime is insufficient, because no other threads
can be executed.

We chose the typed assembly language as a base of TALK for two rea-
sons. The first is that the typed assembly language can express low-level
operations (e.g., register manipulation) because it is an ordinary assembly
language (except for begin typed, of course). The low-level operations are
essential for implementing memory management and multi-thread man-
agement mechanisms.

The second is that programs built with the typed assembly language
can be type-checked at the level of binary executables by annotating the
executables with type information. This means that the type safety of OSes
can be verified without their source code. In addition, we can keep the
trusted computing base small because only the type checker is to be trusted.
Of course, writing the whole OS directly in the assembly language is very
difficult. Therefore, in practice, we need high-level languages and their
compilers that can be compiled to TALK, but it is out of the scope of this
thesis.
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1.1 Scope of this thesis

To clarify the scope of this thesis and its effectiveness, we explain what kind
of safety properties are ensured by the approach of this thesis. (Note that
the safety properties shown below are only examples, that is, we are not
claiming that the properties that are not mentioned in this section cannot
be ensured by TALK.)

In sum, the type system of TALK is able to ensure memory safety and
control-flow safety of programs. In addition, based on the memory and
control-flow safeties, race freedom on single CPU machines can be ensured
easily. On the other hand, more complex and sophisticated safeties (e.g.,
deadlock and livelock freedom, race freedom on multi-CPU machines and
full-fledged resource usage safety) cannot be ensured directly by the type
system of TALK. The limitations of the TALK type system are discussed in
Section 2.8.

1.1.1 Safety properties ensured by TALK

Memory safety

Memory safety is the property that programs never perform illegal mem-
ory accesses. More specifically, memory-safe programs never access the
memory regions that they are not permitted to access. One strong point of
the type system of TALK is that it is able to ensure the memory safety and
expressive enough to implement memory management mechanism such as
malloc/free.

The memory safety is the most fundamental and important safety prop-
erty in the sense that, usually, verification of more complex safety proper-
ties is performed under the assumption that the memory safety is ensured.
For example, existing model checkers assume that the memory safety is
satisfied by some means and do not (in fact, cannot) verify it by itself (see
Section 4.2). In addition, type systems that can ensure more complex safety
properties also assume the memory safety in order to simplify formal ar-
guments.

One naive way to ensure the memory safety is to ban explicit memory
access in programs. For example, if a program is written in a programming
language which does not have pointers or references, the program is ap-
parently memory-safe. However, it cannot be used to write OSes because
memory management code cannot be implemented in it.

The typical way to ensure the memory safety in languages with pointers
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or references is to preserve type invariance property by their type system.
Type invariance property is the property that once a memory region ini-
tialized as a certain type, the type of the memory region never changes.
For example, in the Java programming language [60], once a memory re-
gion is allocated and initialized with a certain class (e.g., new Object();),
the memory region cannot be used or initialized as other classes. It is only
accessible as the class specified at its initialization (e.g., Object).

If the type invariance property is satisfied, it is easy to ensure the mem-
ory safety of programs because all we have to do is just to assign appro-
priate types to memory regions when the regions are initialized, and check
the types when accessing the regions. This approach works because once
a memory region is initialized with a valid pointer, the memory region al-
ways holds valid pointers.

However, the type invariance property is too restrictive to implement
memory management mechanisms. For example, consider a memory al-
location function. What the function does is to find a free memory region
and initializes it as a certain type. Here the point is that the type specified
to the function is almost always different from that of the free memory re-
gion. That is, the function must change the type of the free memory region.
In sum, the function cannot be written in the language that satisfy the type
invariance property.

Therefore, the type system of TALK adopts a more relaxed but strong
enough property. The property is that all the pointers that point to a mem-
ory region have the same type. It is allowed to change the type of the mem-
ory region, but the change must be reflected to all the pointers that point to
the region.

If the property is satisfied, it is easy to ensure the memory safety of
programs because we can easily detect invalid pointers in the programs.
For example, suppose that there exists a memory region that holds a valid
pointer and two pointers (X and Y) that point to the memory region. By the
property, the pointers X and Y have the same pointer type that indicates
that the region pointed by the pointers contains a valid pointer. Next, sup-
pose a program updates the memory region with an invalid pointer (say
NULL) thorough the pointer X (e.g., *X = NULL). Then, the type of the
pointer X changes to the type that indicates that the region pointed by the
pointer contains an invalid pointer. The point is that, by the property again,
the type of the pointer Y is also updated to the same type as the pointer X.
Therefore, it is impossible to make an illegal memory access through the
pointer Y, because the type of the pointer Y prohibits the access (see Chap-
ter 2 for details).
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Control-flow safety

Control-flow safety is the property that programs never perform illegal ex-
ecution. More specifically, control-flow safe programs never execute oper-
ations that the programs are not allowed to execute. Note that the control-
flow safety and the memory safety is closely related (to see why, substitute
“access” for “execute” and “memory regions” for “operations”). Unlike the
memory safety, however, it is easy to ensure the control-flow safety because
TALK prohibits overwriting program code at runtime.

In TALK, the control-flow safety is ensured as follows. First, every basic
block in a TALK program is annotated with its label type by programmers.
The label type of a basic block represents the precondition that must be
satisfied when a control-flow reaches the basic block. Then, the TALK type
checker verifies the following two properties for every basic block. First,
if there is a jump instruction, its target address must be a head of a basic
block. This is easily accomplished by checking whether the target operand
of the jump instruction has a label type. Second, the precondition specified
by the label type of the target basic block must be satisfied at the jump
instruction (see Section 2.2 for details).

One of the good points of the control-flow safety is that, along with
the memory safety, it can prevent notorious buffer-overflow attacks (e.g.,
stack-overflow and heap-overflow attacks). The buffer-overflow attack is
an attack which overwrites the important value (e.g., return addresses) by
exploiting bugs in memory access code. If the attack successes, the attacker
may take full control of the system.

In TALK, the buffer-overflow attacks never success because the buggy
memory access code never be type-checked in TALK. In TALK, each buffer
is usually represented as a single memory region. Therefore, the type checker
of TALK can reject the code that accesses outside of the buffer. Moreover,
even if the buffer and some important values coexist in a single memory re-
gion, the TALK type check still rejects buggy code. For example, consider
a routine which is permitted to access a memory region of size 3 (bytes)
and suppose that the first two bytes represent an integer buffer and the
last one byte holds a return address, that is, the types of the first two bytes
are integer and that of the last one byte is a label type. Now suppose that
a buggy operation in the routine may accidentally overwrite the last one
byte of the memory region by an arbitrary integer value. Then, when type-
checking the operation, the type checker notices that the type of the last
one byte may change to integer. Therefore, a jump instruction which takes
the last one byte of the memory region as its target operand cannot pass
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the type check of TALK, because the operand may not have a label type.
Thus, the TALK type checker rejects the buggy routine that may allow the
buffer-overflow attack.

Race freedom on single CPU machines

The type system of TALK is expressive enough to implement multi-thread
management (see Section 2.5.3). Therefore, even in multi-thread environ-
ment, the memory safety and the control-flow safety is ensured without
problems, as long as they are executed on single CPU machines.

However, race conditions that do not affect the memory safety and
the control-flow safety cannot be prevented directly by the type system of
TALK. For example, let us suppose that we run two threads that execute
the function shown in Figure 1.1 (for readability, examples are shown in
pseudo C-like language instead of TALK in this chapter). The function in-
crements a shared integer value x. Here assume that the initial value of x is
0. The function itself is memory-safe and control-flow safe, so it passes the
type check of TALK. However, there is a race condition, that is, the result
value of x may be 1 after the two threads exit.

1 void Inc(void) {
2 x = x + 1;
3 }

Figure 1.1: A function that increments a shared integer

To prevent the race conditions, programmers must synchronize accesses
to shared data by using synchronization primitives. The advantage of the
TALK type system is that it is able to express the synchronization primi-
tives and their semantics. For example, spin locks can be implemented in
TALK by exploiting existential types, variant types and dependent types.
Moreover, the critical sections created with the spin locks are enforced by
the type system of TALK (see Section 3.2 for details). In sum, the type sys-
tem of TALK is able to prevent the race conditions indirectly, with a little
help from programmers.

Note that the above arguments are only applicable to single CPU ma-
chines. On multi-CPU machines, the memory safety, the control-flow safety
and the race freedom cannot be ensured by the current type system of
TALK.
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1.2 Organization of this thesis

The rest of this thesis is organized as follows. First, we introduce TALK in
Chapter 2. We also show various examples that exhibit the expressiveness
of TALK in the chapter. Next, Chapter 3 describes a prototype OS kernel
implementation written in TALK. Then, Chapter 4 discusses related work.
Last, we conclude this thesis in Chapter 5. The formal arguments of TALK
are presented in Appendixes A and B.
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Chapter 2

Typed Assembly Language for
Kernel

In this chapter, we propose a new typed assembly language which is flex-
ible and powerful enough to implement practical memory management
(i.e., malloc/free) and multi-thread management. First, we show what is
needed for realizing practical memory management. More specifically, we
show that the support for variable-length arrays, explicit alias tracking and
integer constraints is suffice to implement malloc/free. Next, we introduce
the formal definition of TALK. More specifically, we give the syntax, the
operational semantics and the type system for a virtual RISC CPU archi-
tecture. We also give examples in order to show the expressiveness of
TALK. Then, we describe how to implement TALK for the real IA-32 ar-
chitecture [21]. Last, we discuss the limitations of the proposed TALK type
system.

2.1 Requisites for implementing memory management

2.1.1 Variable-length arrays

First of all, memory management code must be able to handle memory.
Typically, the memory consists of memory regions. At the lowest level, the
memory region is just an array of bytes. From the viewpoint of type theory,
one important point is that the array is a variable-length array because its
size is not known until runtime. For example, let us think of the program
that is executed just after a system boots. Apparently, the program cannot
make any assumption about the size of the memory, because the amount
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of the available memory varies from system to system. Therefore, the type
system is required to support variable-length arrays. Otherwise we cannot
even know the size of the available memory, rather than implement mem-
ory management.

2.1.2 Integer constraints (singleton type and dependent type)

The simplest representation of the variable-length array is a pair of the ar-
ray and its size. In addition, we introduce special functions for accessing
the pairs and do not allow programmers to directly access the pair. With
this representation, the type system needs not to maintain the size of the
arrays.

However, this approach has a big problem: we cannot implement an al-
location function of the pair (the variable-length array) in the type system.
That is, we must trust the external allocation function. This contradicts the
goal, designing the statically typed programming language that is able to
implement memory management without external trusted memory man-
agement facilities.

To solve the problem, we need to introduce the idea of the dependent
type [102, 101] to the type system. In the dependent type system, types
can depend on the value which is known only at runtime. For example,
the type of a variable-length array of integers can be represented as int [α].
Here [α] indicates the size of the array, but the exact value, α, is not known.
The type is a kind of dependent type because it depends on the integer
value α.

In addition, we need to handle all integers with the dependent type, as
well as the variable-length arrays, because the type information is removed
and not available at runtime. For example, let us think of a program which
accesses an element of the above array. Let us also suppose that a variable
(say x) holds an integer index to the array. To ensure memory safety, the
type system must be able to check whether the access is safe or not. That
is, the type system must be able to check whether the value of x is smaller
than α.

To achieve this, the type system needs to keep track of the value of x
explicitly. For example, the type of x must be int(β), instead of int. Here
int(β) is called a singleton type. β indicates the value of x, but the exact
value is not known to the type system.

In addition, the type system also needs to keep track of integer con-
straints (the constraint between α and β in this case). For example, if the
type system knows that α > β, the array access is safe. Otherwise, the
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access may be dangerous. Such integer constraints are generated by usual
branch operations. For example, if the type of a variable y is int(α), the
branch operation if y > x {...} else {...} generates the constraint α > β
for the taken branch and α ≤ β for the other branch. Here α is the size of
the variable-length arrays. Therefore, the type system knows that it is safe
to access the array by the index x in the taken branch.

2.1.3 Alias tracking

In the previous section, we argued how to represent memory in the type
system with the variable-length arrays. As the next step, this section dis-
cusses how to manage the memory. From the viewpoint of type theory,
memory management is almost the same as changing types of memory re-
gions. For example, changing a type of a memory region from a pointer
type to an integer type can be viewed as freeing the memory region that
contains a pointer and reusing it for holding an integer. Figure 2.1 is an
example C code which performs this memory reuse. The function reuses the
memory region pointed by pointer x (in line 3).

1 void pointer_to_int(int** x)
2 {
3 int* y = (int*)x;
4 *y = 1;
5 }

Figure 2.1: Example of C code that reuses a memory region

However, existing strictly and statically typed programming languages
do not allow programmers to change types of memory regions. This is be-
cause memory safety cannot be ensured. Therefore, memory management
cannot be implemented in the existing strictly and statically typed lan-
guages and they depend on external memory management mechanisms,
such as garbage collection. To see how changing types of memory regions
violates the memory safety, consider the function in Figure 2.2 that uses the
function of Figure 2.1. The function passes the type check of C, but it is ap-
parently unsafe because it tries to dereference an integer which is no longer
a pointer (in line 4).

The essential problem is that the type system does not know that y in
the function pointer to int and the argument x of function dangerous func
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1 void dangerous_func(int** x)
2 {
3 pointer_to_int(x);
4 **x;
5 ...

Figure 2.2: Example of C code that breaches memory safety

alias, that is, point to the same memory location.
To solve the problem, we need to introduce the idea of the alias type [96]

to the type system in order to keep track of aliases explicitly. The basic idea
of the alias type is to change the representation of pointer types. In usual
type systems, the type of a pointer is represented as the type of the memory
region pointed by the pointer. In the alias type system, on the other hand,
the type of the pointer is just the address of the memory region. The type of
the memory region is separately maintained as memory type. The memory
type is a map from addresses to the types of the memory regions at the
addresses.

For example, based on the idea of the alias type, the code in Figure 2.1
can be rewritten as in Figure 2.3. First, the type of the argument x is
changed from int** to ptr(p) (in line 2). The type ptr(p) indicates
that x is a pointer which points to the address p. Next, the declaration
surrounded by “[” and “]” represents the memory type. The memory type
added before the function indicates the state of the memory before the func-
tion is called (in line 1). The other memory type added after the function
indicates the state of the memory after the function is executed (in line 6).
Here the memory type before the function indicates that the memory re-
gion at the address p has pointer type ptr(q) and the memory region at
the address q has the integer type. Thus, the type system knows that x is
a pointer to a pointer to an integer. Then, the function stores an integer to
the memory region at the address p (in line 4). Therefore, the memory type
after the function indicates that the memory region at the address p is an
integer. Note that the alias type system ensures that p and q are different
integers, because the memory type is a map.

In addition, the code of Figure 2.2 can be rewritten as Figure 2.4. The
type check of the alias type system rejects the rewritten code in line 5, be-
cause after the function call (pointer to int, in line 4), the type of the
memory region is changed from a pointer type (ptr(q)) to the integer type
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1 [ p --> ptr(q), q --> int]
2 void pointer_to_int(ptr(p) x)
3 {
4 *x = 1;
5 }
6 [ p --> int, q --> int]

Figure 2.3: Example of pseudo code based on the idea of alias type

(int). Thus, the alias type system allows programmers to reuse memory
regions explicitly because it keeps track of aliases in the memory type.

1 [ p --> ptr(q), q --> int]
2 void dangerous_func(ptr(p) x)
3 {
4 pointer_to_int(x);
5 **x;
6 ...

Figure 2.4: Example of pseudo code that curses a type error

2.1.4 Split and concatenation of arrays

As described above, we can handle memory with the variable-length ar-
rays and the integer constraints and reuse regions in the memory by explic-
itly tracking pointer aliases with alias type. However, we need one more
mechanism in the type system to implement practical memory manage-
ment. For example, let us suppose that free memory (not in use memory)
is represented as an array of integers. Then, its memory type is represented
as int [a] (here we assume that a > 0). Now, let us think of the code in
Figure 2.5 that allocates one element from the top of the free memory and
reuses it as a pointer to integer (in line 4). The access to the array is obvi-
ously safe because a > 0. However, there is a problem in how to represent
the memory type of the memory after the memory reuse. More specifi-
cally, the problem is that it is difficult to represent the variable-length array
whose elements are integers except for its first element.

To solve the problem, we introduce a notion of split (and concatenation)
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1 [ p --> int[a], q --> int] where a > 0
2 void alloc_and_reuse(ptr(p) x, ptr(q) y)
3 {
4 x[0] = y;
5 ...

Figure 2.5: Example of pseudo code that allocates a pointer to integer from
free memory (incomplete)

of arrays to the type system. For example, memory type [ p --> int[a]
], which indicates that there is an array of size a at address p, can be split
to memory type [ p --> int[a1], p2 --> int[a2] ], which indi-
cates that there is one array of size a1 at address p and the other array of
size a2 at address p2 (here, a = a1 + a2 and p2 = p + a1). In addition, the
latter memory type can be concatenated back to the former memory type.

With the notion of the split of the arrays, the code of Figure 2.5 can be
rewritten as in Figure 2.6. The split operation (in line 4) splits the free
memory into new array of size 1 at p and the rest of the free memory at p
+ 1. In this case, we can naturally represent the memory type of the free
memory after line 5 as [ p --> ptr(q), (p + 1) --> int[a - 1]
].

1 [ p --> int[a], q --> int] where a > 0
2 void alloc_and_reuse(ptr(p) x, ptr(q) y)
3 {
4 split p, 1;
5 x[0] = y;
6 ...

Figure 2.6: Example of pseudo code that allocates a pointer to integer from
free memory (complete)

Note that split and concatenation of variable-length arrays just change
the view of memory, not change the memory itself. That is, they can be
ignored at runtime. Therefore, they do not introduce any overhead at run-
time. Arrays are split and concatenated only at type-checking time.
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2.2 Formal definition

This section introduces the TALK language. Although the language ex-
plained in this section is based on a virtual CPU architecture, the actual
implementation is based on the IA-32 [21] assembly language. For the de-
tails, refer Section 2.7.

In this section, we first explain its abstract machine and types. Then,
its operational semantics and typing rules are introduced. The syntax of
TALK is shown in Figures 2.7 and 2.8.

2.2.1 Abstract machine

The abstract machine of TALK is based on an ordinary three operands RISC
architecture (see Figure 2.7).

(state) S ::= (P, M, R, I)
(prog .) P ::= · | {l 7→ I}P
(memory) M ::= · | {n 7→ a}M
(regs.) R ::= {r1 7→ v1, . . . ,rn 7→ vn}
(register) r ::= r1 | . . . | rn
(array) a ::= 〈t1, . . . , tn〉
(tuple) t ::= 〈v1, . . . , vn〉 | roll (t)

| pack[c1,...,cn|M ] (t)
(value) v ::= n | l [c1, . . . , cn/∆]
(integer) n
(label) l
(insts.) I ::= ld [rs + n], rd; I | st rs, [rd + n]; I

| mov rs, rd; I | movi v, rd; I | add rs1, rs2, rd; I
| sub rs1, rs2, rd; I | mul rs1, rs2, rd; I
| beq rs1, rs2, rd; I | ble rs1, rs2, rd; I
| jmp rd | apply r [c1, . . . , cn/∆] ; I
| rollµη[∆].τ(c1,...,cn) i; I | unroll i; I
| pack[c1,...,cn|Σ1]as∃∆.|C|[Σ2].τ i; I | unpack i with ∆; I
| split i1, i2; I | concat i1, i2, i3; I
| tuple split i1, n2; I | tuple concat i1, i2; I

Figure 2.7: Syntax of abstract machine
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A state S of the abstract machine consists of program P , memory M ,
registers R and instructions I . The instructions I in the state of the ab-
stract machine represent an instruction sequence that is ready to execute
on the abstract machine. As the first instruction of the instruction sequence
is executed, the state of the abstract machine is updated according to the
operational semantics of the instructions that are explained in Section 2.2.3.

The program P represents all the basic blocks (the instruction sequences)
that exist in the abstract machine. Specifically, P is a map from label l to
the instructions I . The label l represents the address of the basic block. The
jump/branch instructions take the labels as the jump destination. For ex-
ample, the following program contains three basic blocks at the label l1, l2
and l3.

{l1 7→ movi l2, r3;jmp r3}
{l2 7→ movi l3, r3;jmp r3}
{l3 7→ movi l1, r3;jmp r3}

As shown in the above program, each basic block is surrounded by { and
}, and the operator 7→ indicates that the basic block represented by the in-
structions I resides in the address represented by the label l ({l 7→ I}). Note
that we do not consider the syntactic order between elements in a map. For
example, we do not distinguish the program {l1 7→ I1}{l2 7→ I2} and the
program {l2 7→ I2}{l1 7→ I1}.

The registers R literally represents registers of the abstract machine.
Specifically, the registers R is just a map from register r to value v. For
example, the registers {r1 7→ 123,r2 7→ l} indicates that the register r1
holds the integer value 123, and the register r2 holds the label l.

The memory M represents all the available memory in the abstract ma-
chine. Specifically, M is a map from an integer constant n, which represents
an address of the memory, to an array a, which represents the memory re-
gion that resides at the address. For example, the following memory indi-
cates that the array a1 resides at the address 0x42, and the array a2 resides
at the address 0x123.

{0x42 7→ a1}{0x123 7→ a2}

As shown in the above memory, each memory region is surrounded by {
and }, and the operator 7→ indicates that the memory region represented
by the array a resides in the address represented by the integer constant n
({n 7→ a}).

The array a consists of tuples t, the tuple consists of values v, and the
value v is the integer constant n or the label l. (Note that the tuples roll (t)
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and pack[c1,...,cn|M ] (t) are introduced only for formal arguments of recur-
sive types and existential types. In addition, the suffix of the label l, that is,
the substitution [c1, . . . , cn/∆] is required only by the type checker.)

2.2.2 Types

The types of TALK are defined naturally corresponding to the abstract ma-
chine states (see Figure 2.8).

(label type) lt ::= ∀∆. |C| [Σ] (Γ)
(small type) σ ::= i | lt
(integer type) i ::= n | α | i1 aop i2
(type var .) δ ::= α, ε
(type vars.) ∆ ::= · | δ,∆
(type) τ ::= 〈σ1, . . . , σn〉 | ∃∆. |C| [Σ] τ

| ρ (c1, . . . , cn)
(type scheme) ρ ::= η | µη [∆] .τ
(array type) at ::= τ [i] | τ (≡ τ [1])
(memory type) Σ ::= · | Σ⊗ {i 7→ at} | Σ⊗ ε
(regs. type) Γ ::= · | {r 7→ σ}Γ
(prog . type) Φ ::= · | {l 7→ lt}Φ
(constructor) c ::= i | Σ | st
(constraints) C ::= · | i1 cop i2

| C ∧ C| C ∨ C | ¬C
(compareop.) cop ::= = | < | ≤ | > | ≥
(arithop.) aop ::= + | − | ∗

Figure 2.8: Syntax of types

The type of integers is represented by i. The integer type i is integer
constants n, type variables α or the result of integer arithmetic operations
i1 aop i2. For example, if a certain register r has the integer type 3, the
register r holds the value 3. In addition, if two registers r1 and r2 have the
same type α, we know that r1 = r2, though the exact values of r1 and r2 is
not known.

The type of memory is represented as Σ. The memory type Σ is rep-
resented as mappings from the integer type i to array type at , and type
variables ε. For example, the following memory type indicates that there is
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only one array of the type at at the address 0xc0345810, and there are no
other memory regions in the memory.

{0xc0345810 7→ at}

In addition, the following memory type indicates that there are three
arrays of the type at1 , at2 and at3 at the addresses 0xc0345810, α and β,
respectively, and there are no other memory regions in the memory.

{0xc0345810 7→ at1} ⊗ {α 7→ at2} ⊗ {β 7→ at3}

In the above memory type, the operator⊗ indicates that the three addresses
specified in the memory type are different each other, that is, 0xc0345810 6=
α, 0xc0345810 6= β and α 6= β, if the sizes indicated by the array types are
greater than 0. (Thus, strictly speaking, the memory type is not just a map,
because it may map one address to several array types in order to support
the arrays of size 0.)

Further, the following memory type indicates that there is only one ar-
ray of the type at at the address 0xc0345810, and there may exist other
memory regions in the memory.

{0xc0345810 7→ at} ⊗ ε

In the above memory type, the type variable (memory type variable) ε in-
dicates that there may exist other memory regions in the memory.

The array type at is written as τ [i]. This represents an array whose
elements have the type τ and whose size is i. Because we can use type
variables for representing sizes of arrays, we can deal with arrays whose
sizes is not known until runtime.

The type of elements of arrays is the tuple type τ . There are three kinds
of the tuple type. 〈σ1, . . . , σn〉 represents a type of ordinary tuples whose
elements have types σi. ∃∆. |C| [Σ] .τ represents the type of a tuple which is
packed as an existential type. (The details of existential types are explained
later.) ρ (c1, . . . , cn) is a (parametric) recursive type for recursive data struc-
tures. The type of elements of tuples, σ, can be the integer type i or label
type lt .

The label type is written as ∀∆. |C| [Σ] (Γ). It indicates a constraint con-
dition that must be satisfied whenever a control flow reaches the label.
First, ∆ represents a set of type variables. This means that the instruc-
tions of the label are polymorphic over the type variables. Next, C rep-
resents integer constraints. The instructions of the label are type-checked
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under the assumption that the constraints are satisfied, because the typing
rules ensure that the constraints are satisfied at all the points of jumping
to the label. Then, Σ is the memory type described above. As with the in-
teger constraints, the instructions of the label are type-checked under the
assumption that the memory has the memory type Σ, because the typing
rules ensure that the memory has the type Σ at all the points of jumping to
the label. Last, the registers type Γ indicates the condition for registers that
must be satisfied whenever execution reaches the label. For example, the
following label type

∀α, β, ε. |β ≤ 128| [ε⊗ {α 7→ 〈0〉 [β]}] (r1 : α)

represents instructions that take a pointer (register r1) to an array whose
size is not greater than 128 and whose elements are 0.

Additionally, the existential type ∃∆. |C| [Σ] τ represents tuples that have
the type τ , and indicates that the integer constraints C are satisfied and
there exists memory whose type is Σ. For example, the existential tuple
type

∃α, β. |β ≤ 128| [{α 7→ 〈0〉 [β]}] 〈α〉
represents a tuple whose only element is a pointer to an array whose size
is not greater than 128, and ensures that the array exists surely.

The program type Φ represents the type of program P . It is a map from
the label l to the label type lt .

2.2.3 Instructions and operational semantics

This section describes the meaning of instructions of the TALK abstract
machine. There are two kinds of instructions in TALK. One is the ordi-
nary instructions that update the state of the abstract machine. The other
is the coerce instructions that update only the type information when type-
checking. Figures 2.9 and 2.10 represent their operational semantics. The
operational semantics are defined as the relation (7→S) between the ab-
stract machine states. Note that, in this thesis, e [b/a] represents a capture-
avoiding substitution of b for free variable a in e. In addition, e [b1, b2/a1, a2]
is an abbreviation of e [b1/a1, b2/a2].

Ordinary instructions

There are ten ordinary instructions in TALK. ld [rs + n], rd is a memory
load instruction which loads nth element of a tuple which resides in the
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address specified by the register rs and stores the element to the register rd.
st rs, [rd + n] is a memory store instruction which stores the value of the
register rs into nth element of a tuple which resides in the address specified
by the register rd.

mov rs, rd is a register-copy instruction which just copies the value of
the register rs to the register rd. movi v, rd is a constant-load instruction
which loads the value v to the register rd.

add rs1, rs2, rd is an add instruction which stores the sum of rs1 and
rs2 into the register rd. sub and mul is a subtraction and multiplication
instruction, respectively. In TALK, there is no reference types or pointer
types. Memory addresses are only integers. Therefore, the address calcula-
tion are performed with these arithmetic instructions.

beq rs1, rs2, rd is a branch instruction which jumps to the label specified
by the register rd if rs1 = rs2. ble rs1, rs2, rd is the other branch instruction
which jumps to the label specified by the register rd if rs1 ≤ rs2.

jmp rd is a jump instruction which jumps to the label specified by the
register rd and executes the instructions of the label.

Coerce instructions

There are nine coerce instructions for manipulating type information when
type-checking. The instructions incur no runtime overhead because they
are interpreted only by type checkers and not executed at runtime.

apply r [c1, . . . , cn/∆] is a type application instruction which instanti-
ates the type of the label before jumping to the instructions of the label,
typically. Specifically, it substitutes c1, . . . , cn for the type variables ∆ that
are bound by the type of the label specified by the register r. A type vari-
able (δ) is an integer type variable (α) or a memory type variable (ε).

rollµη[∆].τ(c1,...,cn) i and unroll i are instructions for recursive types
which unroll a recursive type once (unroll) and vice versa (roll).

pack[c1,...,cn|Σ]as τ i and unpack i with∆ are instructions for existential
types which pack the type of the tuple that resides in the address i into an
existential type (pack) and vice versa (unpack). As in the alias type sys-
tem [96], we can hide part of memory in existential types. The encapsulated
memory cannot be accessed unless the existential type is unpacked.

split i1, i2 and concat i1, i2, i3 are instructions for the arrays. As
mentioned in Section 2.1.4, split splits an array into two adjacent arrays
and concat concatenates two adjacent arrays into one array. These in-
structions are used to access an element of an array (see Section 2.2.4 for
details). In addition, they are useful for implementing memory manage-
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(P, M{R(rs) 7→ 〈〈v1, . . . , vn〉〉}, 7→S (P,M{R(rs) 7→ 〈〈v1, . . . , vn〉〉},
R,ld [rs + n′], rd; I) R{rd 7→ vn′}, I)

(P, M{R(rd) 7→ 〈〈. . . , vn′ , . . .〉〉}, 7→S (P,M{R(rd) 7→ 〈〈. . . , R(rs), . . .〉〉},
R,st rs, [rd + n′]; I) R, I)

(P, M, R,mov rs, rd; I) 7→S (P,M,R{rd 7→ R(rs)}, I)
(P, M, R,movi v, rd; I) 7→S (P,M,R{rd 7→ v}, I)
(P, M, R,add rs1, rs2, rd; I) 7→S (P,M,R{rd 7→ R(rs2) + R(rs1)}, I)
(P, M, R,sub rs1, rs2, rd; I) 7→S (P,M,R{rd 7→ R(rs2)−R(rs1)}, I)
(P, M, R,mul rs1, rs2, rd; I) 7→S (P,M,R{rd 7→ R(rs2) ∗R(rs1)}, I)
(P, M, R,beq rs1, rs2, rd; I) 7→S if R(rs1) = R(rs2) then

(P,M,R, P (l) [c1, . . . , cn/∆]))
else (P, M, R, I)
where R(rd) = l [c1, . . . , cn/∆]

(P, M, R,ble rs1, rs2, rd; I) 7→S if R(rs1) ≤ R(rs2) then
(P,M,R, P (l) [c1, . . . , cn/∆]))

else (P, M, R, I)
where R(rd) = l [c1, . . . , cn/∆]

(P, M, R,jmp rd) 7→S (P,M,R, P (l) [c1, . . . , cn/∆]))
where R(rd) = l [c1, . . . , cn/∆]

Figure 2.9: Operational semantics (instructions)
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ment facilities (see Section 3.1 for details). The reason why the operational
semantics of split and concat are complicated is that the type system
treats the arrays of size 0.

tuple split i1, n2 and tuple concat i1, i2 resemble split and concat,
but for tuple types. tuple concat is used for creating a tuple type from
adjacent arrays of size 1, and tuple split is vice versa. In TALK, allo-
cation of a tuple can be represented as follows. First, an array is obtained
by split from one of the arrays that represent the free memory. Then, the
obtained array is further split into adjacent arrays of size 1. Then the ar-
rays are concatenated into a tuple by tuple concat (see the examples of
Sections 2.3 and 3.1 for details)

2.2.4 Typing rules

Typing rules are shown in Figures 2.11, 2.12 and 2.13. ` S states that the
abstract machine state S is well-formed. The well-formed abstract machine
state causes no runtime error. More formally, the following theorem holds.

Theorem 2.1 (Type Soundness)
If ` S and S 7→∗

S S′, then S′ is not stuck.

Here the stuck state is defined as follows.

Definition 2.2 (Stuck State)
S is stuck if and only if there exists no abstract machine state S′ such that
S 7→S S′.

The proof of the type soundness theorem is shown in Appendix A.
The judgement of abstract machine states consists of the judgement of

program, memory, registers and instructions. Note that, in the following
typing rules, we omit the program type Φ if not needed, because it is in-
variant while type-checking. In addition, the kind of type variables (α and
ε) is not explicitly described in the typing rules. We implicitly assume that
the type variable α is the integer type and ε is the memory type. Therefore,
for example, the type substitutions [3/ε] and [{0x1 7→ 〈0〉}/α] are rejected
by the type checker, though not mentioned in the following typing rules.

Well-formedness of program

` P : Φ states that the program P is well-formed (PROGRAM). The rule
checks whether all the labels in the program are typed in the program type
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(P, M, R,apply rd [c1, . . . , cn/∆] ; I) 7→S (P, M, R{rd 7→ R(rd) [c1, . . . , cn/∆]}, I)
where R(rd) = l [c′1, . . . , c′m/∆′] (l ∈ P )

(P, M{n 7→ 〈t〉}, R,rollτ n; I) 7→S (P, M{n 7→ 〈roll (t)〉}, R, I)
(P, M{n 7→ 〈roll (t)〉},

R,unroll n; I) 7→S (P, M{n 7→ 〈t〉}, R, I)
(P, M{n 7→ 〈t〉}M ′,

R,pack[c1,...,cn|Σ]as τ n; I) 7→S

(
P,M{n 7→

〈
pack[c1,...,cn|M ′] (t)

〉
}, R, I

)

where Dom(M ′) ⊆ Dom(Σ)
(P, M{n 7→

〈
pack[c1,...,cn|M ′] (t)

〉
},

R,unpack n with ∆; I) 7→S (P, MM ′{n 7→ 〈t〉}, R, [c1, . . . , cn/∆]I)
(P, M{n1 7→ 〈t1, . . . , tn〉}, 7→S (P, M{n1 7→ 〈t1, . . . , tn2〉}

R,split n1, n2; I) {n′1 7→ 〈tn2+1, . . . , tn〉}, R, I)
where 0 < n2 < nand

n′1 = n1 +
∑n2

i=1 sizeof (ti)
(P, M, R,split n1, 0; I) 7→S (P, M, R, I)
(P, M{n1 7→ 〈t1, . . . , tn〉},

R,split n1, n; I) 7→S (P, M{n1 7→ 〈t1, . . . , tn〉}, R, I)
(P, M{n1 7→ 〈t1, . . . , tn〉}

{n2 7→ 〈t′1, . . . , t′m〉}, R,
concat n1, n2,m; I) 7→S (P, M{n1 7→ 〈t1, . . . , tn, t′1, . . . , t′m〉}, R; I)

where m > 0 and n2 = n1 +
∑n

i=1 sizeof (ti)
(P, M{n1 7→ 〈t1, . . . , tn〉},

R,concat n1, n2, 0; I) 7→S (P, M{n1 7→ 〈t1, . . . , tn〉}, R, I)
where n2 = n1 +

∑n
i=1 sizeof (ti)

(P, M{n1 7→ 〈t1, . . . , tm〉},
R,concat n1, n1,m; I) 7→S (P, M{n1 7→ 〈t1, . . . , tm〉}, R, I)

where m > 0
(P, M, R,concat n, n, 0; I) 7→S (P, M, R, I)
(P, M{n1 7→ 〈〈v1, . . . , vn〉〉}, 7→S (P, M{n1 7→ 〈〈v1, . . . , vn2〉〉}

R,tuple split n1, n2; I) {n′1 7→ 〈〈vn2+1, . . . , vn〉〉}, R, I)
where n′1 = n1 + n2

(P, M{n1 7→ 〈〈v1, . . . , vn〉〉}
{n2 7→ 〈〈v′1, . . . , v′m〉〉}, R,
tuple concat n1, n2; I) 7→S (P, M{n1 7→ 〈〈v1, . . . , vn, v′1, . . . , v′m〉〉}, R; I)

where n2 = n1 + n

Figure 2.10: Operational semantics (coerce)
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Φ. It also checks whether each block of instructions in the program is well-
formed according to its label type specified in Φ. The well-formedness of
instructions are described in Section 2.2.4.

Well-formedness of registers

` R : Γ states that the registers R is well-formed (REGISTERS). The rule
checks whether the value of each register has the small value type specified
in the registers type Γ.

Well-formedness of memory

` M : Σ states that the memory M has the memory type Σ (MEMORY). The
judgement rule checks whether all the arrays in the memory (including
encapsulated memory regions inside existential packages) do not overlap
each other (which is denoted as GU(M)) in order to keep track of pointer
aliases properly.

Before showing the formal definition of GU, we first show the definition
of the global memory G.

Definition 2.3 (Global Memory)
G(M) is the multi-set of the memory regions defined as follows.

G({n1 7→ a1} . . . {nm 7→ am}) =
[n1, n1 + sizeof (a1)− 1] ] . . . ] [nm, nm + sizeof (am)− 1]
] G(a1) ] . . . ] G(am)

G(〈t1, . . . , tm〉) = G(t1) ] . . . ] G(tm)
G(pack[...|M ](t)) = G(M)
G(roll(t)) = G(t)
G(other) = ∅

Then, the formal definition of GU is as follows.

Definition 2.4 (Global Uniqueness)
GU(M) if and only if there are no duplicate memory regions in G(M).

In addition, the judgement rule checks whether the domain of M is a
subset of that of Σ. It also checks whether, for each address n ∈ Dom(M),
the array M(n) has the array type Σ(n). In addition, it checks whether the
size of the array types Σ(m) is equal to zero, for each m ∈ Dom(Σ)\Dom(M).
For example, we have ` {0x12345679 7→ 〈〈0〉〉} : {0x12345679 7→ 〈0〉 [1]} ⊗
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{0x12345679 7→ 〈1〉 [0]}. More specifically, this is checked by the equality
rules of memory. The details are described in Section 2.2.5.

∆; C ` a : at states that, with the type variables ∆ and under the as-
sumption that the integer constraints C are satisfied, the array a has the
array type at . The typing rule ARRAY checks whether all the elements of
the array have the same tuple type τ and the size of the array equals to
the size specified in the array type. For example, ∆; C ` 〈t1, t2〉 : τ [i]
checks whether the tuples t1 and t2 have the type τ . It also checks whether
i = 2 under the assumption C, using a constraint solver. We write this as
∆;C |= i = 2. The formal definition of the relation |= are defined as follows.

Definition 2.5 (Integer Constraints)
∆;C |= C ′ if and only if C ′ is deduced from C, no matter how the integer
variables in ∆ are instantiated.

It is well-known that the problem of integer constraints solving is de-
cidable if the constraints are linear. The only instruction that may introduce
a non-linear constraint is the mul instruction.

∆; C ` t : τ states that the element t of an array has the type τ . There
are three typing rules for tuples (TUPLE, TUPLEROLL and TUPLEPACK).
The typing rule TUPLE checks whether each element (vi) of an tuple has
the type (σi) specified in the tuple type.

The typing rule TUPLEROLL check whether τ is a recursive type. Then,
it recursively applies the typing rules for tuples in order to check the tuple
inside t according to the tuple type obtained by unrolling the recursive type
once.

The typing rule TUPLEPACK check whether τ is an existential type. In
addition, it checks whether the encapsulated memory is well-formed ac-
cording to the memory type specified in the existential type. It also verifies
that the integer constraints specified in the existential type is satisfiable un-
der the current assumption. Then, it recursively applies the typing rule for
tuples in order to check the packed tuple.

∆; C ` v : σ states that the value v has the type σ. There are two
typing rules for integers (VALUEINTEGER) and labels (VALUELABEL). The
VALUEINTEGER rule checks whether the integer n equals to the type i using
a constraint solver (∆;C |= n = i). The VALUELABEL rule checks whether
the type of the label l can be instantiated to the specified label type σ ac-
cording to the substitution [c1, . . . , cn/∆′′].
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` P : Φ ` M : Σ ` R : Γ ·; Γ; ·; Σ ` I

` (P, M, R, I)
(STATE)

Dom(P ) = Dom(Φ)
∀l ∈ Dom(P ). ∆;Γ; C; Σ ` P (l) Φ(l) ≡ ∀∆. |C| [Σ] (Γ)

` P : Φ
(PROGRAM)

GU(M) M ≡ {n1 7→ a1} . . . {nk 7→ ak}
·; · ` Σ = {n1 7→ at1} ⊗ . . .⊗ {nk 7→ atk}

∀i. ·; · ` ai : at i

` M : Σ
(MEMORY)

∀ri ∈ Dom(Γ). ·; · ` R(ri) : Γ(ri)
` R : Γ

(REGISTERS)

∆;C ` tj : τ ∆;C |= n = i

∆; C ` 〈t1, . . . , tn〉 : τ [i]
(ARRAY)

∆; C ` vj : σj

∆;C ` 〈v1, . . . , vn〉 : 〈σ1, . . . , σn〉
(TUPLE)

τ ≡ µη [∆′] .τ ′ (c1, . . . , cn)
∆;C ` t : τ ′ [µη [∆′] .τ ′/η] [c1, . . . , cn/∆′]

∆; C ` roll (t) : τ
(TUPLEROLL)

∆;C ` t : τ ′ [c1, . . . , cn/∆′] τ ≡ ∃∆′. |C ′| [Σ′] τ ′
` M : Σ′ [c1, . . . , cn/∆′] ∆;C |= C ′ [c1, . . . , cn/∆′]

∆;C ` pack[c1,...,cn|M ] (t) : τ
(TUPLEPACK)

∆;C |= n = i

∆;C ` n : i
(VALUEINTEGER)

∀∆′. |C ′| [Σ′] (Γ′) ≡ Φ(l) θ ≡ [c1, . . . , cn/∆′′]
C ′′ ≡ C ′θ Σ′′ ≡ Σ′θ Γ′′ ≡ Γ′θ

∆;C ` σ = ∀∆′\∆′′. |C ′′| [Σ′′] (Γ′′)
∆; C ` l [c1, . . . , cn/∆′′] : σ

(VALUELABEL)

Figure 2.11: Typing rules (machine state)
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Well-formedness of instructions

∆;Γ; C; Σ ` I states that the instructions I is well-formed with the type
variables ∆, with the registers that satisfies the registers type Γ and under
the assumption that the integer constraints C are satisfied and the memory
has the memory type Σ.

The typing rule LOAD is for type-checking the load instruction. First,
the rule checks whether the value of the register rs is a valid memory ad-
dress in the memory type Σ and an array resides in the address. Then, it
checks whether the size of the array equals to 1 and the size of the tuple
that is only element of the array is larger than n. Finally, it checks the rest
of instructions I under the new register type that is modified so that the
register rd has the type σn that represents the loaded value.

The typing rule STORE is for type-checking the store instruction. As
with LOAD, it checks whether the value of the register rd is a valid memory
address in the memory type Σ and an array resides in the address. Then, it
checks whether the size of the array that resides in the address equals to 1
and the size of the tuple that is only element of the array is larger than n.
Finally, it checks the rest of instructions I under the modified memory type
such that the nth element of the tuple that resides in the address is replaced
with the type of rs.

Note that LOAD and STORE only permit load/store operations for ar-
rays whose size is 1. Therefore, to access an array whose size is greater
than 1, it is required to clip out an array of size 1 from the array, with the
split instruction. At first glance, this limitation seems to be pointless, but
it is essential. For example, let us consider the type of an integer array. It
can be represented as ∃α. 〈α〉 [β] (The integer constraints and the memory
type are omitted). To load a value from the array, we must unpack one of
its elements. However, it is difficult to express the type of the array whose
all elements have the existential type, except for the one element. The same
can be said for storing a value to the array (as mentioned in Section 2.1.4).

The equality of memory types (∆;C ` Σ = Σ′) is almost the same as
the ordinary equality of maps. However, it takes into account the integer
constraints between type variables. For example, α, β; · 6` {α 7→ 〈α〉} =
{β 7→ 〈β〉}, but α, β; α = β ` {α 7→ 〈α〉} = {β 7→ 〈β〉}. In addition,
arrays whose size is 0 can be ignored in the equality check. For example,
α, β;β = 0 ` {α 7→ 〈0〉 [β]} = ·. The details are explained in Section 2.2.5.

The typing rule MOVE does almost nothing but checks the rest of the in-
structions I with the modified registers type that indicates that the register
rd has the same type as the register rs. The typing rule MOVEI type-checks
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the constant-load instruction. First, it checks the type of the value to be
loaded (∆; C ` v : σ). Then, it checks the following instructions I with the
modified registers type that indicates that the register rd has the type σ.

The typing rule ARITH type-checks the arithmetic instructions. The rule
checks whether the operands have the integer types. Then, it type-checks
the rest of instructions I with the modified register type that indicates that
the register rd has the result of the arithmetic operations.

The typing rule BRANCH is for type-checking the branch instructions.
For the taken branch, it first checks whether the value of the register rd has
the label type. Then, it checks whether the condition specified in the label
type is satisfied under the current context (∆;C) extended with the condi-
tion of the taken branch (Γ (rs1) (=,≤)Γ (rs2)). The relation ∆; C ` Γ ≤ Γ′

means that the registers type Γ indicates a stronger condition than the
registers type Γ′. For example, α; · ` {r1 7→ α} ≤ {r1 7→ α} and α; · `
{r1 7→ α,r2 7→ 42} ≤ {r1 7→ α}, but α; · 6` {r1 7→ α} ≤ {r1 7→ α,r2 7→ 42}.
The details are explained in Section 2.2.6. For the non-taken branch, it
checks the following instructions I under the extended context with Γ (rs1) ( 6=
, >)Γ (rs2). Moreover, if C ′′ (for the taken branch) or the extended C (for the
non-taken branch) contains a contradiction, the corresponding type-check
could be omitted without breaking the type soundness, because the contra-
diction indicates that execution never reaches the branch.

The typing rule JUMP type-checks the jump instruction. The rule checks
whether the value of the register rd has the label type. Then, it checks
whether the condition specified in the label type is satisfied under the cur-
rent context.

Careful readers might notice that nonsense label types can be written in
TALK. For example, the label type ∀α, β.|α = β|[{α 7→ 〈0〉}⊗{β 7→ 〈1〉}].(Γ)
is nonsense because the memory type indicates that the tuple at the address
α(= β) has the integer value 0 and 1. Even if a block of instructions passes
the type check of TALK according to the nonsense label type, it may raise
a runtime error if it is executed. However, the nonsense label type does
not break the type soundness of TALK because the block is never executed.
For example, let us suppose that there exists a well-formed machine state
(P,M, R, I), where the last instruction of I is the jump instruction and its
target register (rd) has a nonsense label type. From the JUMP typing rule,
we know that the typing context (∆;Γ; C; Σ) is also nonsense when type-
checking the jump instruction. If I does not contain the branch instructions,
it contradicts the well-formedness of the machine state because the initial
typing context (·; Γ; ·; Σ) is valid (not nonsense) and the only typing rule
that may generate a nonsense context from a valid context is the BRANCH
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typing rule, more specifically, the non-taken branch of the rule. Therefore,
there must exists at least one branch instruction which introduces a new
integer constraint which conflicts with the typing context of the BRANCH

rule. This means that no matter how we instantiate the type variables, the
new constraint is never satisfied. That is, the branch is never taken at run-
time. Thus, execution never reaches the jump instruction.

∆;C ` Σ = Σ′ ⊗ {Γ (rs) 7→ 〈. . . , σn, . . .〉}
∆;Γ{rd 7→ σn}; C; Σ ` I

∆;Γ; C; Σ ` ld [rs + n], rd; I
(LOAD)

∆;C ` Σ = Σ′ ⊗ {Γ (rd) 7→ 〈. . . , σn, . . .〉}
∆; Γ;C; Σ′ ⊗ {Γ (rd) 7→ 〈. . . ,Γ (rs) , . . .〉} ` I

∆;Γ; C; Σ ` st rs, [rd + n]; I
(STORE)

∆; Γ{rd 7→ Γ (rs)}; C; Σ ` I

∆;Γ; C; Σ ` mov rs, rd; I
(MOVE)

∆;C ` v : σ ∆; Γ{rd 7→ σ};C; Σ ` I

∆;Γ; C; Σ ` movi v, rd; I
(MOVEI)

∆;Γ{rd 7→ Γ (rs2) (+,−, ∗)Γ (rs1)}; C; Σ ` I

∆;Γ; C; Σ ` (add,sub,mul) rs1, rs2, rd; I
(ARITH)

∆;C ` Γ (rd) = ∀. |C ′| [Σ′] (Γ′)
C ′′ ≡ C ∧ Γ (rs1) (=,≤)Γ (rs2)

∆; C ′′ |= C ′ ∆;C ′′ ` Σ = Σ′ ∆; C ′′ ` Γ ≤ Γ′

∆; Γ;C ∧ Γ (rs1) ( 6=, >)Γ (rs2) ; Σ ` I

∆;Γ; C; Σ ` (beq,ble) rs1, rs2, rd; I
(BRANCH)

∆;C ` Γ (rd) = ∀. |C ′| [Σ′] (Γ′)
∆;C |= C ′ ∆; C ` Σ = Σ′ ∆;C ` Γ ≤ Γ′

∆;Γ; C; Σ ` jmp rd
(JUMP)

Figure 2.12: Typing rules (instructions)

The typing rule APPLY type-checks the type application instruction.
The rule type-checks the rest of instructions I with the modified registers
type that indicates that the register r has the instantiated type σ′f .

Typing rules ROLL and UNROLL check whether the instructions for re-
cursive types (roll and unroll) are well-formed. The rule ROLL checks
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whether the type of the tuple at the address i can be rolled to the speci-
fied recursive type. Then, it checks the following instructions I with the
new memory type modified so that the type is rolled. The rule UNROLL is
vice versa. Typing rules PACK and UNPACK type-check the instructions for
packing and unpacking the existential types (pack and unpack). The rule
PACK first checks whether the tuple at the address i can be packed into the
specified existential type. Next, it modifies the memory type so that a tuple
is packed into an existential type, and removes the portion of the memory
that is hidden into the existential type. Then, it checks the rest of the in-
structions I . The rule UNPACK is vice versa. The rules ROLL, UNROLL,
PACK and UNPACK only allow arrays whose size is 1, as with LOAD and
STORE.

Typing rules SPLIT and CONCAT check the well-formedness of the in-
structions for splitting/concatenating arrays (split and concat). The
rule SPLIT checks whether the size (j1) of the array to be split is greater
than or equal to the required size (∆; C |= i2 ≤ j1). Then, it splits the
array into two arrays and extends the memory type with them. The rule
CONCAT checks whether the given two arrays are adjacent (∆; C |= j1 =
i1+sizeof (τ)∗i2). Then, it concatenates the two arrays into one and extends
the memory type with it. Here sizeof (τ) is the size of the tuple represented
by the type τ . If τ is a recursive type (µ . . . τ ′) or an existential type (∃ . . . τ ′),
sizeof (τ) is recursively applied to the inner tuple type τ ′. Because sizeof (τ)
is always a constant integer, rules SPLIT and CONCAT never generate non-
linear constraints. Note that the split instruction can create the array of
size 0 (if the second argument of the instruction is 0 or equals to the size
of the array). This is because, without the array of size 0, special handling
is required to access the first and the last element of the variable-length ar-
rays. The arrays of size 0 do not affect the type soundness because they are
never accessed and the equality check of the memory types absorbs them.

Typing rules TUPLESPLIT and TUPLECONCAT are almost the same as
SPLIT and CONCAT, but they type-check the split and concatenation of tu-
ples.

2.2.5 Equality of memory types

This section describes the formal definition of the equality checking rules of
memory types. These rules are necessary because ordinary map equality is
insufficient. For example, let us suppose two memory types {α1 7→ τ [β1]}
and {α2 7→ τ [β2]}. At first glance, they are not equal. However, they may
be equal under some circumstances. For example, let us assume that α1 =
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Γ(r) ≡ ∀∆′. |C ′| [Σ′] (Γ′)
θ ≡ [c1, . . . , cn/∆′′] C ′′ ≡ C ′θ Σ′′ ≡ Σ′θ Γ′′ ≡ Γ′θ

σ′f ≡ ∀∆′\∆′′. |C ′′| [Σ′′] (Γ′′) ∆; Γ{r 7→ σ′f};C; Σ ` I

∆;Γ; C; Σ ` apply r [c1, . . . , cn/∆′′] ; I
(APPLY)

τ ≡ µη [∆′] .τ ′ (c1, . . . , cn) ∆; Γ;C; Σ′ ⊗ {i 7→ τ} ` I
∆; C ` Σ = Σ′ ⊗ {i 7→ τ ′ [µη [∆′] .τ ′/η] [c1, . . . , cn/∆′]}

∆;Γ; C; Σ ` rollτ i; I
(ROLL)

∆; C ` Σ = Σ′ ⊗ {i 7→ µη [∆′] .τ ′ (c1, . . . , cn)}
∆;Γ; C; Σ′ ⊗ {i 7→ τ ′ [µη [∆′] .τ ′/η] [c1, . . . , cn/∆′]} ` I

∆;Γ; C; Σ ` unroll i; I
(UNROLL)

θ ≡ [c1, . . . , cn/∆′] ∆;C ` Σ = Σ′′ ⊗ {i 7→ τθ} ⊗ Σ′θ
∆; C |= C ′θ ∆;Γ; C; Σ′′ ⊗ {i 7→ ∃∆′. |C ′| [Σ′] τ} ` I

∆;Γ; C; Σ ` pack[c1,...,cn|Σ′[c1,...,cn/∆′]]as∃∆′.|C′|[Σ′]τ i; I
(PACK)

∆; C ` Σ = Σ′′ ⊗ {i 7→ ∃∆′. |C ′| [Σ′] τ} θ ≡ [∆′′/∆′]
∆∆′′; Γ; C ∧ C ′θ; Σ′′ ⊗ {i 7→ τθ} ⊗ Σ′θ ` I

∆;Γ; C; Σ ` unpack i with ∆′′; I
(UNPACK)

∆; C ` Σ = Σ′ ⊗ {i1 7→ τ [j1]} ∆; C |= 0 ≤ i2 ≤ j1

k1 ≡ i1 + sizeof (τ) ∗ i2 k2 ≡ j1 − i2
∆;Γ; C; Σ′ ⊗ {i1 7→ τ [i2]} ⊗ {k1 7→ τ [k2]} ` I

∆;Γ; C; Σ ` split i1, i2; I
(SPLIT)

∆;C ` Σ = Σ′ ⊗ {i1 7→ τ [i2]} ⊗ {j1 7→ τ [j2]}
∆; C |= j1 = i1 + sizeof (τ) ∗ i2

∆;Γ; C; Σ′ ⊗ {i1 7→ τ [i2 + j2]} ` I

∆;Γ; C; Σ ` concat i1, j1, j2; I
(CONCAT)

∆; C ` Σ = Σ′ ⊗ {i1 7→ 〈σ1, . . . , σn〉} ∆; C |= 0 < n2 < n
∆; Γ;C; Σ′ ⊗ {i1 7→ 〈σ1, . . . , σn2〉} ⊗ {i1 + n2 7→ 〈σn2+1, . . . , σn〉} ` I

∆;Γ; C; Σ ` tuple split i1, n2; I
(TUPLESPLIT)

∆; C ` Σ = Σ′ ⊗ {i1 7→ 〈σ1, . . . , σn〉} ⊗ {i2 7→ 〈σ′1, . . . , σ′m〉}
∆;C |= i2 = i1 + n ∆;Γ; C; Σ′ ⊗ {i1 7→ 〈σ1, . . . , σn, σ′1, . . . , σ′m〉} ` I

∆;Γ; C; Σ ` tuple concat i1, i2; I
(TUPLECONCAT)

Figure 2.13: Typing rules (coerce instructions)
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α2 and β1 = β2. Then, the memory types should be considered to be equal.
In addition, in order to handle the arrays of size 0, a special treatment is
required in the type system.

The equality rules of memory types are shown in Figure 2.14. The rule
EQMEMEMPTY states that the empty memory type is equal to itself.

The rule EQMEMLOC states that two memory types are equal if one
mapping of one memory type is equal to another mapping of the other
memory type, and the rest of the memory types are equal. The equality
of the mappings are verified by checking the integers that represent the
address are equal and the array types are equal. The equality rules of the
array types are explained later.

The rule EQMEMVAR states that two memory types are equal if one
memory type variable in one memory type is the same type variable as the
other memory type, and the rest of the memory types are equal. That is, it
checks the equality of the memory type variables almost syntactically. This
is because the type system does not keep track of the equality constraints
between memory type variables. Thus, this rule is simpler than the rule
EQMEMLOC.

The rule EQMEMZEROARRAYL and EQMEMZEROARRAYR handle the
arrays of size 0. These rules state that two memory types are equal even if
the arrays of size 0 are ignored. The rule EQMEMZEROARRAYL ignores the
arrays of size 0 in the memory type of the left side, and the rule EQMEMZEROARRAYR
ignores the arrays of size 0 in the memory type of the right side. For exam-
ple, α; α = 0 ` ε⊗{0x12345789 7→ τ [α]} = ε by the rule EQMEMZEROARRAYL,
and α;α = 0 ` ε = ε⊗{0x12345789 7→ τ [α]} by the rule EQMEMZEROARRAYR.

∆; C ` · = · (EQMEMEMPTY)

∆; C ` Σ = Σ′ ∆; C |= i1 = i2 ∆; C ` at1 = at2

∆;C ` Σ⊗ {i1 7→ at1} = Σ′ ⊗ {i2 7→ at2}
(EQMEMLOC)

∆; C ` Σ = Σ′

∆; C ` Σ⊗ ε = Σ′ ⊗ ε
(EQMEMVAR)

∆; C ` Σ = Σ′ ∆;C |= i2 = 0
∆; C ` Σ⊗ {i1 7→ τ [i2]} = Σ′

(EQMEMZEROARRAYL)

∆; C ` Σ = Σ′ ∆; C |= i2 = 0
∆; C ` Σ = Σ′ ⊗ {i1 7→ τ [i2]}

(EQMEMZEROARRAYR)

Figure 2.14: Equality rules (memory types)
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The equality rules for array types, tuples types and value types are
shown in Figure 2.15. The rule EQARRAY states that two array types are
equal if the types of the elements of the array types are equal and the size
of the arrays are equal.

There are three equality rules for tuple types, EQTUPLE, EQREC and
EQEX. The rule EQTUPLE checks the ordinary tuple types. It checks whether
each element type of two tuples is equal. The rule EQREC checks the equal-
ity of the recursive types. It just checks the syntactic equality. The rule
EQEX checks the equality of the existential types. First, it checks whether
the type variables in the existential types are equal (modulo the alpha con-
version). Next, it checks whether the integer constraints indicate the same
conditions. Then, it checks whether the memory types packed in the exis-
tential types are equal under the extend assumption with the integer con-
straints. It also checks whether the tuple types in the existential types are
equal under the same assumption. For example, we have ·; · ` ∃αβ.|α =
β| 〈α〉 = ∃αβ.|α = β| 〈β〉, though this may be useless in practice. The equal-
ity rules for integer constraints are described later.

The equality rules of values are EQINT and EQLABEL. The rule EQINT

states that the two integer types are equal. It only checks whether the
two integers are equal with a constraint solver. The rule EQLABEL states
that the two label types are equal. First, it checks whether the type vari-
ables in the label types are equal (modulo the alpha conversion). Next, it
checks whether the integer constraints indicate the same conditions. Then,
it checks whether the memory types mentioned in the label types are equal
under the extended assumption with the integer constraints. It also checks
whether the registers types are equal under the same assumption. The
equality rules for registers types are explained later.

The equality rules for integer constraints and registers types are shown
in Figure 2.16. The rule EQCSTRT states the equality of integer constraints.
It checks whether if one integer constraints are deduced from the other
integer constraints and vice versa. For example, we have α, β; · ` (α =
β) = (β = α). In addition, we have α; · ` (α = α) = (·). We also have
α, β;α = β ` (α = 42) = (β = 42).

The equality rules for registers types are EQREGSNULL and EQREGSREG.
The rule EQREGSNULL simply states that the null registers type (·) is equal
to itself. The rule EQREGSREG states that two registers types are equal if
types of one register are equal, and the rest of the registers types are equal.
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∆; C ` τ = τ ′ ∆;C |= i = i′

∆; C ` τ [i] = τ ′ [i′]
(EQARRAY)

∆; C ` σi = σ′i
∆;C ` 〈σ1, . . . , σn〉 = 〈σ′1, . . . , σ′n〉

(EQTUPLE)

∆; C ` ρ (c1, . . . , cn) = ρ (c1, . . . , cn) (EQREC)

∆∆′;C ` C1 = C2

∆∆′; C ∧ C1 ` Σ1 = Σ2 ∆∆′;C ∧ C1 ` τ1 = τ2

∆; C ` ∃∆′. |C1| [Σ1] τ1 = ∃∆′. |C2| [Σ2] τ2
(EQEX)

∆; C |= i = i′

∆;C ` i = i′
(EQINT)

∆∆′; C ` C1 = C2

∆∆′; C ∧ C1 ` Σ1 = Σ2 ∆∆′; C ∧ C1 ` Γ1 = Γ2

∆;C ` ∀∆′. |C1| [Σ1] (Γ1) = ∀∆′. |C2| [Σ2] (Γ2)
(EQLABEL)

Figure 2.15: Equality rules (types)

∆; C ∧ C1 |= C2 ∆;C ∧ C2 |= C1

∆;C ` C1 = C2
(EQCSTRT)

∆; C ` · = · (EQREGSNULL)

∆;C ` Γ = Γ′ ∆; C ` σ = σ′

∆; C ` Γ {r : σ} = Γ′ {r : σ′} (EQREGSREG)

Figure 2.16: Equality rules (miscellaneous)
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2.2.6 Registers subtyping

This section explains the subtyping rules used in the typing rule BRANCH

and JUMP. ∆; C ` Γ ≤ Γ′ indicates that the registers type Γ indicates a
stronger condition than Γ′. That is, when type-checking a jump instruction,
if the current registers type is Γ and the type of the jump target label speci-
fies Γ′, the jump instruction is safe because the precondition Γ′ is satisfied.

Specifically, the rule SUBREGSNULL simply states that any registers type
is a subtype of the null registers types (·). The rule SUBREGSREG states that
one registers type is a subtype of another registers type, if the types of a
register r specified in the two registers types are equal and the rest of them
is in the subtyping relation. For example, we have α, β; α = β ` {r1 :
42}{r2 : α} ≤ {r2 : β}.

∆;C ` Γ ≤ · (SUBREGSNULL)

∆; C ` Γ ≤ Γ′ ∆;C ` σ = σ′

∆; C ` Γ {r : σ} ≤ Γ′ {r : σ′} (SUBREGSREG)

Figure 2.17: Subtyping rule (registers)

2.3 Example (an implementation of stacks)

This section describes an example implementation of one of the simplest
memory management mechanism: memory stacks. Using a memory stack,
memory regions can be allocated and deallocated in a LIFO manner. The
memory stack implementation shown in this section grows from high mem-
ory addresses to low memory addresses. Another implementation that
grow in the opposite direction is possible in a similar way.

In this section, we first show how empty memory stacks can be rep-
resented in TALK. Then, we describe how the operations for the memory
stacks, that is, pop and push can be implemented in TALK.

Note that, in the following examples, the syntax of TALK is slightly
extended for ease of understanding them. For example, the delimiter (;)
between instructions are omitted. In addition, the label is explicitly de-
noted just before the instructions. Further, the arguments for the coerce
instructions are sometimes omitted for brevity.
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2.3.1 Empty stack

In TALK, the memory stack can be implemented with a variable-length
array. The code in Figure 2.18 (note that the syntax is slightly modified
for clarity) represents a program which takes an empty stack of size β in
register r4 as an argument. The array is fulfilled with junk values of the
type ∃β. 〈β〉 (the integer constraints and the memory type is omitted) that
represents an integer whose value is unknown. In addition, the number of
the junk values, that is, the size of the stack is α2. The register r4 points to
the end of the array (α1 + α2 = α4).

1 ∀α1, α2, α4, ε. |α1 + α2 = α4|
2 [{α1 7→ ∃β. 〈β〉 [α2]} ⊗ ε]
3 (r4 : α4)
4 stack_example:
5 ...

Figure 2.18: Example of a stack implementation in TALK

2.3.2 Push

The code of Figure 2.19 is a program which takes an empty stack as an
argument (register r4) and pushes an integer to the stack. First, the last
one element of the stack is split (in line 5). This split is type-checked
because the integer constraints of the label type indicate that the size of the
stack is greater than one. Next, the element is unpacked in order to update
its content (in line 6). Then, the stack pointer (r4) is shifted by one and the
integer (r1) is stored into the element. After line 7, the register r4 points to
the rest of the stack whose size is α3 − 1.

The code of Figure 2.20 is a program which takes an empty stack as an
argument (register r4) and pushes a tuple of size 2 to the stack.

First, the memory region for the tuple is allocated by splitting the stack
(in line 5). This split is type-checked because the size of the stack is
greater than 2, as specified in the integer constraints of the label type.

Next, we need to convert the allocated memory region to a tuple be-
cause it is an array. First, the array is split into the arrays of size 1 (in line
6). Then, the arrays are unpacked in order to update their contents (in line
7 and 8). This unpack is type-checked because the size of the arrays is 1,
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1 ∀α1, α2, α3, α4, ε. |α3 > 1 ∧ α2 + α3 = α4|
2 [{α2 7→ ∃β. 〈β〉 [α3]} ⊗ ε]
3 (r1 : α1,r4 : α4)
4 push_example_1:

5 split α2, (α3 - 1)
6 unpack α2 + α3 − 1
7 sub 1, r4, r4
8 st r1, [r4]
9

10 ...

Figure 2.19: Example of a stack implementation in TALK (push an integer)

1 ∀α1, α2, α3, α4, ε. |α3 > 2 ∧ α2 + α3 = α4|
2 [{α2 7→ ∃β. 〈β〉 [α3]} ⊗ ε]
3 (r1 : α1,r4 : α4)
4 push_example_2:

5 split α2, (α3 - 2)
6 split (α2 + α3 − 2), 1
7 unpack (α2 + α3 − 2)
8 unpack (α2 + α3 − 2 + 1)
9 tuple concat (α2 + α3 − 2) , (α2 + α3 − 2 + 1)

10 sub 2, r4, r4
11 st r1, [r4]
12 st r1, [r4 + 1]
13
14 ...

Figure 2.20: Example of a stack implementation in TALK (push a tuple)
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that is, the arrays can be considered as tuples. Last, the unpacked tuples
are concatenated into one tuple (in line 9). The arguments for the unpack
instructions are omitted for brevity.

Then, the stack pointer (r4) is shifted by 2 (in line 10). Last, the allocated
tuple is initialized by the value of the register r1 (in line 11 and 12).

2.3.3 Pop

The code of Figure 2.21 is a program which takes a memory stack which
contains one integer as an argument (the register r4) and pops the integer
from the stack. First, the content of the element of the stack is stored in
the register r1 (in line 6). Next, the element is packed into an existential
type ∃β. 〈β〉. The arguments for the pack instruction is omitted for the
brevity. Then, the element is returned to the stack by concatenating the
element to the stack (in line 7). This concat is type-checked because the
array representing the stack and the element is adjacent from the integer
constraints of the label type, and the type of the element is ∃β. 〈β〉 which is
equal to the type of the elements of the array.

1 ∀α2, α3, α4, β1, ε. |α2 + α3 = α4|
2 [{α2 7→ ∃β. 〈β〉 [α3]}⊗
3 {α4 7→ 〈β1〉} ⊗ ε]
4 (r4 : α4)
5 pop_example_1:
6 ld [r4], r1

7 pack α4

8 concat α2, α4, 1
9 add 1, r4, r4

10
11 ...

Figure 2.21: Example of a stack implementation in TALK (pop an integer)

The code of Figure 2.22 is a program which takes a memory stack which
contains one tuple of size 2 as an argument (the register r4) and pops the
tuple from the stack. First, the contents of the tuple is stored in the register
r1 and r2 (in line 6 and 7). Then, we need to deallocated the tuple and
return it to the stack. To this end, we first split the tuple into the arrays of
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size 1 (in line 8). Next, the arrays are packed into the existential type ∃β. 〈β〉
(in line 9 and 10). Then, the arrays are concatenated back to the stack (in
line 10 and 11). These concat instructions are type-checked because all
the arrays are adjacent from the integer constraints of the label type and
the types are equal (∃β. 〈β〉).

1 ∀α2, α3, α4, β1, β2, ε. |α2 + α3 = α4|
2 [{α2 7→ ∃β. 〈β〉 [α3]}⊗
3 {α4 7→ 〈β1, β2〉} ⊗ ε]
4 (r4 : α4)
5 pop_example_2:
6 ld [r4], r1
7 ld [r4 + 1], r2

8 tuple split α5, 1
9 pack α5

10 pack α5 + 1
11 concat α5, α5 + 1, 1
12 concat α2, α5, 2
13 add 2, r4, r4
14
15 ...

Figure 2.22: Example of a stack implementation in TALK (pop a tuple)

2.3.4 Bound checking

In the programs of Section 2.3.2, the integer constraints of the label type
assumes that the stacks have sufficient room for storing values. In practice,
however, this is not necessarily the case. Thus, we need to check bound of
stacks at runtime as the code of Figure 2.23.

The program in Figure 2.23 takes a memory stack as an argument (the
register r4). In addition, it also takes the size of the stack as another ar-
gument (the register r3). Then, it checks whether the size of the stack is
greater or equal to one (in line 5). Here we assume that the label stack overflow
is defined elsewhere. That is, if the stack has no room for storing an integer,
it jumps to the error handler of the label stack overflow.
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1 ∀α1, α2, α3, α4, ε. |α2 + α3 = α4|
2 [{α2 7→ ∃β. 〈β〉 [α3]} ⊗ ε]
3 (r1 : α1,r3 : α3,r4 : α4)
4 push_example_3:
5 ble r3, 1, stack_overflow

6 split α2, (α3 - 1)
7 unpack α2 + α3 − 1
8 sub 1, r4, r4
9 st r1, [r4]

10
11 ...

Figure 2.23: Example of bound checking for a memory stack

After the ble instruction, the type checker assumes that r3 ≥ 1, accord-
ing to the typing rule BRANCH. Thus, the split instruction (in line 6) is
type-checked because the premises of the typing rule SPLIT are satisfied.

2.4 Stack extension

The previous section describes how to implement memory stacks in TALK.
Based on the idea, this section extends TALK with the memory stacks as a
language primitive. The primary purpose of this extension is to make the
examples shown later in this thesis simpler for ease of understanding. To
this end, the extension shown in this section assumes that the stacks are
unbounded. That is, the stacks can grow infinitely. Strictly speaking, this
assumption is not sound because, in practice, if there are two stacks and
they grow infinitely, they must conflict at some point. Therefore, the type
system explained in this section is sound only if the stacks do not conflict.
In this section, we give preference to understandability over soundness. (It
is easy to further extend the extension with the bounded stacks, as expected
from the previous section.)

2.4.1 Abstract machine

First, the abstract machine is extended as shown in Figure 2.24. The mem-
ory of the abstract machine now holds not only arrays but also stacks. The
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stack (s) consists of a null stack (·) and a pair of the value (v) and the stack
(s). In addition, two instructions for manipulating the stacks (push and
pop) are added. Their operational semantics are explained later.

(memory) M ::= · | {n 7→ h}M
(heap) h ::= a | s
(stack) s ::= · | v :: s
(insts.) I ::=

| push rs, [rd]; I
| pop [rs], rd; I

Figure 2.24: Extension of abstract machine syntax

2.4.2 Types

The types are also extended according to the extension of the abstract ma-
chine, as shown in Figure 2.25. The type of the stacks is represented as the
type of the null stack (·), the pair type σ :: st that represents the stack whose
top elements has the type σ and the rest of the stack is st , and the stack type
variable γ that represents stacks whose elements are unknown.

(type var .) δ ::= α, γ, ε
(stack type) st ::= · | σ :: st | γ
(heap type) ht ::= at | st
(memory type) Σ ::= · | Σ⊗ {i 7→ ht} | Σ⊗ ε
(constructor) c ::= i | Σ | st

Figure 2.25: Extension of types syntax

2.4.3 Instructions and operational semantics

To manipulate the stacks, two instructions (push and pop) are added to
the abstract machine. push rs, [rd] pushes the value stored in the register
rs to the stack that resides in the address specified by the register rd. Then,
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it decrements the register rd by one. pop [rs], rd pops the top of the stack
that resides in the address specified by the register rs and stores the value
to the register rd. Then, it increments the register rs by one.

(P, M{R(rd) 7→ s}, R,push rs, [rd]; I) 7→S

(P, M{R(rd)− 1 7→ R(rs) :: s}, R{rd 7→ R(rd)− 1}, I)
(P, M{R(rs) 7→ v :: s}, R,pop [rs], rd; I) 7→S

(P, M{R(rs) + 1 7→ s}, R{rd 7→ v}{rs 7→ R(rs) + 1}, I)

Figure 2.26: Extension of operational semantics (instructions)

2.4.4 Typing rules

According to the extension of the abstract machine and the operational se-
mantics, the type system is also extended. As mentioned above, the type
system is sound only if the stacks do not overlap.

Well-formedness of memory

∆; C ` s : st states that, with the type variables ∆ and under the assump-
tion that the integer constraints C are satisfied, the stack s has the stack
type st .

∆; C ` vj : σj

∆;C ` v1 :: . . . :: vn : σ1 :: . . . :: σn
(STACK)

Figure 2.27: Extension of typing rules (machine state)

Well-formedness of instructions

The typing rule PUSH type-checks the push instruction. First, it checks
whether if the value of the register rd is a valid memory address in the
memory type Σ and there is a stack at the address. Next, it extends the
type of the stack by pushing the type of the register rs. It also modifies the
address of the stack and the type of the register rd. Then, it type-checks the
following instructions I .
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The typing rule POP type-checks the pop instruction. First, it checks
whether if the value of the register rs is a valid memory address in the
memory type Σ and there is a stack at the address. Next, it pops out the
top of the stack and overwrites the type of the register rd with it. It also
modifies the address of the stack and the type of the register rs. Then, it
type-checks the rest of the instructions I .

∆; C ` Σ = Σ′ ⊗ {Γ (rd) 7→ st}
Σ′′ ≡ Σ′ ⊗ {Γ (rd)− 1 7→ Γ (rs) :: st}

∆;Γ{rd 7→ Γ (rd)− 1};C; Σ′′ ` I

∆;Γ; C; Σ ` push rs, [rd]; I
(PUSH)

∆; C ` Σ = Σ′ ⊗ {Γ (rs) 7→ σ :: st}
Σ′′ ≡ Σ′ ⊗ {Γ (rs) + 1 7→ st}

∆;Γ{rs 7→ Γ (rs) + 1}{rd 7→ σ}; C; Σ′′ ` I

∆;Γ; C; Σ ` pop [rs], rd; I
(POP)

Figure 2.28: Extension of typing rules (instructions)

Equality of stack types

The equality rules are naturally extended for the stack types. The rule
EQSTACKEMPTY states that the empty stack type is equal to itself. The rule
EQSTACKVAR states that the stack variables are equal if and only if they are
syntactically equal. The rule EQSTACKCONS states that two stack types are
equal if the types of their top elements are equal and the types of the rest of
the stacks are equal.

∆; C ` · = · (EQSTACKEMPTY)

∆;C ` γ = γ (EQSTACKVAR)

∆;C ` σ = σ′ ∆;C ` st = st′

∆; C ` σ :: st = σ′ :: st′
(EQSTACKCONS)

Figure 2.29: Equality rules (stack types)
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2.5 Examples of stack types

This section shows an example of the usage of the stacks defined in the
previous section. More concretely, we first explain how to implement func-
tion calls in TALK. Then, we show very simple memory management and
multi-thread management code written in TALK. More practical and com-
plex versions are introduced in Chapter 3.

2.5.1 Function calls

When a function is called, the return address is passed to the function by
the caller. Therefore, if several function calls are nested, we need to store
their return addresses in memory, because the number of registers is fixed.
Typically, the return addresses are stored in a memory stack.

1 ∀α4, ε, γ. | · |[{α4 7→ γ} ⊗ ε]
2 (r4 : α4,r3 : ∀α.| · |[{α 7→ γ} ⊗ ε](r4 : α))
3 rec_fun:
4 push r3, [r4]
5 movi rec_fun_ret, r3

6 apply r3 [ε, γ/ε, γ]
7 movi rec_fun_ret, r1

8 apply r1 [α4 − 1, ε, ∀α.| · |[{α 7→ γ} ⊗ ε](r4 : α) :: γ/α4, ε, γ]
9 jmp r1

10 ∀α4, ε, γ. | · |
11 [{α4 7→ ∀α.| · |[{α 7→ γ} ⊗ ε](r4 : α) :: γ} ⊗ ε]
12 (r4 : α4)
13 rec_fun_ret:
14 pop [r4], r3

15 apply r3 [α4 + 1/α]
16 jmp r3

Figure 2.30: Example of a recursive function

The code of Figure 2.30 is a function which recursively calls itself in-
finitely. The function consists of two block of instructions. The first block
calls itself recursively. The second block is executed after the return from
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the recursive function call. Careful readers might notice that the second
block is never executed in this case, but it does not affect correctness of the
implementation.

The first block takes a memory stack as an argument with the register
r4 and the return address with the register r3 (in line 2). The contents
of the stack is unknown because the type is γ (in line 1). The code first
saves the return address to the stack (in line 4). The type of the register r4
becomes α4 − 1 and the type of the memory becomes

{(α4 − 1) 7→ ∀α.| · |[{α 7→ γ} ⊗ ε](r4 : α) :: γ} ⊗ ε.

Next, the code sets new return address (rec fun ret) in the register r3
(in line 5 and 6). The type of the register r3 becomes

∀α4.| · |[{α4 7→ ∀α.| · |[{α 7→ γ} ⊗ ε](r4 : α) :: γ} ⊗ ε](r4 : α4).

Then, the code prepares for the recursive call by setting itself to the register
r1 (in line 7 and 8). The type of the register r1 becomes

∀.| · |[{α4 − 1 7→ ∀α.| · |[{α 7→ γ} ⊗ ε](r4 : α) :: γ} ⊗ ε]
(r4 : α4 − 1,
r3 : ∀α.| · |[{α 7→ ∀α.| · |[{α 7→ γ} ⊗ ε](r4 : α) :: γ} ⊗ ε](r4 : α)).

Last, the code jumps to itself (in line 9). The jmp instruction passes the
type check of TALK because the current memory type and the types of the
registers (r3 and r4) satisfy the required precondition specified in the label
type of the register r1.

After the return from the recursive function call (in line 13), the second
block is executed. From the label type of the second block (from line 10 to
12), the code assumes that the register r4 points to a memory stack whose
top element is a return address of the function. The code first pops out the
return address and prepares for the return (in line 14 and 15). The type of
the register r4 becomes α4 + 1, the type of the register r3 becomes

∀.| · |[{α4 + 1 7→ γ} ⊗ ε](r4 : α4 + 1),

and the type of the memory becomes

{α4 + 1 7→ γ} ⊗ ε.

Then, the code return to the return address (in line 16). The jmp instruction
passes the type check of TALK because the current memory type and the
type of the register r4 satisfy the required precondition specified in the
label type of the register r3.
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2.5.2 Simple memory management

In Section 2.3, we described how to implement memory stacks in TALK. In
this section, we show how to implement a more generic memory manage-
ment mechanism (i.e., malloc/free) in TALK. More specifically, we describe
very simple malloc/free code written in TALK.

From the viewpoint of type theory, memory is only a set of memory re-
gions and the memory regions are no more than arrays. In addition, man-
aging the memory is to change the types of the memory regions. Thus, the
memory management code is easily implemented in TALK, because the
type system of TALK supports the variable-length arrays and the strong
updates of the type of the memory region, as described in Section 2.2.

The memory allocation and deallocation algorithms shown below is not
so efficient, but they are sufficient to show the flexibility and expressiveness
of TALK.

Type of the free memory

Figure 2.31 represents the type of the free memory. It is a list of variable-
length arrays. Each element of the list is a tuple which has three elements.
First element holds a pointer to an array. The size of the array is stored
in second element of the tuple. Third element is a pointer to the next ele-
ment. The memory type inside the existential type (in line 2 and 3) indi-
cates that there exists a memory region which satisfies the memory type.
The type system of TALK ensures that all the memory regions encapsu-
lated in existential types are distinct each other. For example, memory type
{α1 7→ ∃β1.[{β1 7→ γ}] 〈β1〉} ⊗ {α2 7→ ∃β2.[{β2 7→ γ}] 〈β2〉} indicates that
α1, α2, β1 and β2 are different addresses. Strictly speaking, the definition
of the list in Figure 2.31 represents an infinite list because the definition
does not includes any list terminator. Therefore, it might be unrealistic be-
cause the free memory is finite. Section 2.6 explains how to extend the type
system of TALK in order to support variant types (or union types).

1 FreeMem1 ≡
2 µη.∃αmem , αsize , αnext . | · |[{αmem 7→ ∃β. 〈β〉 [αsize ]}⊗ {αnext 7→ η}]
3 〈αmem , αsize , αnext〉

Figure 2.31: Type of the free memory (list of variable-length arrays)
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Simple implementation of malloc

Figures 2.32 and 2.33 show a simple implementation of a memory allocator,
malloc1. For clarity, the syntax of instructions are slightly extended. In
addition, the arguments for the instructions are sometimes omitted. Fur-
ther, the apply instruction is omitted because it is straightforward.

1 ∀αsize , αfree , αstk , γ, ε. | · | [{αfree 7→ FreeMem1} ⊗ {αstk 7→ γ} ⊗ ε]
2 (r1 : αsize , r2 : αfree , r3 : ret t , r4 : αstk )
3 malloc1:

4 unroll αfree

5 unpack αfree

6 ld [r2 + 1], r5
7 ble r1, r5, malloc1_success
8 push r2, [r4]
9 push r3, [r4]

10 ld [r2 + 2], r2
11 movi malloc1_cont, r3
12 jmp malloc1

13 ∀αsize , αtag , αstk , αmem , α′size , αjunk , α, αfree , γ, ε. | · |
14 [{αtag 7→ 〈αmem , α′size , αjunk 〉}⊗ {αmem 7→ ∃β. 〈β〉 [α′size ]}⊗
15 {α 7→ ∃β. 〈β〉 [αsize ]} ⊗ {αfree 7→ FreeMem1}
16 {αstk − 2 7→ ret t :: αtag :: γ} ⊗ ε] (r1 : α, r2 : αfree , r4 : αstk − 2)

17 malloc_cont:
18 pop [r4], r3
19 pop [r4], r5
20 st r2, [r5 + 2]
21 mov r5, r2

22 pack αtag

23 roll αtag

24 jmp r3

Figure 2.32: Simple malloc implementation in TALK (1/2)

The code recursively traverses the free memory list until it finds the
array (memory region) whose size is greater than or equal to the requested
memory size. Then, it splits the array to the array of the requested memory
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size and the rest, and returns the allocated array and links the rest to the
free memory list.

The label type of malloc1 indicates that the function takes a free mem-
ory (FreeMem1 in line 1 of Figure 2.32) as an argument and returns an array
of the specified size (αsize in line 2). The type of the allocated array is spec-
ified in line 17 of Figure 2.33. Note that the return type of the function is
abbreviated as ret t .

The function first unrolls and unpacks the packed free memory list in
order to access its contents. Then, it checks whether the array of first ele-
ment of the given free memory list satisfies the requested size (in line 6 and
7 of Figure 2.32). If so, the function jumps to malloc1 success. Other-
wise, it tries the next element in the free memory list. First, it stores the
current element of the list and the return address on the stack (in line 8
and 9). Then, it calls itself recursively (in line 11 and 12). After the return
from the recursive call (label malloc1 cont), the function concatenates
the saved element with the returned free memory list (in line 19 and 20)
and returns it as the new free memory list (from line 21 to 24). Of course,
the array allocated by the recursive call is also returned. Here the stack type
ret t :: αtag :: γ in the memory type (in line 16) represents a stack whose
top element has the type ret t and the next element has the type αtag and
the rest is unknown (γ).

The code of malloc1 success first splits the array of the first element
of the given free memory list into the array of the requested size and the rest
(in line 6 of Figure 2.33). The split instruction passes the type check of
TALK because the type checker knows that the length of the array is greater
(or equal) than the requested size from the label type of malloc1 success
(in line 1). Then, it stores the information about the unused array and its
size in the first element (from line 7 to 12) and returns the allocated array
(from line 13 to 16).

Simple implementation of free

Figure 2.34 is a simple implementation of free. It is a bit peculiar because
the function takes not only an array to be freed, but also a tuple of three
elements which contains the information about the array (in line 2). This
is because we made the algorithm as simple as possible for ease of under-
standing. The code simply concatenates the given tuple to the given free
memory list along with the given array. The label type of free1 indicates
that the free array cannot be used any more because the array is deleted
from the memory type after the function return (in line 5).
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1 ∀αsize , αtag , αstk , αmem , α′size , αfree , γ, ε. |αsize ≤ α′size |
2 [{αtag 7→ 〈αmem , α′size , αfree〉} ⊗ {αmem 7→ ∃β. 〈β〉 [α′size ]}⊗
3 {αfree 7→ FreeMem1} ⊗ {αstk 7→ γ} ⊗ ε]
4 (r1 : αsize , r2 : αtag , r3 : ret t , r4 : αstk )
5 malloc1_success:

6 split αmem , αsize

7 ld [r2 + 1], r5
8 sub r1, r5, r6
9 st r6, [r2 + 1]

10 ld [r2], r5
11 add r1, r5, r6
12 st r6, [r2]
13 mov r5, r1

14 pack αtag

15 roll αtag

16 jmp r3

17 ret t ≡ ∀α, β. | · |[{α 7→ ∃β. 〈β〉 [αsize ]}⊗
18 {β 7→ FreeMem1} ⊗ {αstk 7→ γ} ⊗ ε] (r1 : α, r2 : β, r4 : αstk )

Figure 2.33: Simple malloc implementation in TALK (2/2)

1 ∀αtag , αfree , αmem , αsize , αjunk , ε. | · |
2 [{αtag 7→ 〈αmem , αsize , αjunk 〉 ⊗ {αmem 7→ ∃β. 〈β〉 [αsize ]}⊗
3 {αfree 7→ FreeMem1} ⊗ ε]
4 (r1 : αtag , r2 : αfree ,

5 r3 : ∀α.| · |[{α 7→ FreeMem1} ⊗ ε](r1 : α))
6 free1:
7 st r2, [r1 + 2]

8 pack αtag

9 roll αtag

10 jmp r3

Figure 2.34: Simple free implementation in TALK
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2.5.3 Simple multi-thread management

In this section, we describe how to implement a multi-thread management
mechanism in TALK on single CPU machines (SMP is out of the scope of
this thesis). At first glance, this seems to be impossible because TALK does
not take into account multi-thread execution environments as described in
Section 2.2, unlike other strictly typed languages that support multi-thread
mechanisms as language primitives, such as Java [60] and C# [59]. How-
ever, it is possible because, on single CPU machines, threads are emulated
by one single-thread of execution. For example, typical OS kernels and
threading libraries implement threads as the pairs of the program counter
and the memory stack. Then, switching threads can be implemented as
follows. First, they store the program counter and the stack pointer of the
running thread. Then, the address of the next thread stack is set to the stack
pointer and they jump to the program counter of the next thread.

The scheme of multi-threading mechanism shown in this section fol-
lows the above approach. When a running thread wants to stop and con-
text switch to another thread, the running thread calls the context switching
function. The function takes the return address (label) of the thread, that
is, the program counter of the thread. Next, it stores the return label on
the memory stack of the running thread, and switches from the stack of
the running thread to that of the thread to be run. Then, it loads the new
return address, that is, the program counter of the new thread from the top
of the stack. Last, it jumps to the loaded new return address. Thus, the
context switch is completed. The contents of the registers of the threads
can be saved before calling the context switch function, and restored after
returning from the function.

Figure 2.35 shows a very simple context-switching function written in
TALK. The type thd t represents the type of thread contexts (in line 13). It is
a tuple which contains only one element which holds a pointer to a stack.
As described in the memory type of thd t, the top element of the stack must
be a program counter whose type is pc t (in line 14). The rest of the stack
is unknown (γ), but it satisfies the precondition of the program counter.
(Note that integer constraints are omitted in this section, because they do
not matter.)

As specified in the label type of the function (from line 1 to 3), the func-
tion takes the thread context of the thread to be run as an argument. The
function switches execution context from the running thread to the thread
specified by the argument. In addition, the running thread needs to give
the return address (label) to the function. This is accomplished by pushing
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1 ∀αnext , αstk , γ, ε.

2 [{αnext 7→ thd t} ⊗ {αstk 7→ pc t :: γ} ⊗ ε]
3 (r1 : αnext , r4 : αstk )
4 context_switch:

5 unpack αnext with α′stk , γ
′

6 mov r4, r5
7 ld [r1], r4
8 st r5, [r1]
9 pop [r4], r3

10 pack αnext

11 apply r3 [αnext , α
′
stk + 1, γ′/α, β, γ]

12 jmp r3

13 thd t ≡ ∃α, γ.[{α 7→ pc t :: γ}] 〈α〉
14 pc t ≡ ∀α, β, γ.[{α 7→ thd t} ⊗ {β 7→ γ} ⊗ ε]
15 (r1 : α, r4 : β)

Figure 2.35: Example code of switching contexts without thread-local stor-
age
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the return address onto the stack of the thread (in line 2).
First, the function unpacks the thread context passed as the argument

(in line 5) in order to access its contents. Next, the function loads the stack
pointer of the new thread to register r4 (in line 7) and stores the stack
pointer of the current thread (in line 6 and 8). Then, it pops the program
counter of the new thread to register r3 (in line 9) and runs the new thread
by jumping to the program counter (in line 12) after re-packing the thread
context (in line 10) and instantiating the label type of the return address (in
line 11).

The code is type checked as follows. First, after unpacking the thread
context (in line 5), the memory type becomes

{αnext 7→
〈
α′stk

〉} ⊗ {α′stk 7→ pc t :: γ′} ⊗ {αstk 7→ pc t :: γ} ⊗ ε.

Next, after switching the thread contexts (in line 8), the memory type be-
comes

{αnext 7→ 〈αstk 〉} ⊗ {α′stk 7→ pc t :: γ′} ⊗ {αstk 7→ pc t :: γ} ⊗ ε,

and the type of the register r4 becomes α′stk , that is, the stack pointer points
to the new stack. Then, after popping the new program counter from the
new stack (in line 9), the type of the register r3 becomes pc t , the type of
the register r4 becomes α′stk + 1 and the memory type becomes

{αnext 7→ 〈αstk 〉} ⊗ {α′stk + 1 7→ γ′} ⊗ {αstk 7→ pc t :: γ} ⊗ ε.

Next, after re-packing the thread context (in line 10), the memory type be-
comes

{αnext 7→ thd t} ⊗ {α′stk + 1 7→ γ′} ⊗ ε.

Here the argument for the pack instruction is [αstk , γ|{αstk 7→ pc t :: γ}] as thd t .
Next, the label type of the return address is instantiated in line 11. Then,
the label type becomes

∀. [{αnext 7→ thd t} ⊗ {α′stk + 1 7→ γ′} ⊗ ε
] (
r1 : αnext ,r4 : α′stk + 1

)
.

The precondition indicated by the above label type is satisfied by the cur-
rent memory and registers type. Thus, the last jmp instruction is type
checked successfully.
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2.6 Variant type extension

In this section, we explain how to extend TALK for supporting variant
types. The easiest way to support variant types is directly introduce them
to the type system. However, the approach has a big problem: the values
that have the variant types cannot be created and manipulated directly by
the language. For example, let us suppose that the tuple type of TALK is
extended with the ML-type variant type. Then, the tuple that may contain
an integer or a pointer to an integer can be represented as follows:

Int of ∃β. 〈β〉 | IntPtr of ∃β. [{β 7→ 〈0〉}] 〈β〉 .

The problem is that the above type does not tell how to create and use the
values of Int and IntPtr. For example, let us suppose that we allow casts
from the type ∃β. 〈β〉 to the above variant type. Then, when accessing the
value of the variant type, we need to destruct the variant type and bring out
the original type as the pattern match of the ML languages [17]. However,
this is impossible in the operational semantics of TALK because we do not
know how the variant values are represented in the abstract machine and,
in fact, the abstract machine does not specify how to do that.

The naive solution to this problem is to fix the representation of the
variant values in the abstract machine [96]. For example, let us suppose
that we fix the representation of the values of the above variant type as
follows:

∃β. 〈0, β〉 | ∃β. [{β 7→ 〈0〉}] 〈1, β〉 .
Then, we can destruct the variant and bring out the original type by check-
ing whether the first element of the tuple is 0 or 1.

In this approach, however, the representation of the variant is limited
to the one specified by the type system. That is, to support another rep-
resentation, we need to extend the type system. This contradicts the goal,
designing a strictly typed language which is flexible and expressive enough
to implement memory management facilities.

To solve the problem, we generalize the above approach by exploiting
the integer constraints.

2.6.1 Types

Figure 2.36 shows the syntax of the extended types. The point is the in-
troduction of the precondition Ψ. The precondition (Ψ) is a set of pairs of
the integer constraints (C) and the memory type (Σ). If the precondition
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always contains only one pair, the extended type system is equal to the
original one described in Section 2.2.

(label type) lt ::= ∀∆.Ψ(Γ)
(type) τ ::= . . . | ∃∆.Ψτ | . . .
(precondition) Ψ ::= · | (|C| [Σ])Ψ

Figure 2.36: Extension of types

The label type is modified so that it specifies the precondition, instead
of directly specifying the integer constraints and the memory type. The
precondition of the label type means that the instructions of the label of the
label type are valid, that is, their execution never gets stuck for all the pairs
of the integer constraints and the memory type. In other words, if one pair
of the precondition of the label type is satisfied, we can safely jump to the
label that has the label type. For example, the following label type

∀α1, α2. (|α1 = α2| [{α1 7→ ∃β. 〈β〉}])
(|α1 6= α2| [{α1 7→ ∃β. 〈β〉} ⊗ {α2 7→ ∃β. 〈β〉}])

(r1 : α1,r2 : α2)

indicates the instructions that take two pointers to integers with the register
r1 and r2, but the pointers may alias, that is, refer to the same integer. The
first pair of the precondition indicates that the value of the register r1 is
equal to that of the register r2 and there exists one integer at the address
α1(= α2). The second pair indicates that the values of the register r1 and
r2 are distinct and there are two integers in the memory.

The existential type is also modified so that it specifies the precondition.
The precondition of the existential type means that there exists memory
regions that satisfy the memory type and the integer constraints specified in
one pair of the precondition. For example, the tuple that contains a pointer
to an integer or the null pointer (0) can be represented as follows:

∃α. (|α = 0| [·])(|α 6= 0| [{α 7→ ∃β. 〈β〉}]) 〈α〉 .
Here the first pair of the precondition indicates that if α = 0, then there
exists no memory encapsulated in the existential type. The second pair
indicates that if α 6= 0, then there exists an integer at the address α.

The strength of the extended type system is that we can specify the rep-
resentation of the variant types with the integer constraints. Thus, several

63



representations of the variant types can coexist in one type system. For
example, the tuple of the previous paragraph can be also represented as
follows:

∃αtag , α. (|αtag = 0| [·])(|αtag = 1| [{α 7→ ∃β. 〈β〉}]) 〈αtag , α〉 .

In this case, the tuple has the extra tag explicitly for representing the variant
type. Here the first pair of the precondition indicates that if the first element
of the tuple (the variant tag) is equal to 0, the tuple represents a null pointer.
The second pair indicates that if the variant tag is equal to 1, the tuple
represents a pointer to an integer. Further, the tuple can be represented
as follows:

∃α. (|α < 4096| [·])(|α ≥ 4096| [{α 7→ ∃β. 〈β〉}]) 〈α〉 .

In this case, the pointer is considered as a null pointer if the value is less
that 4096.

2.6.2 Abstract machine

The abstract machine is almost unchanged despite the extension of the
type. The only modification is that the coerce instructions for manipulat-
ing the existential packages are extended according to the extension of the
existential types. The extended syntax of the abstract machine is shown in
Figure 2.37.

(insts.) I ::= . . . | pack[c1,...,cn|Σ]as∃∆.Ψτ i; I | . . .

Figure 2.37: Extension of abstract machine

2.6.3 Instructions and operational semantics

Although the types and the abstract machine are modified, the operational
semantics of the abstract machine are unchanged. That is, the original in-
structions of TALK suffice for creating and manipulating the values of the
variant types. Strictly speaking, the pack and unpack instructions now
handle the extended existential types, but it does not affect the representa-
tion of their operational semantics.
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2.6.4 Typing rules

According to the extension of the types, the typing rules need to be ex-
tended in order to define the meanings of the extension formally. Fig-
ure 2.38 shows the extended typing rules for the states of the abstract ma-
chine.

Dom(P ) = Dom(Φ) ∀l ∈ Dom(P ).Φ(l) ≡ ∀∆.Ψ(Γ)
∀ |C| [Σ] ∈ Ψ.∆;Γ;C; Σ ` P (l)

` P : Φ
(PROGRAM)

∆;C ` t : τ ′ [c1, . . . , cn/∆′]
θ ≡ [c1, . . . , cn/∆′] τ ≡ ∃∆′.Ψτ ′

∃ |C ′| [Σ′] ∈ Ψ.if ∆;C |= C ′θ, then ` M : Σ′θ
∆;C ` pack[c1,...,cn|M ]as τ (t) : τ

(TUPLEPACK)

∀∆′.Ψ′ (Γ′) ≡ Φ(l) θ ≡ [c1, . . . , cn/∆′′]
Ψ′′ ≡ Ψ′θ Γ′′ ≡ Γ′θ
σ ≡ ∀∆′\∆′′.Ψ′′ (Γ′′)

∆; C ` l [c1, . . . , cn/∆′′] : σ
(VALUELABEL)

Figure 2.38: Extension of typing rules (machine state)

First, the typing rule PROGRAM is modified to consider the precondition
(Ψ). The typing rules states that the program P is well-formed if all the
instructions in P are well-formed according to the program type Φ. More
concretely, for all the labels l ∈ Dom(P ), the instructions P (l) are well-
formed under the label type Φ(l).

As discussed informally in Section 2.6.1, the difference from the original
typing rule is that the label type now contains the precondition Ψ. There-
fore, we need to check whether the instructions are well-formed under all
the pairs of the integer constraints and the memory types defined in the
precondition.

Then, the typing rule TUPLEPACK is also modified in order to handle
the precondition Ψ. The difference from the original typing rule is that the
existential type specifies the candidates of the memory types (and the inte-
ger constraints) that can be encapsulated. Thus, the typing rule is modified
so that it checks whether there exists one candidate that is satisfied by the
current assumption of the type checker.

Last, the typing rule VALUELABEL is slightly modified because of the
same reason as the typing rule PROGRAM.
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Well-formedness of instructions

Now we show how to extend the typing rules for instructions. First, we
describe the extension of the branch and jmp instructions (Figure 2.39).
Then, we explain the extension of the apply, pack and unpack instruc-
tions (Figure 2.40).

∆; Γ;C ` Γ (rd) = ∀.Ψ′ (Γ′)
C1 ≡ Γ (rs1) (=,≤)Γ (rs2)
C2 ≡ Γ (rs1) ( 6=, >)Γ (rs2)

C ′′ ≡ C ∧ C1

If ∆;C 6|= ¬C1, then ∃ |C ′| [Σ′] ∈ Ψ′.
∆; C ′′ |= C ′ ∆;C ′′ ` Σ = Σ′ ∆; C ′′ ` Γ ≤ Γ′

If ∆; C 6|= ¬C2, then ∆; Γ;C ∧ C2; Σ ` I

∆;Γ; C; Σ ` (beq,ble) rs1, rs2, rd; I
(BRANCH)

∆; Γ;C ` Γ (rd) = ∀.Ψ′ (Γ′)
∃ |C ′| [Σ′] ∈ Ψ′.

∆;C |= C ′ ∆; C ` Σ = Σ′ ∆;C ` Γ ≤ Γ′

∆;Γ; C; Σ ` jmp rd
(JUMP)

Figure 2.39: Extension of typing rules (instructions)

The most important difference of the typing rules BRANCH and JUMP

from their original counterparts is that the label type now specifies several
pairs of the memory types and the integer constraints and if one of the pairs
is satisfied by the current assumption of the type checker, the rule considers
that it is safe to jump to the label of the label type. This is because the typing
rule PROGRAM states that the instructions are well-formed under the all of
the pairs. Thus, both the BRANCH and JUMP typing rules chose one pair of
the memory type and the integer constraints from the precondition of the
target label type. Then, they check whether the current assumption (typing
context) satisfies the chosen memory type and the integer constraints.

Another important difference is that the typing rule BRANCH now ex-
plicitly omits the typing of the taken branch and the non-taken branch if
the conditions for the branches are apparently unsatisfiable according to
the current typing context. For example, let us assume that the type of the
register r1 is 1 and that of the register r2 is 2. Then, let us suppose that we
are type-checking the following code fragment:

ble r1, r2, branch
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...

The extended typing rule BRANCH omits the typing checking of the rest of
the instructions, because 1 > 2 is always unsatisfiable.

Strictly speaking, this omission is unnecessary, that is, the type system is
sound without it. The reason why the omission is introduced is for practical
reasons. The details are explained later.

Γ(r) ≡ ∀∆′.Ψ′ (Γ′)
θ ≡ [c1, . . . , cn/∆′′] Ψ′′ ≡ Ψ′θ Γ′′ ≡ Γ′θ
σ′f ≡ ∀∆′\∆′′.Ψ′′ (Γ′′) ∆; Γ{r 7→ σ′f}; C; Σ ` I

∆; Γ;C; Σ ` apply r [c1, . . . , cn/∆′′] ; I
(APPLY)

θ ≡ [c1, . . . , cn/∆′] ∃ |C ′| [Σ′] ∈ Ψ′.if ∆;C |= C ′θ,
then ∆; C ` Σ = Σ′′ ⊗ {i 7→ τθ} ⊗ Σ′θ

∆;Γ; C; Σ′′ ⊗ {i 7→ ∃∆′.Ψ′τ} ` I

∆;Γ;C; Σ ` pack[c1,...,cn|Σ′[c1,...,cn/∆′]]as∃∆′.Ψ′τ i; I
(PACK)

∆; C ` Σ = Σ′′ ⊗ {i 7→ ∃∆′.Ψ′τ} θ ≡ [∆′′/∆′]
∀ |C ′| [Σ′] ∈ Ψ′.∆∆′′; Γ; C ∧ C ′θ; Σ′′ ⊗ {i 7→ τθ} ⊗ Σ′θ ` I

∆; C; Σ ` unpack i with ∆′′; I
(UNPACK)

Figure 2.40: Extension of typing rules (coerce)

The typing rule APPLY is slightly modified so that it handles the precon-
dition Ψ contained in the label type. The rule instantiates the label type (in-
cluding the precondition) by substituting type variables, in the same way
as the original one.

The typing rule PACK is also modified in order to handle the extended
existential type. The rule checks whether there exists a pair of the mem-
ory type and the integer constraints that are satisfied by the memory to be
encapsulated in the precondition.

The typing rule UNPACK is largely modified because it needs to handle
all the pairs in the precondition. The rule first unpacks the existential type.
Then, it checks whether the rest of the instructions are well-formed for all
the pairs of the memory types and the integer constraints specified in the
precondition of the existential type.

For example, let us assume that the type of the memory is

{α 7→ ∃β.(|β = 0| [·])(|β 6= 0| [{β 7→ 〈0〉}]) 〈β〉}.
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The memory type indicates that there exists a pointer to an integer (0), or
a null pointer, at the address α. Then, let us suppose that the type checker
checks the code of Figure 2.41, where the type of the register r1 is α.

1 unpack α
2 ld [r1], r2
3 beq r2, 0, null_pointer_exception
4 ld [r2], r3

Figure 2.41: Example of the usage of the variant type

First, the unpack instruction unpacks the existential package. Then,
the memory type becomes

{α 7→ 〈β〉}
where β = 0, or

{α 7→ 〈β〉} ⊗ {β 7→ 〈0〉}
where β 6= 0. Therefore, the typing rule UNPACK checks the rest of the
instructions for each case.

If β = 0, the type checker ignores the second ld instruction according to
the typing rule BRANCH, because β 6= 0 is unsatisfiable from the current as-
sumption β = 0 (here we assume that the type of the label null pointer exception
specifies no preconditions, that is, we are always able to jump to the label).

If β 6= 0, the type checker checks the second ld instruction and it passes
the type check because the type of the register r2 is β and the memory type
indicates that there is an integer (0) at the address β.

Note that if the typing rule BRANCH does not omit the type checking
explicitly, the code of Figure 2.41 never passes the type check, because the
second ld instruction is ill-formed when β = 0 (there is nothing at the
address β). This is why the BRANCH typing rule explicitly omits the typ-
ing of the taken branch and the non-taken branch if the conditions for the
branches are unsatisfiable.

2.6.5 Equality rules

The equality rules are also extended according to the extension of the types
(Figure 2.42). As expected, the equality rules for the existential types and
the label types (EQEX and EXLABEL) are slightly modified because they
now contain the precondition Ψ. First, they check whether the precondi-
tions are equal or not with the rule EXPRE and/or EXPREEMPTY (explained
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later). Then, they check the equality of the rest of the types for all the pairs
of the precondition.

∆∆′; C ` Ψ1 = Ψ2

∀ |C ′| [Σ′] ∈ Ψ1.∆∆′; C ∧ C ′ ` τ1 = τ2

∆; C ` ∃∆′.Ψ1τ1 = ∃∆′.Ψ2τ2
(EQEX)

∆∆′; C ` Ψ1 = Ψ2

∀ |C ′| [Σ′] ∈ Ψ1.∆∆′;C ∧ C ′ ` Γ1 = Γ2

∆; C ` ∀∆′.Ψ1 (Γ1) = ∀∆′.Ψ2 (Γ2)
(EQLABEL)

∆; C ` · = · (EQPREEMPTY)

∆; C ` C1 = C2 ∆; C ∧ C1 ` Σ1 = Σ2

∆; C ` Ψ1 = Ψ2

∆; C ` (|C1| [Σ1])Ψ1 = (|C2| [Σ2])Ψ2
(EQPRE)

Figure 2.42: Extension of equality rules (types)

The equality of the preconditions is checked by the rule EQPREEMPTY

and EQPRE. The rule EQPREEMPTY states that the empty precondition is
equal to itself. The rule EQPRE first chooses one pair of the memory type
and the integer constraints from each precondition. Then, it checks whether
the chosen integer constraints are equal or not. In addition, it also checks
whether the chosen memory types are equal under the extended assump-
tion with the chosen integer constraints. Last, it checks the equality of the
rest of the preconditions. Note that the precondition is a set, that is, the
syntactic order is irrelevant, in the same way as the memory type.

2.7 Implementation

Based on the idea shown in Section 2.2, we implemented a TALK assem-
bler and a TALK type checker for the IA-32 [21] architecture. The TALK as-
sembler takes TALK code and emits binary executables annotated with the
TALK type information. The format of the binary executables are usual ELF
format. Therefore, they can be executed without any special runtime sup-
port. The TALK type checker takes the binary executables and type-checks
them. Because the type system of TALK includes integer constraints, the
type checker must be able to solve the constraints. To this end, we utilized
the algorithm of the Omega test [78]. The TALK assembler and the TALK
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type checker are available from the web site [91].
In this section, we describe how to map the real IA-32 architecture to

the abstract CPU architecture shown in Section 2.2. The TALK language
described in Section 2.2 is based on an abstract, virtual RISC CPU architec-
ture, but the IA-32 architecture is a complex and peculiar CISC architecture.
Thus, we need to make the connection between the real architecture and the
virtual architecture in order to type check IA-32 executables. Although the
correctness of the mappings explained in this section has not been proved
yet, we believe that it is straightforward.

2.7.1 Execution mode

Basically, the IA-32 architecture has three execution modes: real mode, pro-
tected mode and virtual 8086 mode.

In real mode and virtual 8086 mode, the features of the CPU are severely
limited, because, in these two modes, the CPU behaves as if it is an old 8086
CPU. For example, the largest memory size that can be handled by the
CPU is only 1M bytes. In addition, virtual memory facilities of IA-32 CPUs
are not available. Therefore, these two modes are rarely used by today’s
ordinary programs.

The only commonly-used program that is executed in real mode is a
boot loaders (or a system initialization program). When an IA-32 system
boots, its CPU runs in real mode. Then, the boot loader goes through the
complicated procedures to switch the execution mode from real mode to
protected mode.

The current implementation of TALK does not handle real mode and
virtual 8086 mode. Therefore, we cannot write boot loaders in TALK. Theo-
retically, we can extend the type system to support these two modes. How-
ever, we believe that it is not a good idea to complicated the type system for
supporting boot loaders, because they are hardly modified and executed
only once per system boot.

Protected mode further consists of two sub-execution modes: 16 bit
mode and 32 bit mode. In 16 bit mode, the largest memory size that can
be handled by the CPU is 16M bytes. Thus, 16 bit mode is also rarely-used
by today’s ordinary programs. Therefore, the current implementation of
TALK does not support 16 bit mode for the same reason as real mode and
virtual 8086 mode.

In the following, we describe how to map the IA-32 32 bit protected
mode to the abstract machine of Section 2.2.
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2.7.2 Registers

The IA-32 CPU has only 8 general purpose registers (eax, ecx, edx, ebx,
esi, edi, ebp, esp). Therefore, we need to fix the number of registers of
the abstract machine to 8. Apparently, this does not break the soundness of
the type system.

Other registers of IA-32 CPU, for example, floating-point registers and
control registers are not handled by the current implementation of TALK.
Although the floating-point arithmetic operations of IA-32 are fairly com-
plicated, we believe that supporting floating-point registers is not so hard,
because the operations are not used for pointer arithmetics.

One peculiar feature of the IA-32 architecture is that the general pur-
pose registers can be accessed partly. For example, the size of the general
purpose register eax is 32 bit, but we can access its lower 16 bits only by the
register ax. In addition, the higher 8 bits of the register ax can be accessed
by the register ah and the lower 8 bits can be accessed by the register al

The current implementation of TALK keeps track of the size of the gen-
eral purpose registers by its type system and it is prohibited to read the
register with a size which is different from the tracked one. For example,
the code of Figure 2.43 does not pass the type check. First, the code ini-
tializes the register eax with a 32 bit integer in line 1 (here we assume that
the size of the register ecx is also 32 bit). Thus, the type checker assumes
that the size of the register eax is 32 bit. Then, the code tries to read the
register eax by the register ax in line 2. Now, the type checker rejects the
read because the size of the access register ax, 16, is different from the size
of the register eax, 32.

1 mov %ecx, %eax
2 mov %ax, %dx // Type Error!

Figure 2.43: Example of accessing the part of the general purpose register
eax (ill-typed)

2.7.3 Instructions

As for instructions, the biggest difference between the IA-32 architecture
and the abstract machine of Section 2.2 is that the IA-32 instructions take
not more than 2 operands. For example, the arithmetic add instruction is
as follows:

71



add %eax, %ecx

The above instruction adds two integer values stored in the register eax
and ecx, and stores the result to the register ecx.

This difference does not affect the soundness of TALK, because two-
operand instructions are always representable with three-operand instruc-
tions. For example, the above add instruction is equal to the following
instruction:

add %eax, %ecx, %ecx

Another big difference is that the IA-32 instructions can take “memory
operands”, that is, directly access memory regions without using memory
load/store instructions explicitly. In other words, the IA-32 architecture has
no specific load/store instructions. For example, the following instruction
loads an integer value from the memory region specified by the register
eax, adds the value and another integer value stored in the register ecx,
and stores the result to the register ecx.

add (%eax), %ecx

This difference also does not affect the soundness of TALK, because the
instructions that access memory regions with the memory operands are
always representable with two instructions. For example, the above add
instruction is equal to the following instructions:

ld [%eax], %tmp
add %tmp, %ecx, %ecx

Here the register tmp is introduced to the abstract machine for storing the
loaded value temporarily. The introduction of the temporary register does
not break the soundness of TALK, because the number of the registers are
fixed (n = 9).

2.7.4 Memory addressing

As described above, the type system of TALK properly handles the IA-32
instructions that directly access the memory through the memory operands.
However, there is a subtle problem that should be addressed in the memory
operands of IA-32: memory addressing.

The memory addressing of IA-32 is somewhat complicated. The most
complex addressing is represented as the following expression:

rbase + nscale ∗ rindex + ndisp .
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Here rbase and rindex are general purpose registers. In addition, nscale and
ndisp are immediate values. Further, the possible value of nscale is 1, 2, 4,
or 8. On the other hand, the memory addressing of the abstract machine of
Section 2.2 is as follows:

rbase + ndisp .

Therefore, we need to bridge the gap between the two memory addressing
methods.

The difficulty is that rbase of the IA-32 addressing is not necessarily
equal to rbase of the addressing of the abstract machine. For example, to
access the 3rd element of the tuple that resides at the address α, the ad-
dressing in the abstract machine must be r + 2, where the type of the regis-
ter r is α. However, in the IA-32 architecture, the addressing may be r + 2,
where the type of r is α, r+r+2, where the type of r is α/2, or rb +2∗ri +2,
where the type of rb is 0 and the type of ri is α/2, and so on.

Theoretically, it is possible to figure out the values of the register rbase

and the displacement value ndisp from the memory addressing of the IA-
32 architecture. This is because the type system of TALK keeps separating
memory regions from each other. To be more precise, the memory regions
contained in the memory that is judged as “valid” by the typing rule of
TALK do not overlap each other. Therefore, each address of the memory
space resides in at most one memory region. Because the type checker
knows the start address and the size of each memory region, it is able to
find the memory region that contains the address specified in the memory
addressing. For example, let us suppose that the type of the memory is

{α 7→ 〈1, 2, 3〉},

and the type of the registers is

r1 : α + 1,r2 : 1.

Then, the memory addressing

r2+ 1 ∗ r1+ 0

exactly specifies the third element of the tuple at the address α.
From the practical viewpoint, however, finding one memory region

from a specified address is expensive because, at the worst case, the type
checker must examine all the memory regions, that is, perform bound checks
for all the memory regions with a constraint solver.

73



To solve the problem, the current implementation of TALK takes an ex-
tra argument for the memory addressing. The extra argument is the mem-
ory addressing of the abstract machine. Thus, the type checker is able to
find the memory region from the memory addressing of IA-32 (and the ex-
tra argument), because all the type checker has to do is check whether the
value of the memory address is equal to the value of the extra argument.
For example, the above memory addressing r2+1∗r1+0 can be annotated
with the extra argument α+2. Then, the type checker only checks whether

α + 2 = r2+ 1 ∗ r1+ 0.

2.7.5 Branch

In the abstract machine of Section 2.2, the branch instructions directly take
the arguments to be compared. However, the branch instructions of IA-32
do not take them. Instead, the IA-32 CPU remembers the result of the pre-
vious arithmetic operation, and it figures out if a branch should be taken or
not according to the stored result. For example, the following code jumps
to the address specified by the label branch if ecx ≥ eax (jae stands for
“jump if above or equal”).

sub %eax, %ecx
jae branch

To support the IA-32 branch instructions, the type system of TALK is
extended with one extra register (named flag) that holds the result of
the previous arithmetic instruction. For example, when type checking the
above code fragment, the type of the register ecx becomes (αc − αa) after
the sub instruction (here we assume that the initial types of the register eax
and ecx are αa and αc. In addition, the type system keeps track the value
as the type of the extra register. Then, the jae instruction is considered as
the following instruction.

ble 0, %flag, branch

2.8 Limitations

2.8.1 Generic graph data structures

The type system of TALK is flexible and expressive enough to implement
practical memory management code (e.g., malloc/free). However, it is not
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enough to efficiently implement all the data structures that can be repre-
sented in ordinary typed languages, because the type system of TALK re-
stricts pointer manipulation in some cases in order to keep track of alias-
ing relations between pointers. For example, generic graph data structures
including directed acyclic graphs and cyclic graphs cannot be represented
naturally in the type system of TALK. This is because once a memory region
is encapsulated inside an existential package, the region cannot be accessed
until the package is unpacked. For example, suppose that we represent the
type of nodes in the generic graph data structures as follows:

Node ≡
∃αnext . | · |[{αnext 7→ Node}] 〈αnext〉 .

In the representation, however, different two nodes cannot point to the
same node, because the two encapsulated memory regions must be dis-
tinct. That is, directed acyclic graphs cannot be implemented in the repre-
sentation. A naive workaround to the problem is to give up capturing the
structure of the graph in its type. For example, the following type can be
used to implement the generic graph with 10 nodes:

Graph ≡
∃αnext . |0 ≤ αnext < 10|[ ] 〈αnext〉 [10] .

It is only an array and each element of it represents a node in the graph.
Each node holds an integer (αnext ) which points to the next node in the
graph.

A proper solution to the problem is to extend the type system of TALK
so that the encapsulated memory regions inside existential packages can
be aliased. The apparent problem of the solution is that, if we allow arbi-
trary aliases in existential packages, the memory safety is easily violated.
We expect that the results of the previous works [62, 23, 31] in relaxing lin-
earity temporarily in the linearly-typed languages can be applicable to the
problem.

In addition, although we are able to implement malloc/free in TALK,
generic conservative garbage collectors cannot be implemented in TALK.
This is mainly because the current type system of TALK prohibits access-
ing the memory regions abstracted as memory type variables (ε). That is,
the garbage in the abstracted memory regions cannot be collected safely.
However, we still can implement functions that act like a garbage collector
by following the approach of [98].
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2.8.2 Race freedom on multi CPU machines

The type system of TALK is able to prevent the race conditions on sin-
gle CPU machines (see Section 3.2). On multi-CPU machines, however,
the memory safety, the control-flow safety and the race freedom cannot be
ensured by the current type system of TALK. There are two problems in
ensuring the safety properties on the multi-CPU machines.

First problem is that threads really run concurrently in the multi-CPU
environment. In the single-CPU environment, threads do not really run
concurrently, that is, they are emulated by a single thread. Therefore, it is
easy to represent their operational semantics because just a single-thread
semantics suffices. In the multi-thread environment, however, we need
to consider concurrency, non-determinism and so on in their semantics.
Therefore, it seems to be inevitable to adopt the approaches of process cal-
culus [69, 68, 41].

Second problem is that the memory consistency of real CPU architec-
tures is extremely complex. For example, suppose that three programs P,
Q and R are executed on three CPUs C, D and E, respectively. Now, let us
also suppose that the program P first wrote data to the address X, then the
program Q wrote data to the address Y. According to the IA-32 architecture
specification [21], the program R may see the write operations in reverse
order, that is, data is first written to the address Y, then written to the ad-
dress X. What is worse is that, even in the IA-32 architecture, the semantics
of the memory consistency varies according to the CPU types. Thus, it is a
challenging task to incorporate the complex memory consistency into the
type system.

2.8.3 Deadlock and livelock freedom

The current type system of TALK cannot ensure the deadlock freedom and
livelock freedom. For example, let us consider a simple function shown
in Figure 2.44 (written in C for clarity). The function first acquires a syn-
chronization lock in line 2, then it releases the lock before returning to its
caller in line 4. The function passes the type check of TALK, because it is
memory-safe and control-flow safe. However, it is apparent that the func-
tion may cause a deadlock if other threads try to acquire the lock because
the function enters an infinite loop without releasing the held lock (in line
3).

The function of Figure 2.44 is too simple, so it seems to be easy to de-
tect possible deadlocks by slightly extending the type system, but it is an
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1 void Deadlock(void) {
2 Lock();
3 while (1);
4 Unlock();
5 }

Figure 2.44: A function that may cause a deadlock

illusion. To see why preventing deadlocks is difficult, consider the function
of Figure 2.45, provided that the function SomeFunc is defined elsewhere
and well-typed. The only difference from the function of Figure 2.44 is that
the function of Figure 2.45 calls the function SomeFunc instead of directly
entering an infinite loop. It may cause a deadlock if SomeFunc runs forever
without releasing the held lock. That is, in order to prevent deadlocks, the
type system must check whether SomeFunc will terminate or not. Unfor-
tunately, however, this is an undecidable problem for Turing-complete lan-
guages, like TALK. One naive workaround is to prohibit backward jumps
and function calls after acquiring synchronization locks. This approach,
however, severely limits expressiveness and usefulness of the language, so
it is impractical.

1 void Deadlock2(void) {
2 Lock();
3 SomeFunc();
4 Unlock();
5 }

Figure 2.45: Another function that may cause a deadlock

Preventing livelocks by the type system is harder than deadlocks, be-
cause it is almost the same as trying to verify fairness of thread schedulers.

2.8.4 Resource usage safety

Resource usage safety is the property that a program accesses a resource in
a specified manner. For example, on the UNIX system, files must be first
opened, then closed at the end. Between the open and the close, the files can
be read and/or written any number of times. For another example, TCP
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client sockets on the UNIX system must be first created, then connected to
the server, and closed at the end of communication. Between the connect
and the close, we can transmit and/or receive data with the sockets any
number of times. The resource usage safety is also useful for ensuring the
correctness of device drivers, because each device has its own semantics or
procedure for correct operation.

The current type system of TALK cannot ensure the resource usage
safety because it has no concern with how resources are accessed. Thus,
the correctness of device drivers cannot be ensured in TALK, though their
memory safety and control-flow safety are ensured. However, the type
system can be extended to support the resource usage safety based on
the previous works for ensuring the resource usage safety by type sys-
tems [54, 24, 95]. In fact, the current type system of TALK is able to en-
sure a simple form of the resource usage safety. For example, the proper
usage of spin locks (that is, they must be acquired first, then released) can
be enforced by the type system of TALK (see Section 3.2.4 for details).
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Chapter 3

A prototype OS kernel written
in TALK

Using the TALK assembler, we implemented a prototype OS kernel for the
IA-32 architecture in TALK. The kernel provides a memory management
facility, a multi-thread management facility and a very basic device control
facility.

More specifically, the memory management facility takes control of al-
most all the available memory on the system and provides functions that
allocate memory regions from the memory and deallocate them. The func-
tions are used by other part of the kernel, as well as user programs (see
Section 3.1 for details).

The multi-thread management facility provides functions that create a
new thread, exit the running thread and yield the CPU to other threads.
It also provides a mechanism for synchronizing threads in order to avoid
race conditions (see Section 3.2 for details).

The current device control facility only provides device drivers that
manage the video display and the keyboard of the system. In theory, other
hardware devices (e.g., hard disk drives and network interfaces) can be
supported without any problem.

As for user programs, the current kernel implementation does not pro-
vide a dynamic loading of the user programs. Moreover, it does not pro-
vide separate virtual address space for them because it never updates the
page table after its initialization in order to ensure the memory safety and
the control-flow safety (see Section 3.3 for details). Therefore, the user pro-
grams must be linked statically to the kernel. In addition, they must be
written in TALK, otherwise the safety of the kernel cannot be ensured.
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For booting the kernel, we utilize the GNU GRUB boot loader [37]. In
addition, some peculiar boot procedures (e.g., segment preparation) are
written in the untyped IA-32 assembly language. Except for them, the ker-
nel is completely written in TALK. The size of the kernel is about 1700 lines
of TALK code. It takes about 0.9 seconds to type-check the whole kernel on
the Pentium 4 (3 GHz) processor with 1 GB RAM. The prototype OS kernel
is available from the web site [91].

The rest of this chapter describes the implementation details of the ker-
nel. Note that the examples shown in this chapter are written in TALK of
Section 2.2 for ease of understanding. The real implementation is written
in TALK for IA-32 of Section 2.7.

3.1 Memory management

The implementation described in the previous chapter (Section 2.5.2) meets
the minimum requirements for malloc/free, but it is too simple for practi-
cal use. For example, after the several allocation and deallocation, the free
memory will be fragmented. This section shows a more practical and com-
plex implementation.

3.1.1 Type of the free memory

Figure 3.1 represents the type of the free memory. It is a list of variable-
length arrays. Each element of the list is a variable-length array and a tuple
which has two elements. The size of the array is stored in second element
of the tuple. First element of the tuple is a pointer to the next element of
the list.

1 FreeMem2 ≡
2 µη [αself ] .∃αnext , αsize , αmem . |αmem = αself + 2|
3 [{αmem 7→ ∃β. 〈β〉 [αsize ]} ⊗ {αnext 7→ η (αnext)}]
4 〈αnext , αsize〉

Figure 3.1: Type of the free memory (list of variable-length arrays)

The difference from the type of the previous chapter (Figure 2.31) is
that it makes the free memory itself (the variable-length arrays) and its
header information (the tuples) adjacent, in order to avoid memory frag-
mentation. More concretely, the recursive type that represents the free
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memory list takes one argument. This one argument is used to represent
the address of the free memory (tuple) in its the type. For example, the
type of the free memory which resides in the address α is described as
{α 7→ FreeMem2 (α)}. Then, let us suppose that the free memory type is
unrolled once. Then, the memory type becomes

{α 7→ ∃αnext , αsize , αmem .|αmem = α + 2|
[{αmem 7→ ∃β. 〈β〉 [αsize ]} ⊗ {αnext 7→ FreeMem2 (αnext)}]
〈αnext , αsize〉}.

From the memory type above, we know that the tuple (at α) and the variable-
length array (at αmem inside the existential package) are adjacent by the
integer constraint specified in the existential type (αmem = α + 2).

3.1.2 Implementation of malloc

Figures 3.2 and 3.3 show an implementation of malloc. As in the previ-
ous chapter, the syntax of instructions are slightly extended. In addition,
the apply instruction and the arguments for the pack, unpack and roll
instructions are omitted for clarity.

As the simple implementation of malloc in the previous chapter, the
code traverses the free memory list until it finds the array (memory region)
whose size satisfies the requested size. If the array is found, the code splits
the array into the array of the requested size and the rest. While the sim-
ple implementation in the previous chapter takes the top-half of the array,
this implementation takes the bottom-half of the array in order to keep the
adjacency of the header and the free memory region.

The label type of malloc2 indicates that the function takes a free mem-
ory (FreeMem2 in line 2 of Figure 3.2) as an argument and returns an array
of the specified size (αsize in line 3). The type of the allocated array is spec-
ified in line 16 of Figure 3.3. Note that the return type of the function is
abbreviated as ret t .

The function first unrolls and unpacks the packed free memory list in
order to access its contents. Then, it checks whether the array of first ele-
ment of the given free memory list satisfies the requested size (in line 7 and
8 of Figure 3.2). If so, the function jumps to malloc2 success. Otherwise,
it tries the next element in the free memory list. First, it stores the current
element of the list and the return address on the stack (in line 9 and 10).
Then, it calls itself recursively (from line 11 to 13). After the return from the
recursive call (the instructions of the label malloc2 cont), it concatenates
the saved element with the returned free memory list (in line 22 and 23)
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1 ∀αsize , αfree , αstk , γ, ε. | · |
2 [{αfree 7→ FreeMem2 (αfree)} ⊗ {αstk 7→ γ} ⊗ ε]
3 (r1 : αsize , r2 : αfree , r3 : ret t , r4 : αstk )
4 malloc2:

5 unroll αfree

6 unpack αfree

7 ld [r2 + 1], r5
8 ble r1, r5, malloc2_success
9 push r2, [r4]

10 push r3, [r4]
11 ld [r2], r2
12 movi malloc2_cont, r3
13 jmp malloc2

14 ∀αsize , αtag , αstk , αjunk , α
′
size , αmem , α, β, γ, ε. |αmem = αtag + 2|

15 [{αtag 7→ 〈αjunk , α
′
size〉} ⊗ {αmem 7→ ∃β. 〈β〉 [α′size ]}⊗

16 {α 7→ ∃β. 〈β〉 [αsize ]} ⊗ {β 7→ FreeMem2 (β)}
17 {αstk − 2 7→ ret t :: αtag :: γ} ⊗ ε]
18 (r1 : α, r2 : β, r4 : αstk − 2)

19 malloc2_cont:
20 pop [r4], r3
21 pop [r4], r5
22 st r2, [r5]
23 mov r5, r2

24 pack αtag

25 roll αtag

26 jmp r3

Figure 3.2: Implementation of malloc in TALK (1/2)
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and returns it as a new free memory list (from line 24 to 26). Of course, the
array allocated by the recursive call is also returned. Here the stack type
ret t :: αtag :: γ in the memory type (in line 17) represents a stack whose
top element has type ret t and next element has type αtag and the rest is
unknown (γ).

1 ∀αsize , αtag , αstk , αfree , α
′
size , αmem , γ, ε. |αsize ≤ α′size ∧ αmem = αtag + 2|

2 [{αtag 7→ 〈αfree , α
′
size〉} ⊗ {αmem 7→ ∃β. 〈β〉 [α′size ]}⊗

3 {αfree 7→ FreeMem2 (αfree)} ⊗ {αstk 7→ γ} ⊗ ε]
4 (r1 : αsize , r2 : αtag , r3 : ret t , r4 : αstk )
5 malloc2_success:

6 split αmem, (α′size − αsize)

7 ld [r2 + 1], r5
8 sub r1, r5, r6
9 st r6, [r2 + 1]

10 mov r2, r5
11 add 2, r5, r5
12 add r6, r5, r1

13 pack αtag

14 roll αtag

15 jmp r3

16 ret t ≡ ∀α, β. | · |[{α 7→ ∃β. 〈β〉 [αsize ]}⊗
17 {β 7→ FreeMem2 (β)} ⊗ {αstk 7→ γ} ⊗ ε]
18 (r1 : α, r2 : β, r4 : αstk )

Figure 3.3: Implementation of malloc in TALK (2/2)

The code of malloc2 success first splits the array of the first element
of the given free memory list into the array of the requested size and the
rest (in line 6 of Figure 3.3). As described above, it allocates the memory
from the bottom half of the array of the free memory region. The split
instruction passes the type check of TALK because the type checker knows
that the length of the array is greater (or equal) than the requested size from
the label type of malloc success (in line 1). Then, it rewrites the infor-
mation about the unused array and its size in the second element (from line
7 to 9) and returns the allocated array (from line 10 to 15).
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3.1.3 Implementation of free

Figure 3.4 is an implementation of free. First, the code converts the first two
elements of the array to be freed into a tuple of size 2 (from line 7 to 11).
Next, it initializes the tuple by the information of the address of the array
to be freed and its size (from line 12 to 14). Then, it concatenates the tuple
to the given free memory list along with the rest of the array. Last, it packs
and rolls the tuple in order to make the tuple have the type FreeMem2 .
Specifically, in line 15, the type of the memory is

{αmem 7→ 〈αfree , αsize − 2〉}
⊗{αmem + 2 7→ ∃β. 〈β〉 [αsize − 2]}
⊗{αfree 7→ FreeMem2 (αfree)} ⊗ ε.

Next, by the pack instruction, the type becomes

{αmem 7→ ∃βnext , βsize , βmem .|βmem = αmem + 2|
[{βmem 7→ ∃β. 〈β〉 [βsize ]}⊗
{βnext 7→ FreeMem2 (βnext)}]

〈βnext , βsize〉} ⊗ ε.

Here the argument for the pack instruction is

[αfree , αsize − 2, αmem + 2|
{αmem + 2 7→ ∃β. 〈β〉 [αsize − 2]} ⊗ {αfree 7→ FreeMem2 (αfree)}]

(and the existential type itself). Then, by the roll instruction, the memory
type becomes

{αmem 7→ FreeMem2 (αmem)} ⊗ ε.

Here the argument for the roll instruction is FreeMem2 (α1). Thus, the
function return in line 17 passes the type check of TALK, because the mem-
ory type satisfies the precondition specified in the label type of the register
r3.

The freed memory cannot be accesses any more after the function re-
turn, because the array is removed from the memory type specified in the
label type (in line 5).

3.1.4 Defragmentation

In addition to the implementation of malloc and free, this section describes
the implementation of defrag, which defragments the memory regions frag-
mented by the series of malloc and free.
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1 ∀αmem , αfree , αsize , ε. |αsize > 2|
2 [{αmem 7→ ∃β. 〈β〉 [αsize ]}⊗
3 {αfree 7→ FreeMem2 (αfree)} ⊗ ε]
4 (r1 : αmem , r2 : αfree ,r4 : αsize ,

5 r3 : ∀α.| · |[{α 7→ FreeMem2 (α)} ⊗ ε](r1 : α))
6 free2:

7 split αmem , 2
8 split αmem , 1
9 unpack αmem

10 unpack αmem + 1
11 tuple concat αmem , αmem + 1
12 st r2, [r1]
13 sub 2, r4, r4
14 st r4, [r1 + 1]

15 pack αmem

16 roll αmem

17 jmp r3

Figure 3.4: Implementation of free in TALK
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The implementation of defrag is shown in Figures 3.5, 3.6 and 3.7. The
code takes a free memory list as an argument (in line 2 of Figure 3.5), de-
fragments it, and returns it to the caller (in line 24 of Figure 3.7). The code
assumes that the free memory list is sorted in ascending order with respect
to the addresses of the memory regions, but the code never goes wrong
if an unsorted memory list is passed. The sorting of free memory lists is
straightforward, so the implementation is not shown in this thesis.

1 ∀αfree , αstk , γ, ε. | · |
2 [{αfree 7→ FreeMem2 (αfree)} ⊗ {αstk 7→ γ} ⊗ ε]
3 (r1 : αfree ,r3 : ret t ,r4 : αstk )
4 defrag:

5 unroll αfree

6 unpack αfree

7 ld [r1], r2
8 push r3, [r4]
9 movi defrag_cont, r3

10 jmp defrag_aux

11 ∀αfree , αstk , γ, ε. | · |
12 [{αfree 7→ FreeMem2 (αfree)} ⊗ {αstk − 1 7→ ret t :: γ} ⊗ ε]
13 (r1 : αfree ,r4 : αstk − 1)
14 defrag_cont:
15 pop [r4], r3
16 jmp r3

Figure 3.5: Implementation of defrag in TALK (1/3)

The code first unrolls and unpacks the free memory list in order to ac-
cess its contents (in line 5 and 6 of Figure 3.5). Then, it calls the auxil-
iary function (defrag aux of Figure 3.6) that takes the first memory re-
gion of the free memory list and the rest as arguments, and checks whether
the first memory region is adjacent to the second memory region. If so,
defrag aux concatenates the two memory regions.

Specifically, the code of defrag aux first calls the defrag function re-
cursively (in line 9 and 10 of Figure 3.6) in order to defragment the rest of
the free memory list. Careful readers might notice that the recursive call
never returns because the free memory list is infinite in this presentation.
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1 ∀αtag , αfree , αsize , αstk , αmem , γ, ε. |αmem = αtag + 2|
2 [{αtag 7→ 〈αfree , αsize〉} ⊗ {αmem 7→ ∃β. 〈β〉 [αsize ]}
3 ⊗{αfree 7→ FreeMem2 (αfree)} ⊗ {αstk 7→ γ} ⊗ ε]
4 (r1 : αtag ,r2 : αfree ,r3 : ret t ,r4 : αstk )
5 defrag_aux:
6 push r1, [r4]
7 push r3, [r4]
8 mov r2, r1
9 movi defrag_aux_cont, r3

10 jmp defrag

11 ∀αtag , αfree , αsize , αstk , αmem , γ, ε. |αmem = αtag + 2|
12 [{αtag 7→ 〈αfree , αsize〉} ⊗ {αmem 7→ ∃β. 〈β〉 [αsize ]}
13 ⊗{αfree 7→ FreeMem2 (αfree)} ⊗ {αstk − 2 7→ ret t :: αtag :: γ} ⊗ ε]
14 (r1 : αfree ,r4 : αstk − 2)

15 defrag_aux_cont:
16 mov r1, r2
17 pop [r4], r3
18 pop [r4], r1
19 ld [r1 + 1], r5
20 add 2, r5, r5
21 add r1, r5, r5
22 beq r5, r2, defrag_concat

23 pack αtag

24 roll αtag

25 jmp r3

Figure 3.6: Implementation of defrag in TALK (2/3)

87



Here we do not care the infinity for ease of understanding the example.
After the recursive function call (in line 15), the code checks whether

the first memory region and the second memory region are adjacent or not
(from line 19 to 22). If they are not, the code simply returns the free memory
list after packing and rolling it (from line 23 to 25). If they are adjacent, the
code jumps to defrag concat of Figure 3.7.

The code of defrag concat first unrolls and unpacks the second mem-
ory region. Next, it concatenates the first memory region, the second mem-
ory region and the header of the second memory region (from line 8 to line
18). Along with the concatenation, the code collects the information about
the concatenated memory region (from line 8 to 10, and from line 14 to 16).
Then, the header of the first memory region is updated with the collected
information so that the header reflects the newly created memory region
(in line 19 and 20). Last, the code returns the free memory list to the caller
after packing and rolling it.

3.1.5 Handling finite free memory

The implementation described so far assumes that the free memory is in-
finite. However, in a realistic situation, it is finite because the size of the
physical memory is finite. This section describes how to handle the finite
free memory in TALK.

Free memory list

The type of the free memory list now has the terminator by utilizing the
extension for supporting variant types (explained in Section 2.6) in order to
realize finite lists. Figure 3.8 shows the type definition. The precondition
clause of line 3 indicates the list terminator. More specifically, if αnext = 0
(that is, the first element of the tuple of line 6 is 0), then there exists no
following element any more as indicated by the type of the encapsulated
memory inside the existential type of line 2.

A subtle problem of the type definition of Figure 3.8 is that it does not
match the free memory list passed by the BIOS program to the initial ker-
nel routine. Therefore we need to convert the passed free memory list.
Although the conversion itself is easy, we cannot write it in TALK because
the free memory list passed by the BIOS adopts the 64-bit addressing, while
TALK for IA-32 supports only the 32-bit addressing. Thus, the initial kernel
routine written in an ordinary untyped IA-32 assembly language converts
it after initializing the segment and paging mechanisms.
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1 ∀αtag , αfree , αsize , αstk , αmem , γ, ε. |αmem = αtag +2∧αfree = αmem +αsize |
2 [{αtag 7→ 〈αfree , αsize〉} ⊗ {αmem 7→ ∃β. 〈β〉 [αsize ]}
3 ⊗{αfree 7→ FreeMem2 (αfree)} ⊗ {αstk 7→ γ} ⊗ ε]
4 (r1 : αtag ,r2 : αfree ,r3 : ret t ,r4 : αstk )
5 defrag_concat:

6 unroll αfree

7 unpack αfree with α′next , α
′
size , α

′
mem

8 ld [r2 + 1], r5
9 add 2, r5, r5

10 ld [r2], r2

11 tuple split αfree , 1
12 pack αfree

13 pack αfree + 1
14 ld [r1 + 1], r6
15 add r6, r5, r5

16 concat αfree , αfree + 1, 1
17 concat αfree , αfree + 2, α′size
18 concat αmem , αfree , (αsize + 2 + α′size)
19 st r2, [r1]
20 st r5, [r1 + 2]

21 pack αtag

22 roll αtag

23 jmp r3

24 ret t ≡ ∀α. | · |{α 7→ FreeMem2 (α)} ⊗ {αstk 7→ γ} ⊗ ε]
25 (r1 : α, r4 : αstk )

Figure 3.7: Implementation of defrag in TALK (3/3)
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1 FreeMem ≡
2 µη [αself ] .∃αnext , αsize , αmem .

3 (|αnext = 0 ∧ αmem = αself + 2| [{αmem 7→ ∃β. 〈β〉 [αsize ]}])
4 (|αnext 6= 0 ∧ αmem = αself + 2|
5 [{αmem 7→ ∃β. 〈β〉 [αsize ]} ⊗ {αnext 7→ η (αnext)}])
6 〈αnext , αsize〉

Figure 3.8: Type of the free memory (finite list of variable-length arrays)

Memory allocation

The core algorithm of malloc does not change from Section 3.1.2. The
only non-trivial difference is error-handling. If the memory region of the
requested size cannot be allocated from the free memory list, malloc must
indicate it to the caller. Therefore, the label type of malloc is changed
as Figure 3.9 (its implementation is also changed slightly according to the
type). The precondition clause of the label type of the return address (in line
4) indicates the error case. More specifically, if α = 0, that is, the register r1
is 0, then the memory type after malloc (in line 4) is almost the same as
that of before malloc (in line 2), that is, no memory regions are allocated
from the free memory list.

1 ∀αsize , αfree , αstk , γ, ε. | · |
2 [{αfree 7→ FreeMem(αfree)} ⊗ {αstk 7→ γ} ⊗ ε]
3 (r1 : αsize , r2 : αfree , r3 : ret t , r4 : αstk )
4 ret t ≡ ∀α, β.(|α = 0| [{β 7→ FreeMem(β)} ⊗ {αstk 7→ γ} ⊗ ε])
5 (|α 6= 0| [{α 7→ ∃β. 〈β〉 [αsize ]}⊗
6 {β 7→ FreeMem(β)} ⊗ {αstk 7→ γ} ⊗ ε])
7 (r1 : α, r2 : β, r4 : αstk )

Figure 3.9: The label type of malloc

Concretely speaking, if sufficient memory regions are not found in the
free memory list, malloc calls defrag in order to make the free memory
regions (in the free memory list) as large as possible. Then, it retries the
allocation. If it fails again, malloc gives up and returns 0 to the caller for
indicating the request is unsatisfiable.
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3.2 Multi-thread management

In this section, we show how to implement practical multi-thread manage-
ment mechanisms in TALK. First, we describe how to implement thread-
local storage by showing a context-switching function. Then, we explain
how to create, schedule, and synchronize threads.

In the current implementation of the kernel, threads are represented as
pairs of a memory stack and the pointer to it. Therefore, all the code of
the multi-thread management mechanisms is completely written in TALK
(except for the initialization of the very first thread).

3.2.1 Context switching function with thread-local storage

Although the context-switching function shown in the previous chapter
(Section 2.5.3) works, it has one problem; it does not support thread-local
storage. In the implementation, the running thread and the thread to be
run must have the same memory type (except for their stacks). That is, all
the memory is shared by all the threads on the system.

The code in Figure 3.10 is a more practical context-switch function that
solves the problem by explicitly handling the thread-local storage. The or-
dinary instructions are unchanged from the implementation of Figure 2.35.
Only the types and the arguments for the coerce instructions are changed.

In the memory type specified in the label type of the instructions (from
line 1 to 3), the memory type variable εg represents the memory shared by
all threads and the memory type variable εl represents the thread-local stor-
age. thd t ensures the thread-locality of εl because it encapsulates the mem-
ory represented by εl into the existential type (in line 13). Thus, the thread-
local storage of a thread cannot be accessed directly by other threads.

The code is type checked as follows. First, after unpacking the thread
context (in line 5), the memory type becomes

{αnext 7→
〈
α′stk

〉} ⊗ {α′stk 7→ pc t :: γ′} ⊗ {α4 7→ pc t :: γ} ⊗ εg ⊗ εl ⊗ ε′l.

Then, after switching the thread contexts (in line 8), the memory type be-
comes

{αnext 7→ 〈α4〉} ⊗ {α′stk 7→ pc t :: γ′} ⊗ {α4 7→ pc t :: γ} ⊗ εg ⊗ εl ⊗ ε′l.

and the type of the register r4 becomes α′stk . Then, after popping the new
program counter from the new stack (in line 9), the type of the register r3
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1 ∀αnext , αstk , γ, εg, εl.

2 [{αnext 7→ thd t} ⊗ {αstk 7→ pc t :: γ} ⊗ εg ⊗ εl]
3 (r1 : αnext , r4 : αstk )
4 context_switch:

5 unpack αnext with α′stk , γ
′, ε′l

6 mov r4, r5
7 ld [r1], r4
8 st r5, [r1]
9 pop [r4], r3

10 pack αnext

11 apply r3 [αnext , α
′
stk + 1, γ′, ε′l/α, β, γ, εl]

12 jmp r3

13 thd t ≡ ∃α, γ, εl.[{α 7→ pc t :: γ} ⊗ εl] 〈α〉
14 pc t ≡ ∀α, β, γ, εl.[{α 7→ thd t} ⊗ {β 7→ γ} ⊗ εg ⊗ εl]
15 (r1 : α, r4 : β)

Figure 3.10: Example code of switching contexts with thread-local storage

becomes pc t , the type of the register r4 becomes α′stk + 1 and the memory
type becomes

{αnext 7→ 〈α4〉} ⊗ {α′stk + 1 7→ γ′} ⊗ {α4 7→ pc t :: γ} ⊗ εg ⊗ εl ⊗ ε′l.

Next, after packing the thread context (in line 10), the memory type be-
comes

{αnext 7→ thd t} ⊗ {α′stk + 1 7→ γ′} ⊗ εg ⊗ ε′l.

Here the argument for the pack instruction is [α4, γ, εl|{α4 7→ pc t :: γ} ⊗ εl] as thd t .
Next, the label type of the return address is instantiated in line 11. Then,
the label type becomes

∀. [{αnext 7→ thd t} ⊗ {α′stk + 1 7→ γ′} ⊗ εg ⊗ ε′l
] (
r1 : αnext ,r4 : α′stk + 1

)
.

Now the precondition indicated by the above label type is satisfied by the
current memory and registers type. Thus, the last jmp instruction is type
checked successfully.
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3.2.2 Creating threads

Creation of threads is almost the same as allocation of memory stacks. The
thread creation routine of the kernel takes a code label which represents
an entry point of the thread and an integer which represents a size of the
thread stack as arguments. Then, it allocates a stack of the specified size by
malloc and initializes it using the specified entry label. Then, the created
thread is appended to a run queue which is just a linked list of threads.
Figure 3.11 shows the type of the thread creation routine and Figure 3.12
shows the type of the run queue (a linked list of threads).

1 ∀αsize , αfree , αstk , γ, εgεl. | · |
2 [{αfree 7→ FreeMem(αfree)} ⊗ {αstk 7→ γ} ⊗ εg ⊗ εl]
3 (r1 : αsize , r2 : αfree , r3 : ret t , r4 : αstk , r5 : ent t)
4 ret t ≡ ∀α, β.(|α = 0| [{β 7→ FreeMem(β)} ⊗ {αstk 7→ γ} ⊗ εg ⊗ εl])
5 (|α 6= 0| [{α 7→ thd t}⊗
6 {β 7→ FreeMem(β)} ⊗ {αstk 7→ γ} ⊗ εg])
7 (r1 : α, r2 : β, r4 : αstk )
8 thd t ≡ ∃α, γ, εl.[{α 7→ pc t :: γ} ⊗ εl] 〈α〉
9 pc t ≡ ∀α, β, γ, εl.[{α 7→ thd t} ⊗ {β 7→ γ} ⊗ εg ⊗ εl]

10 (r1 : α, r4 : β)

Figure 3.11: The label type of the thread creation routine

1 ThdList ≡
2 µη. ∃αnext , αthd .

3 (|αnext = 0| [{αthd 7→ thd t}])
4 (|αnext 6= 0| [{αthd 7→ thd t} ⊗ {αnext 7→ η}])
5 〈αnext , αthd 〉

Figure 3.12: Type of the run queue (finite list of threads)

Initializing the first thread As explained above, the thread creation rou-
tine is written in TALK, except for the creation of the very first thread. At
first glance, the routine seems to be able to create it because there is no dif-
ference between it and other threads. However, it is impossible because
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malloc used by the routine for creating a thread stack requires a memory
stack. That is, malloc cannot be used without a thread context. There-
fore, the routine for the first thread creation is written in the untyped IA-32
assembly language.

3.2.3 Scheduling threads

To schedule threads, all the kernel has to do is to take one thread from
the run queue and let the taken thread run by using the context-switching
function of Section 3.2.1. The current thread scheduler adopts a simple
FIFO scheduling policy, that is, it takes a top thread from the run queue,
runs it by context-switching it and the current thread, and appends the
old-current thread to the run queue. The type of the scheduler is shown in
Figure 3.13.

1 ∀αcur , αthds , αstk , γ, εgεl. | · |
2 [{αcur 7→ ∃α. 〈α〉} ⊗ {αthds 7→ ThdList} ⊗ {αstk 7→ γ} ⊗ εg ⊗ εl]
3 (r1 : αcur , r2 : αthds , r3 : ret t , r4 : αstk )
4 ret t ≡ ∀α, β.| · |
5 [{α 7→ ∃α. 〈α〉} ⊗ {β 7→ ThdList} ⊗ {αstk 7→ γ} ⊗ εg ⊗ εl]
6 (r1 : α, r2 : β, r4 : αstk )

Figure 3.13: The label type of the thread scheduler

Note that the type of the scheduler indicates that the memory type
never changes while calling the routine, that is, the routine seems to do
nothing from the viewpoint of its caller.

The type itself, however, does not ensure that there will be no starvation
condition, that is, the threads in the run queue will be executed eventually.
For example, the type can be satisfied by a null function which does noth-
ing. From the viewpoint of multi-thread management, the null function
is regarded as a valid scheduler which always selects the running thread.
Therefore, to prove starvation-freedom, we must refine the type system of
TALK, or use other formal methods (e.g., model checkers and proof assis-
tants), but it is out of the scope of this thesis.
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3.2.4 Synchronizing threads

Using the thread scheduler described above and the variant type extension
of TALK, a simple synchronized data structure for synchronizing threads
can be implemented as shown in Figure 3.14. The data structure is a simple
tuple of size 2. The first element (αlocked ) represents a synchronization lock
for another tuple pointed by the second element (α). If αlocked = 0, the data
structure is not locked. Otherwise, it is locked. As shown in the type of the
memory encapsulated in the existential type, the tuple at the address α is
hidden from programs, that is, they cannot access it.

1 SynchData ≡ ∃αlocked , α.

2 (|αlocked = 0| [{α 7→ 〈α〉}])
3 (|αlocked 6= 0| [ ])
4 〈αlocked , α〉

Figure 3.14: Type of a simple synchronized data structure

1 ∀αsynch , αstk , γ, ε. |·|
2 [{αsynch 7→ SynchData} ⊗ {αstk 7→ ret t :: γ} ⊗ ε]
3 (r1 : αsynch , r4 : αstk )
4 lock:

5 unpack αsynch

6 ld [r1], r3
7 bne 0, r3, lock_failed
8 st 1, [r1]
9 pop [r4], r3

10 jmp r3

11 ret t ≡ ∀α, αstk .

12 [{αsynch 7→ 〈1, α〉} ⊗ {α 7→ 〈α〉} ⊗ {αstk 7→ γ} ⊗ ε]
13 (r4 : αstk )

Figure 3.15: An example routine for locking synchronized data (1/2)

Figures 3.15 and 3.16 show an example routine for locking the synchro-
nized data. The type of the return address (ret t) indicates that the tuple en-
capsulated in the synchronized data is available for the caller of the routine
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1 ∀αsynch , αlocked , α, αstk , γ, ε. |αlocked 6= 0|
2 [{αsynch 7→ 〈αlocked , α〉} ⊗ {αstk 7→ ret t :: γ} ⊗ ε]
3 (r1 : αsynch , r4 : αstk )
4 lock_failed:

5 pack αsynch

6 push r1, [r4]
7 push lock_failed_cont, [r4]
8 jmp scheduler

9 ∀αsynch , αstk , γ, ε. |·|
10 [{αsynch 7→ SynchData} ⊗ {αstk 7→ αsynch :: ret t :: γ} ⊗ ε]
11 (r4 : αstk )
12 lock_failed_cont:
13 pop [r4], r1
14 jmp lock

Figure 3.16: An example routine for locking synchronized data (2/2)

(in line 12), that is, the routine returns to the caller only after the synchro-
nized data is locked. The routine of Figure 3.15 first unpacks the synchro-
nized data (in line 5) and checks whether it is locked or not (in line 7). If the
synchronized data is not locked, the routine rewrites the lock variable (in
line 8) and returns to the caller (in line 9 and 10). If the synchronized data
is locked, it jumps to the routine of Figure 3.16. The routine first packs the
synchronized data (in line 5) and calls the thread scheduler (in line 7 and
8) which satisfies the label type of Figure 3.13, that is, it makes the running
thread yield to other threads. After the thread is rescheduled, the routine
tries again by jumping to the routine of Figure 3.15.

Figure 3.17 shows an example routine for unlocking the locked data.
First, the routine clears the lock (in line 5) and packs the data (in line 6).
Then, it just returns to the caller (in line 7 and 8). The label type of the
routine indicates that the tuple 〈α〉 at the address α is encapsulated to the
type SynchData after the routine, that is, the synchronized data is unlocked.
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1 ∀αsynch , αlocked , α, αstk , γ, ε. |αlocked = 1|
2 [{αsynch 7→ 〈αlock , α〉} ⊗ {α 7→ 〈α〉} ⊗ {αstk 7→ ret t :: γ} ⊗ ε]
3 (r1 : αsynch , r4 : αstk )
4 unlock:
5 st 0, [r1]

6 pack αsynch

7 pop [r4], r3
8 jmp r3

9 ret t ≡ ∀αstk .

10 [{αsynch 7→ SynchData} ⊗ {αstk 7→ γ} ⊗ ε]
11 (r4 : αstk )

Figure 3.17: An example routine for unlocking synchronized data

3.3 Boot procedures

Generally speaking, boot procedures of systems require dynamic program
loading and self-rewriting code. For example, typical IA-32 systems first
execute a special program called BIOS (The BIOS program is typically hard-
wired to the systems as ROM). Then, the BIOS program searches a disk
drive (including hard disk drives and optical drives) which contains a valid
boot sector, which is part of an operating system. The problem is that the
size of the boot sector is limited to 512 bytes. Therefore, if the size of the
OS kernel is larger than 512 bytes, the program in the boot sector must
load other part of the OS kernel to the memory of the system (i.e., dynamic
program loading). In addition, the memory image of the initial boot sector
is typically useless, after the kernel is fully loaded to the memory. Thus,
the typical OS kernel reuses the memory occupied by the boot sector as
free memory (i.e., self-rewriting code).

Because the TALK type system does not support the dynamic program
loading or self-rewriting code currently, we give up writing the boot pro-
cedure in TALK and use the GRUB boot loader [37], which is one of the
most popular boot loaders. One benefit of using GRUB is that we do not
need to care about the complex boot procedures, because GRUB can load
whole kernel image from disk drives and place it in the memory of the sys-
tem. Another benefit is that it provides useful debug information to the
kernel developers. For example, GRUB warns users if the kernel image to
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be loaded is invalid with respect to the specification [38] defined by GRUB.
Theoretically, it is not impossible to extend the type system of TALK

in order to support the dynamic program loading and the self-rewriting
code. The extension becomes important when considering kernel modules.
Loading the kernel modules into the kernel is just the dynamic program
loading, and unloading them is easier than the self-rewriting code.

3.3.1 IA-32 specific boot procedures

As described above, we use the GRUB boot loader for loading whole ker-
nel image to the memory. Thus, large part of burden of the boot proce-
dures is shifted from the kernel to GRUB. However, there still remain con-
fusing procedures that are peculiar to the IA-32 architecture. This section
describes the remaining procedures. As expected, they cannot be written
in TALK.

Segments The worst thing of the IA-32 architecture is the segmented mem-
ory model. The memory model of IA-32 consists of two memory models
(In fact, three, if we consider the paging mechanism described later). At the
lowest level, the memory is flat in the sense that memory addressing is rep-
resented as just one integer. For example, the memory addressing with the
integer 10000 will access the 10000th byte data in the memory (if it exists).
This “flat memory model” is very simple and natural. Therefore, almost
all the current CPU architectures adopt the flat model. The type system of
TALK also assumes the flat memory model as described in Section 2.2.

However, on the IA-32 CPUs, programs cannot directly see the flat
memory because there exists an extra memory model over the flat memory
model. In the extra memory model, the memory consists of “segments”.
Each segment is a contiguous memory region. In the memory model, mem-
ory addressing is a pair of a segment selector, which specifies a segment in
the memory, and an offset into the segment specified by the segment selec-
tor.

All the segments in the memory are mapped to the underlying flat
memory by the tables called GDT (Global Descriptor Table) and LDT (Lo-
cal Descriptor Table). The kernel must prepare GDT (LDT is optional) and
pass it to the CPU. For example, suppose that the kernel sets GDT so that a
segment whose size is 10000 bytes is mapped to the address 20000 of the flat
memory model. Then, the memory addressing that specifies the offset 1000
into the segment is automatically converted to the flat memory addressing
21000 by the CPU.
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Thus, what the kernel has to do first is prepare GDT (and LDT). Other-
wise, the kernel cannot make any valid memory access, because the mem-
ory model that programs can use on IA-32 CPUs is only the segmented
memory model. In fact, the segmented memory model can be disabled vir-
tually by setting GDT so that a segment whose size is 4GB (= the largest
memory address of the flat memory model) is mapped at the address 0 of
the flat memory model. Then, the offset into the address becomes equal
to the address of the flat memory model. Even so, the kernel still needs to
prepare GDT for virtually disabling the segmented memory model.

What is worse is that the existence of the paging (virtual memory) mech-
anism. The paging mechanism of the IA-32 architecture can be enabled
only after GDT is configured properly. Therefore, after enabling the paging,
the kernel must reconfigure GDT. This is because the paging mechanism
introduces another flat memory model between the segmented memory
model and the flat memory model.

We believe that it is useless (though not impossible) to extend the type
system of TALK for supporting these historical relics. Thus, the part of the
kernel that initializes GDT (twice) is not written in TALK. Because Intel and
other industry companies, such as IBM, Microsoft and AMD, are working
for establishing a standard for more cleaner boot procedures [20, 34], the
bizarre characteristic will be resolved in the near future.

Surprisingly enough, the procedures described above for the segment
memory model is only half of the story. The GRUB boot loader deals with
the other half (including transition from 16-bit execution mode to 32-bit
execution mode).

Paging Unlike the segments, the paging mechanism (or the virtual mem-
ory mechanism) of IA-32 is almost a standard one. When the paging is
enabled, the virtual flat memory space is stacked on the physical flat mem-
ory space. The mapping between the virtual memory space and the phys-
ical memory space is specified with page tables. Thus, the kernel needs to
prepare the page tables before enabling the paging mechanism.

The peculiarity of the IA-32 paging mechanism is that it supports dif-
ferent kinds of page table formats. For example, the simplest format is just
a standard two-level page table. In the format, the page size is fixed to
4KB. Another format is also almost a two-level page table, but it supports
the 4MB page, as well as the 4KB page. In addition to these two-level page
table formats, IA-32 supports three-level page tables in order to handle big
physical memory (64GB or above).
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Currently, the kernel utilizes the simplest page table format (two-level
and 4KB pages) for the ease of implementation. At the boot time, the kernel
initializes a page table so that it maps the physical memory address 0 to the
virtual memory address 0xc0000000. (The value 0xc0000000 itself has no
special meaning. We just followed the design decision of the Linux kernel.)
Therefore, the kernel cannot handle big memory larger than 1GB, but it is
sufficiently large for the prototype implementation. The initialization of
the page table is currently not written in TALK.

Once the page table initialized, the memory region in which the page
table resides is completely hidden from the TALK programs by the type
system, because the current kernel does not support user processes, so it
is unnecessary to manipulate the initialized page table. More specifically,
the memory type of the initial TALK routine does not contain the memory
region. Thus, the memory safety is ensured because the flat memory model
assumption of TALK is never violated by erroneous page table manipula-
tions.

3.4 Device drivers

The current kernel includes simple video and keyboard drivers that are
written in TALK. This section describes their implementation.

At first glance, writing device drivers in typed programming languages
seems to be difficult because there exist many kinds of devices and each of
them has different characteristics. On reflection, however, what the de-
vice drivers do basically is to transfer data from the memory of the system
to the devices and/or vice versa, no matter how the devices behave intri-
cately. Therefore, it is not so difficult to write them in TALK and ensure
their memory and control-flow safeties with the type check of TALK.

3.4.1 Video driver

The video system of the IA-32 system (more precisely, the PC/AT system)
is based on memory-mapped I/O. That is, for drawing a dot, a line, and/or
a character on the screen of the system, all the video driver has to do is to
write data to a special memory region which is mapped to VRAM (video
ram) of the video device. The current video system of PC/AT supports
various display resolutions (from 320 x 200 pixels to 7680 x 4800 pixels)
and color depths (from 1 bpp to 32 bpp), but the current video driver of the
kernel supports only a simple graphic mode which is the default of BIOS. In
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theory, other graphic modes can be easily supported without any problem.
More specifically, the graphic mode that the current video driver sup-

ports can display 80 x 25 characters in up to 16 colors on the screen of size
640 x 200 pixels. Its video memory is mapped to the address 0xb8000 and
its size is 4000 bytes (= 80 x 25 x 2). To print a character, all the video driver
has to do is just to write two bytes in the video memory. The first byte spec-
ifies the character and the second byte specifies the attributes (foreground
and background colors, blinking and intensity). For example, to print ‘A’
with white (foreground color) and black (background color) at the location
(12, 8) on the screen, the driver has to write the value 41 (which represents
‘A’ in ASCII code) to the address 0xb8518 and the value 7 to the address
0xb8519.

Figure 3.18 shows a routine which prints a character on the screen. The
memory type (in line 2) indicates that the video memory is located at the
address 0xb8000 and the type of the video memory is represented as the
array of size 4000. (Note that we assume the size of each array element is 1
byte in this example.) From the viewpoint of programs, the video memory
is almost the same as ordinary physical memory. Therefore, it is natural
to represent the video memory as a fixed-length array. First, the routine
takes a character to be printed and its location on the screen as arguments
(in line 3). The integer constraints of its label type ensures that the location
is surely inside the video memory (in line 1). Then, the routine calculates
the corresponding address in the video memory from the specified loca-
tion (from line 5 to 7). Next, it splits the video memory in order to access
the calculated memory address (from line 8 to 10). Then, it unpacks the
two bytes chopped off with split (in line 11 and 12). Next, it writes the
specified character data to the calculated address and the attribute value
7 to the next address (from line 13 to 15). It makes the video device print
the character with white (foreground color) and black (background color)
on the screen. Then, it restores the video memory to its original array type
with pack and concat (from line 16 to 20). Last, it returns to the caller (in
line 21 and 22).

3.4.2 Keyboard driver

In the PC/AT system, keyboards are controlled by KBC (keyboard con-
troller) named 8042. KBC is connected to CPU with I/O ports. Therefore,
we first explain them.

The I/O ports can be regarded as a particular kind of memory. For ex-
ample, if a CPU writes data to an I/O port, the data is transparently trans-
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1 ∀αc , αx , αy , αstk , γ, ε. |0 ≤ αx < 80 ∧ 0 ≤ αy < 25|
2 [{0xb8000 7→ ∃α. 〈α〉 (4000)} ⊗ {αstk 7→ ret t :: γ} ⊗ ε]
3 (r1 : αc , r2 : αx , r3 : αy , r4 : αstk )
4 print_char:
5 mul r3, 160, r3
6 add r2, r3, r2
7 add r2, 0xb8000, r2

8 split 0xb8000, αoff

9 split 0xb8000+ αoff , 2
10 split 0xb8000+ αoff , 1
11 unpack 0xb8000+ αoff

12 unpack 0xb8000+ αoff + 1
13 st r1, [r2]
14 add r2, 1, r2
15 st 7, [r2]

16 pack 0xb8000+ αoff

17 pack 0xb8000+ αoff + 1
18 concat 0xb8000+ αoff , 0xb8000+ αoff + 1, 1
19 concat 0xb8000+ αoff , 0xb8000+ αoff + 2, 3998− αoff

20 concat 0xb8000, 0xb8000+ αoff , 4000− αoff

21 pop [r4], r3
22 jmp r3

23 αoff ≡ αx + αy ∗ 160
24 ret t ≡ ∀αstk .[{0xb8000 7→ ∃α. 〈α〉 (4000)} ⊗ {αstk 7→ γ} ⊗ ε]
25 (r4 : αstk )

Note that we assume that the size of the existential package (∃α. 〈α〉) is 1
byte in this example.

Figure 3.18: A routine which prints a character on the screen
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fered to the device connected to the port. In addition, if a device writes data
to an I/O port, a CPU can read the data from it. Therefore, the semantics
of the I/O ports are different from one device to another. To cope with the
diversity, the type system of TALK for IA-32 handles the I/O ports con-
servatively. More specifically, it assumes that data written to I/O ports are
forgotten, that is, successive reads for the I/O ports may not see the written
data. In addition, the type system makes some I/O ports are read-only or
write-only, according to the specification of the devices.

KBC of the IA-32 system interacts with keyboards as follows. If a key is
pressed or released, a keyboard notifies KBC. Then, KBC writes the infor-
mation of the key and whether it is pressed or released, into the I/O port of
the address 0x60. Next, KBC writes its status information which indicates
that there is new available data, into the I/O port of the address 0x64. Last,
KBC interrupts CPU to announce that the status of KBC has been changed.

As expected from the above description of KBC, all the keyboard driver
has to do is to read the I/O port 0x64 to get the status of KBC, then read the
I/O port 0x60 to get the information about the key pressed or released, if
the KBC status indicates that there is new data. Thus, the keyboard driver
is written completely in TALK. One problem of the current implementation
of the keyboard driver is that it performs polling, that is, it reads the I/O
port 0x64 periodically. This is because the type system of TALK does not
directly support interrupts.
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Chapter 4

Related work

4.1 Hardware protection

4.1.1 Microkernel

Traditional approaches of trying to ensure safety of OS kernels utilize pro-
tection mechanisms of CPU hardware. For example, microkernels [1, 40, 85,
7, 44, 16, 30, 63] try to minimize trusted computing base by executing OS
components in non-privileged protection domains enforced by CPU hard-
ware, as much as possible. For example, in the Mach [1] operating system,
device drivers, file systems and part of virtual memory managers can be
executed in the user-mode of CPU. For another example, in the approach
of Exokernel [30], device drivers, file systems, part of virtual memory man-
agers, interprocess communication mechanisms and thread schedulers can
be executed in the user-mode.

The strength of the approach of microkernels is that we need not to en-
sure and/or verify safety of OS components executed in the non-privileged
protection domains because it is ensured by the protection mechanism of
CPU.

On the other hand, there are four problems in the microkernel approach.
First, even in microkernel systems, basic memory management and multi-
thread management code are executed in a privileged protection domain.
Therefore, their memory and control-flow safety cannot be ensured at all.
Second, the approach can detect errors of the OS components executed in
the non-privileged protection domains at runtime, but cannot prevent them
from failing. For example, suppose that a file system driver executed in the
user-mode makes an invalid memory access. Then, CPU detects the error
and lets the microkernel kill the driver. Thus, the kernel is surely protected
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from the error, but users cannot access files managed by the driver any-
more. Third, the cost of communication between protection domains, that
is, the microkernel and the OS components executed in the non-privileged
protection domains, is not negligible. For example, in the early version of
Mach 3 operating system, overall performance was degenerated up to 66%
compared to a traditional kernel. L4 microkernel [63] dramatically reduced
the performance degeneration of the microkernel approach [45], but it sac-
rifices safety of the microkernel and still adds a little overhead. Forth, the
unit of the protection domains of CPU is sometimes too coarse to protect
data. For example, in the IA-32 architecture [21], the unit is 4 KB basically.
That is, a 4 KB protection domain may be required to protect 1 byte data,
in the worst case. Mondriaan Memory Protection [100] can manage protec-
tion domains at the granularity of machine words, but there exists no CPUs
that implement Mondriaan Memory Protection so far.

The approach of this thesis does not suffer these problems. First, the
type system of TALK is expressive and powerful enough to write memory
management and multi-thread management code. Therefore, their mem-
ory safety and control-flow safety is ensured by the type check of TALK.
Second, programs that pass the type check of TALK never cause runtime
errors. Third, the approach does not incur any runtime overhead because
the type check of TALK is performed statically, not at runtime. Forth, the
unit of protection is sufficiently fine-grained because the type system of
TALK can handles byte data. The disadvantage of the approach, compared
to the microkernel approach, is that programs must be built with TALK.
Thus, it is difficult to directly apply the approach to existing programs.

Note that the approach of this thesis does not depend on any hardware
protection mechanism. Therefore, it can be applied to limited computing-
environments that lack the hardware protection mechanisms, such as em-
bedded systems.

4.1.2 Virtualization

Virtualization [15, 28, 99, 5, 13, 79] is a technique that creates virtual ma-
chines (VM) on real hardware by software [13, 79] or combination of soft-
ware and hardware assists [15, 28, 99, 5, 22]. The VMs are carefully con-
trolled by a privileged program called virtual machine monitor (VMM) so
that programs cannot notice whether they are running in the real hardware
or not. For example, Bochs [13] creates VMs by emulating IA-32 CPU in
a pure software approach. The VMM of Bochs is just an IA-32 interpreter
which runs in the user-mode of CPU. For another example, VMware [28]
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and Xen [5] creates VMs by utilizing the protection mechanism of the IA-32
architecture. Basically, the VMM of VMware and Xen is a controller of the
protection mechanism which must be run in the kernel-mode.

The good point of the virtualization is that, even if a program in a VM
behaves badly and crashes the VM, other VMs and the real hardware are
not affected. Therefore, safety of the real hardware are ensured by running
OSes in VMs without verifying their safety.

The problem of the virtualization is that it cannot prevent runtime er-
rors from occurring, as in the case of the microkernel approach. In fact, the
argument about the microkernel is applicable to the approach of virtualiza-
tion by substituting VMM for microkernel. In addition, the cost of running
many VMs on the real hardware is considerable.

4.2 Model checking

Model checking is a method of formally verifying finite models of pro-
grams according to specified formal specifications. To put it bluntly, what
model checking does is to execute the target program, trace all the pos-
sible states of the execution and checks whether the specified property is
satisfied. Thus, in theory, model checking can verify any safety property,
including the memory safety and the control-flow safety, though it is semi-
algorithm because target programs may have infinite states in their execu-
tion. In practice, however, it does not make much sense because it is noth-
ing more than finding bugs in a program by executing it. That is, the naive
model checking cannot be applied to large programs because of the state
explosion problem. Therefore, existing model checkers (e.g., [51, 4, 48])
abstracts the program states and the transition between them (that is, ex-
ecution) in order to avoid the state explosion. The disadvantage of the
abstraction is that it limits the range of safety properties that are verifiable.
Note that, despite the effort of the abstraction, existing model checkers still
face with the state explosion problem. Therefore, the cost of verification
(CPU time and memory consumption) tends to be considerably larger than
that of the type checking of TALK. The rest of this section describes three
existing model checkers.

SPIN SPIN [51] is a model checker for distributed programs (e.g., pro-
cesses and threads in OS) which can verify linear temporal logic (LTL)
properties of them. For example, it can verify deadlock and livelock free-
dom of programs. Thus, as for the comparison of verifiable safety proper-
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ties, the SPIN model checker seems to be superior to the approach of this
thesis, at first glance. However, there are two problems in its approach.

First problem is that it can only handle programs written in the PROMELA
programming language [51]. Therefore, to verify programs written in other
languages, they must be translated to PROMELA first. This means that
the soundness of the verification depends on the correctness of translation.
That is, if there is a bug in the translation, we cannot believe the result of
the verification at all. From another standpoint, it can be said that the SPIN
model checker gives up the task of the abstraction and delegates its burden
to its users. FeaVer [52] includes an assist tool for abstracting C programs
to PROMELA, but it does not guarantee the correctness of the abstraction.

Second problem is that, though LTL properties can be verified, it cannot
verify the memory safety of programs. This is because PROMELA itself is a
memory-safe language. PROMELA is designed for expressing the inherent
parallel nature of distributed programs. Therefore, it does not even have
a dynamic memory allocation mechanism in order to simplify problems.
In sum, to verify LTL properties of OS with the SPIN model checker, its
memory safety must be verified by other means first, for example, with the
approach of this thesis.

SLAM SLAM [4] is a model checker which can verify safety properties
of C programs. We first explain the expressiveness of the SLAM model
checker by usage examples. To verify some property, the property must be
represented in the SLIC specification language.

For example, Figure 4.1 shows an example SLIC specification for proper
usage of spin locks. First, the state of a spin lock is specified from line 1 to
4. It consists of two constant values (Locked and Unlocked) and its initial
state is Unlocked. Then, the transition rule of the state is specified from
line 6 to 11 and from line 13 to 18. If the lock acquire function Lock is called
and the state is Unlocked, the state changes to Locked (in line 10). If the
state is Locked, the execution is aborted (in line 8). In addition, if the lock
release function Unlock is called and the state is Locked, the state changes
to Unlocked (in line 17). If the state is Unlocked, the execution is aborted
(in line 15).

Next, suppose that we are trying to verify the program of Figure 4.2.
The SLAM model checker translates the specification of Figure 4.1 and
the program of Figure 4.2 into one integrated C program as shown in Fig-
ure 4.3. Then, it checks whether the label SLIC ERROR is reachable or not
in the C program.
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1 state {
2 enum { Unlocked = 0, Locked = 1 }
3 state = Unlocked;
4 }
5
6 Lock.return {
7 if (state == Locked)
8 abort;
9 else

10 state = Locked;
11 }
12
13 Unlock.return {
14 if (state == Unlocked)
15 abort;
16 else
17 state = Unlocked;
18 }

Figure 4.1: An example SLIC specification for proper usage of spin locks

1 void example (void) {
2 Lock();
3 Unlock();
4 }

Figure 4.2: A simple C code which accesses spin locks
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1 enum { Unlocked = 0, Locked = 1 }
2 state = Unlocked;
3
4 void slic_abort() {
5 SLIC_ERROR: ;
6 }
7
8 void Lock_return (void) {
9 if (state == Locked)

10 slic_abort();
11 else
12 state = Locked;
13 }
14
15 void Unlock_return (void) {
16 if (state == Unlocked)
17 slic_abort();
18 else
19 state = Unlocked;
20 }
21
22 void example (void) {
23 Lock();
24 Lock_return();
25 Unlock();
26 Unlock_return();
27 }

Figure 4.3: A C code which is generated by SLAM

109



As shown in the above examples, what the SLAM model checker does
is just to solve the reachability problem of single thread programs. There-
fore, the safety properties that can be verified by SLAM are not so complex.
For example, deadlock and livelock freedom cannot be checked by SLAM.
In fact, the type system of TALK is able to ensure the proper usage of spin
locks shown in the above examples (see Section 3.2.4). Of course, the ex-
pressiveness of SLIC specification is strictly greater than that of the type
system of TALK because the general reachability problem is undecidable
while the type check of TALK is decidable. However, the gap is not so
large unlike that of the SPIN model checker. We expect that the gap can be
largely eliminated by integrating the type system of resource usage analy-
sis [54, 55] into TALK.

In addition to the limited expressiveness, a big problem of the SLAM
model checker is that it cannot verify the memory safety and the control-
flow safety of C programs. It assumes that the memory safety and the
control-flow safety are verified by other means, for example, with the ap-
proach of this thesis. Moreover, pointer arithmetic is largely restricted in
the SLAM model checker. Therefore, it cannot verify properties of memory
management code, because the code exploits complex pointer arithmetic.

Further, note that the C programming language is surely a low-level
language, but there still exists a large gap between it and assembly/machine
languages. That is, the result of the SLAM model checker is only applica-
ble to the binary executables only if the C compiler used to generate them
is correct. However, it is really hard to verify the correctness of compilers.
On the other hand, in the approach of this thesis, the TALK type checker is
able to type-check programs at the level of binary executables.

The rest of the verification algorithm is as follows. First, it extracts an
abstract model (called boolean programs), by using the theorem provers
Simplify [26] and Vampyre [12], from the target program, according to a
set of predicates. The set is just an empty set at first, but refined as the
algorithm proceeds. Next, it searches a path which reaches an error state on
the abstract model. If the path is not found, it means that the target program
satisfies the specification. Otherwise, it checks whether the found path is
real or not, according to the target program. If the path is real, it means that
the target program does not satisfies the specification. Otherwise, it refines
the predicates and retries from the extraction of an abstract model.

Despite the above abstraction, the SLAM model checker is still consid-
erably slow. For example, [3] shows that it takes 98 seconds to verify a
floppy device driver which is 6500 lines of C code (the experimental envi-
ronment is unknown because [3] does not mention it). This is because it

110



sometimes requires an exponential number of calls to the theorem provers.
Thus, its running time is dominated by the cost of theorem proving.

BLAST BLAST [48] is another model checker which can verify safety
properties of C programs. In fact, the safety properties that can be veri-
fied by the BLAST model checker are almost the same as that of the SLAM
model checker, because its specification language is almost the same as that
of SLAM (aside from its surface syntax), the specification written in the lan-
guage is woven into the target C program, what the model checker really
does is just to solve the reachability problem, and its verification algorithm
(an abstract-check-refine loop) is basically the same as SLAM. Thus, the ar-
gument about the SLAM model checker is also applicable to the BLAST
model checker.

One advantage of BLAST is its smart abstraction technique, called lazy
abstraction. The point is that, when refining an abstract model with the
refined abstract predicates, it refines only the part of the abstract model
that the refinement of the predicates affects, not the whole abstract model.
Thanks to the lazy abstraction, the number of calls to the theorem provers
is largely reduced. However, it is still significantly slow in some cases.
For example, [47] shows that it takes about 0.5 to 429 seconds to verify the
proper usage of spin locks for programs of about 20000 lines of C code, on
a 700 MHz Pentium III processor with 256 MB RAM.

4.3 Verification with proof assistants

The most straightforward approach to ensure safety of an OS is to directly
verify that its implementation satisfies the safety by hand with proof assis-
tants (e.g., [86, 75, 76, 77]). The advantage of the approach is that almost
arbitrary properties can be verified, while what the type system of TALK
directly verifies is only the memory safety and the control-flow safety. For
example, the deadlock freedom and the livelock freedom can be verified by
extracting a model of process-calculus from the implementation and prov-
ing that they are satisfied on the model and the extraction is correct, with
the proof assistants. Thus, as for the range of verifiable properties, the ap-
proach is far more flexible than TALK and the approach of model checking.

However, there are two problems in the approach. First problem is that
ordinary OS developers are not familiar with the proof assistants. In fact,
they may have no idea how to formally prove the memory safety and the
control-flow safety of their programs. On the other hand, in the approach
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of this thesis, all the programmers have to do is just annotating their assem-
bly programs with the type information of TALK (by hand or some other
means). Then, the type checker of TALK automatically verifies the memory
safety and the control-flow safety of the programs. In addition, we believe
that, compared to the proof assistants, the type system of TALK is easier to
understand for them because they know a little about type systems, thanks
to the weakly-typed programming language, C.

Second problem is that the proof is not synchronized with the imple-
mentation. That is, if developers modify the implementation, they have to
prove the safety of the modified implementation again. This severely limits
development efficiency because proving the safety with the proof assistants
is much harder than modifying the implementation with text editors. On
the other hand, in the approach of TALK, all they have to do is just modi-
fying their programs. Then, the TALK type checker automatically verifies
its memory safety and control-flow safety.

The rest of this section describes three works that verify safety of OSes
with the proof-assistants.

Kit Kit [11] is an OS whose safety is verified at the machine code level.
More specifically, the verified safety property is a process isolation prop-
erty, that is, processes do not interfere with each other, except process com-
munication. The property is represented in the Boyer-Moore logic, and its
proof is mechanically checked by the Boyer-Moore theorem prover [14].

The proof consists of a formal definition of a communicating process, a
formal specification of an OS kernel which manages a fixed number of com-
municating processes, the proof of a theorem which states that the specifi-
cation correctly implements each process, a formal definition of a machine
on which to implement the OS kernel, the machine code implementation of
the kernel, and the proof of a theorem which states that the machine code
running on the machine correctly implements the formal specification. In
sum, the proof says that the machine code implementation of the kernel
correctly implements the abstract model of processes and the processes are
correctly isolated in the model.

One problem of the approach of Kit is that, though Kit is a small and
simple OS, it is still really hard to generate the proof. In fact, it took eighteen
months to complete the proof of the process isolation property [11]. This is
because the proof of Kit was made from scratch. What is worse is that Kit
does not support dynamic allocation of resources. The generation of the
proof will become even harder if the dynamic allocation is considered. On
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the other hand, it took a few weeks to write an prototype OS kernel which
provides a dynamic memory allocation facility in TALK.

L4.verified The L4.verified [93] project is an ongoing project which tries
to verify safety of the L4 microkernel [63]. As of writing this thesis, the
correctness of the virtual memory subsystem of L4 has been verified [92].
On the other hand, this thesis does not handle the virtual memory so far
(see Chapter 3).

The approach of the verification is as follows. First, the abstract model
of the virtual memory subsystem is extracted from the informal descrip-
tion of L4, and the model is formally defined in the theorem prover Is-
abelle [75]. The model consists of the virtual address spaces and the opera-
tions on them. Then, the correctness of the model is proved. For example, it
proves the property that all the valid pages are mapped to physical pages,
and so on. Next, the abstract model is refined to a more concrete model
formally, that is, without violating the correctness of the abstract model.
More specifically, the concrete model consists of page tables and the oper-
ations on them. For example, an address lookup operation in the abstract
model is formally implemented as a program which operates on the page
tables. Last, the concrete model is further refined to an implementation in
the C programming language. Thus, it is verified that the implementation
correctly implements the virtual memory subsystem of L4.

One problem of the approach of L4.verified is that the cost of the verifi-
cation is too high. In fact, [93] shows that it took 1.5 person years to obtain
the verified implementation of the virtual memory subsystem, and all the
specifications and proofs for the verification run to about 14000 lines of
proof scripts of Isabelle, while the whole L4 microkernel consists of about
10000 lines of code.

VFiasco The VFiasco [50] project is an ongoing project which tries to ver-
ify safety of the Fiasco microkernel [49]. The safety properties that the
project attempts to prove are the termination of the page-fault handlers and
the correctness of the memory allocator, though nothing has been proved
yet, as of writing this thesis. On the other hand, we have implemented a
memory-safe memory allocator in TALK (see Section 3.1 for details), though
the termination property cannot be ensured by the type system of TALK.

The unique point of the project is that it tries to verify properties at the
level of C++ [58] source code, because Fiasco is written in C++. To this
end, it tries to define a semantics of C++ and represent the semantics in the
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PVS [76] proof assistant, though the definition has not been completed yet
and only the semantics of the C++ data types is available so far.

One problem of the VFiasco approach is that C++ is too complex to
define a formal semantics. For example, C++ supports class inheritance,
operator overloading, runtime type casts, exception mechanisms, and so
on. Even though the semantics is defined, there is another problem. The
problem is that it is difficult to build a C++ compiler which follows the
defined semantics. On the other hand, the approach of this thesis does not
suffer the problems. In fact, the semantics of TALK is simpler than expected
because it is almost the same as that of the underlying CPU architecture.

4.4 Strictly typed programming languages

There are several operating systems that are partly written in strictly typed
languages. However, none of them directly implemented memory manage-
ment and multi-thread management code, while we implemented them in
TALK.

House [43] is an operating system written in Haskell programming lan-
guage [88]. In House, a simple graphic driver, a PS2 mouse driver and
drivers for network cards (NE2000 and Intel PRO/100), a GUI window
system and a network protocol stack are implemented in Haskell. In ad-
dition, House supports execution of user programs in a separate address
space. Unlike the approach of this thesis, however, memory management
facility cannot be implemented in Haskell and the kernel of House includes
a garbage collector which is written in C.

Desert Spring-Time [25] is an operating system written in OCaml pro-
gramming language [17]. In Desert Spring-Time, an IDE driver, drivers
for network cards (NE2000 and Realtek 8139), a simple graphic driver,
drivers for PS/2 mouse and keyboard and a network protocol stack are
implemented in OCaml. As the House operating system, however, mem-
ory management facility is not implemented in OCaml. Therefore, Desert
Spring-Time includes a garbage collector written in C for memory manage-
ment.

Singularity [53] is an operating system written in Sing# programing
language [53], which is an extension of Spec# programming language [6],
which is an extension of C# programming language [59]. The good point of
Sing# is that programmers can specify the precondition and postcondition
that must be satisfied by their programs. The static checker of Sing# veri-
fies them with the Simplify theorem prover [26] and inserts check code to
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the program in order to check the behavior of the programs at runtime. In
Singularity, several I/O device drivers (including supports for DMA) are
written in Sing#. However, memory management and multi-thread man-
agement code is not written in Sing#. In Singularity, multi-thread manage-
ment and inter-process communication mechanisms are implemented as
language extensions of Sing#.

Lisp OSes ([70, 32] and others) are written in Lisp [66]. There are two
problems in the Lisp OSes. One problem is that Lisp is a dynamically typed
language, that is, they cannot prevent runtime errors from occurring, as in
the case of the hardware approach. Another problem is that they some-
times require special hardware (Lisp machines) in order to achieve high
performance.

The SPIN operating system [9] is an extensible operating system that
can be extended safely by inserting extensions that are written in Modula-3
programming language [74]. The goal of SPIN is to extend the functional-
ity of the kernel safely, not to ensure safety of the kernel itself. Therefore,
memory management and multi-thread management mechanisms are not
implemented in Modula-3.

Besides the problem of inability to write memory management and
multi-thread management code, all the above OSes have the problem that
trusted computing base (TCB) becomes huge. TCB is part of OS on which
safety of the whole system depends. Therefore, minimizing TCB as small as
possible is important to make OS reliable. In the above OSes, their safety is
depends on the correctness of external compilers for Haskell, OCaml, Lisp
and Modula-3, respectively. That is, their TCB includes the external compil-
ers. Generally speaking, complexity of language compilers is comparable
to or exceeds that of OS.

On the other hand, in the approach of this thesis, TCB is considerably
small compared to that of the above approaches because safety is depends
only on the correctness of the type checker of TALK. We need not to trust
external compilers or assemblers because the type check of TALK can be
performed on binary executables. Thus, as for TCB, the approach of this
thesis is more reliable than the above approaches.

In addition, their approaches have the problem that programmers can-
not use their favorite languages to modify and/or extend the OSes. For
example, if a programmer wants to modify the House operating system,
she must use Haskell. This severely limits the development of the OSes.

At first glance, the problem seems to be also applicable to the approach
of this thesis, but there is an essential difference. The difference is that pro-
grammers need not to write TALK code directly because TALK can be used
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as a target language of high-level languages. That is, programmers can
use their favorite languages if there exist compilers from them to TALK.
For example, if there are compilers from strictly-typed C dialects [61, 83] to
TALK, it helps C programmers to write safe OS kernels. From the theoret-
ical viewpoint, it is not so difficult to make a compiler from strictly-typed
programming languages to TALK, because the type-preserving compila-
tion from a typed high-level language to a typed assembly language has
been already studied by [71]. Moreover, even the standard C can be used
by programmers if we can build a compiler which compiles C programs
to TALK. Although C is not a strictly typed language, it may be possible
with the approach of CCured [73] that is a C compiler that inserts dynamic
checking code to C programs in order to ensure the memory safety. (Note
that CCured itself does not allow programmers to write memory manage-
ment code and depends on the external memory management mechanism,
as other strictly-typed programming languages.)

4.4.1 Types and memory management

Linear type systems [94] ensure that a memory region is accessed only once.
That is, they can prevent pointers from aliasing. Therefore, the memory
region can be reused safely. There exist TALs based on the linear types [18,
2]. One big problem of the linear types is that the expressiveness of linearly-
typed languages is largely limited because no aliases are allowed.

Alias type systems [82, 96] do not prevent pointers from aliasing, but
track the information about aliases for reusing memory regions safely. Thus,
the alias type systems are more expressive than the linear type systems.
However, it is impossible to implement practical memory management in
the original alias type system because it does not support variable-length
arrays. As described in Section 2.2, TALK is based on the alias types and
extended to support variable-length arrays and integer constraints. Thus,
practical memory management can be implemented in TALK.

Hawblitzel et al. [46] extends the alias type system for implementing
flexible memory management. The similarity between the approach of
TALK and theirs is that both introduce integer constraints to the alias types.
The important difference is that, in their type system, variable-length ar-
rays are realized as a combination of fixed-length tuples and recursive types.
However, there are two problems in their approach. One problem is that
elements of an array cannot be accessed in O(1) order because the array
type must be unrolled (O(n) time at worst) in advance. The other problem
is that it requires runtime type checks for managing arrays. To solve these
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problems, they extended their type system intricately for detecting useless
runtime type-checks as precisely as possible. For example, they defined
‘split’ of arrays as a function, and showed that the function is not needed
at runtime, with their complex typing rules. On the other hand, there are
no such problems in the type system of TALK because it directly supports
the variable-length arrays as language primitives. Thus, the type system of
TALK is much simpler than theirs and yet powerful enough to implement
memory management code.

DTAL [101] is a typed assembly language extended with the depen-
dent type. As the type system of TALK, DTAL also introduces integer
constraints to its type system. However, DTAL is not flexible enough to
implement memory management because memory reusing is impossible.
The goal of DTAL is to type-check array bound-checking.

In region-based memory management [89, 90, 42], heap values are al-
located in one of memory regions. When a memory region is deallocated,
all the heap values in the region are deallocated. The region-based mem-
ory management does not allow programmers to directly manage memory.
Calculus of Capability [23] extends the region-based memory management
and allows programmers to explicitly allocate and deallocate memory re-
gions, but memory regions cannot be reused explicitly and the heap values
allocated in memory regions cannot be managed directly.

Shape analysis [27, 39, 81] is an analysis which estimates the shape (e.g.,
tree, DAG or cyclic graph) of the data structure that is accessible from point-
ers. Although the shape analysis is developed in the research area of com-
piler optimization, it can be used for detecting pointer aliases because it de-
termines whether two pointers point to the same data structure. However,
the approach of the shape analysis cannot be applied directly to memory
management because it is a conservative analysis. In addition, the analysis
can tell whether if a data structure can be deallocated safely, but program-
mers cannot reuse the data structure explicitly.
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Chapter 5

Conclusion

This thesis has proposed a new strictly typed programming language which
is flexible and powerful enough to implement operating systems (OS). By
writing in the strictly typed language, the memory safety and the control-
flow safety of OS is automatically and efficiently verified thorough the type
check of the language.

Ensuring safety of OS kernels has been considered to be extremely hard,
because the OS kernels have been written in weakly typed or untyped lan-
guages. For example, the approach of using model checkers to verify safety
properties is only applicable for the very small part of the OS kernels be-
cause of the problem of the state explosion. In addition, the approach of us-
ing theorem provers and/or proof assistants to prove safety properties of
OS kernels has one problem that usual programmers are not familiar with
the theorem provers and/or proof assistants. In addition, it has another
problem that the safety property must be proved again, if the OS kernels
are rewritten.

Compared to the above approaches, the proposed approach is more
practical because there is no state explosion problem and the programmers
do not need to learn how to use the theorem provers and/or the proof as-
sistants. Although the safety ensured by the proposed approach is just the
memory safety and the control-flow safety, we believe that the proposed
approach has made a big step, because the more sophisticated safety prop-
erties (e.g., the deadlock freedom, the multi-thread safety on SMP and the
resource usage safety) can be ensured on the basis of the basic type safety.

Concretely speaking, this thesis has proposed the new strictly and stati-
cally typed assembly language (TALK) that is flexible and powerful enough
to implement OS kernels. Traditional strictly typed programming languages
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are not enough because the important components of the OS kernels (e.g.,
memory management mechanisms and multi-thread management mecha-
nisms) cannot be implemented in them. To cope with the problem, the type
system of TALK supports variable-length arrays (the arrays whose size is
not known until runtime), integer constraints between variables, explicit
alias tracking, and split/concatenation of the variable-length arrays.

More specifically, the contribution of this thesis is that we have first re-
alized that integrating the integer constraints and the explicit alias tracking
with the variable-length arrays and their split/concatenation enables us
to write practical memory management code in strictly-typed languages.
The integer constraints and the explicit alias tracking have been separately
studied by different research areas.

Then, this thesis has shown how to implement memory management
and multi-thread mechanisms in TALK. From the viewpoint of type theory,
the memory management is managing free memory regions (the variable-
length arrays) and changing their types when the regions are allocated
and/or deallocated. Thus, the memory management can be implemented
in TALK, because it directly supports the variable-length arrays and en-
ables programmers to destructively update the contents of the memory re-
gions, thanks to the explicit alias tracking. Further, at the lowest level, the
multi-thread management is just managing the memory stacks that repre-
sent the execution context of threads. Thus, TALK is sufficient to imple-
ment the multi-thread management, because the memory stacks are just
the variable-length arrays and TALK supports them.

In addition, this thesis has described an implementation of TALK on the
IA-32 architecture. It has also presented a prototype implementation of an
OS kernel which is written in TALK. The OS kernel provides memory man-
agement mechanisms and multi-thread mechanisms. Although the very
early boot procedure is not written in TALK, the other parts are completely
written in TALK.

5.1 Future Direction

One big problem of the current implementation of TALK is that it does not
support interrupts. There are two possible approaches to support inter-
rupts.

One approach is to make threads handle interrupts. First, the kernel
creates threads for each interrupt vector. The kernel also associates an inter-
rupt handler to each interrupt vector. Then, if an interrupt occurs, the asso-
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ciated interrupt handler just wakes up the associated thread. The interrupt
is processed by the thread. The advantage of this approach is that we need
not to modify the type system of TALK because multi-thread management
can be implemented in TALK, as shown in this thesis. The disadvantage is
that the trusted computing base becomes a bit larger because the memory
and control-flow safety of the interrupt handler cannot be ensured. More
specifically, the type system of TALK cannot prevent race conditions be-
tween the interrupt handlers and normal program execution.

The other approach is to modify the type system of TALK. From the
viewpoint of the type system, the interrupt handlers are special functions
that may be called anywhere in programs whenever interrupts are not dis-
abled. That is, the memory and control-flow safety of the interrupt handlers
can be verified by checking whether if the preconditions specified in their
label types are always satisfied whenever interrupts are not disabled. To
realize this approach, we need to modify the typing rules of TALK and the
type system so that it can keep track of disabled interrupts. The advantage
of this approach is that the whole kernel including interrupt handlers can
be type-checked by the type checker. The disadvantage is that we need to
modify the implementation of the TALK assembler and type checker ac-
cording to the extension of the type system.
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Appendix A

Type Soundness

A.1 Inversion lemmas
Lemma A.1 (Value inversion: integer)
If ∆;C ` n : σ, then σ ≡ i.

Proof From the typing rules, the last typing rule of the derivation ∆; C `
n : σ is VALUEINTEGER. Thus, from the typing rule, σ is some integer i.

Lemma A.2 (Value inversion: label)
If ∆;C ` l[c1, . . . , cn/∆′′] : σ, then σ ≡ ∀∆′.|C|[Σ](Γ).

Proof From the typing rules, the last typing rule of the derivation ∆; C `
l[c1, . . . , cn/∆′′] : σ is VALUELABEL. Thus, from the typing rule, σ is some
label type ∀∆′.|C|[Σ](Γ).

Lemma A.3 (Memory inversion)
If ` M{n 7→ a} : Σ, then Σ ≡ Σ′ ⊗ {n 7→ at} and ·; · ` a : at .

Proof First, let M ≡ {n1 7→ a1} . . . {nm 7→ am}. Then, from GU(M{n 7→ a}),
∀i.ni 6= n. Thus, by the typing rule MEMORY, Σ ≡ {n1 7→ at1}⊗. . .⊗{nm 7→
atm} ⊗ {n 7→ at ⊗ Σ′′, where ∀i.·; · ` ai : at i and ·; · ` a : at . Here let
Σ′ ≡ {n1 7→ at1} ⊗ . . .⊗ {nm 7→ atm} ⊗ Σ′′. Then, Σ ≡ Σ′ ⊗ {n 7→ at} and
·; · ` a : at .

Lemma A.4
If ∆;C ` Σ1 ⊗ {i1 7→ at1} = Σ2 ⊗ {i2 7→ at2}, ∆; C |= i1 = i2 and ∆; C `
at1 = at2, then ∆; C ` Σ1 = Σ2.
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Proof By induction on the derivation of ∆;C ` Σ1 ⊗ {i1 7→ at1} = Σ2 ⊗
{i2 7→ at2}. The proof is by case analysis on the last rule of the derivation.

• Case EQMEMEMPTY

This case never occurs because Σ1 ⊗ {i1 7→ at1} 6≡ ·.
• Case EQMEMLOC

The proof is by case analysis of the premises of the typing rule EQMEMLOC.

– Case ∆;C ` Σ1 = Σ2, ∆; C |= i1 = i2 and ∆; C ` at1 = at2

From the premise, we have ∆; C ` Σ1 = Σ2.

– Case ∆; C ` Σ′1 ⊗ {i1 7→ at1} = Σ′2 ⊗ {i2 7→ at2}, ∆; C |= i′1 = i′2
and ∆;C ` at ′1 = at ′2, where Σ1 ≡ Σ′1 ⊗ {i′1 = at ′1} and Σ2 ≡
Σ′2 ⊗ {i′2 = at ′2}
By the induction hypothesis, we have ∆; C ` Σ′1 = Σ′2. Now, by
the typing rule EQMEMLOC, we have ∆;C ` Σ′1 ⊗ {i1 7→ at1} =
Σ′2 ⊗ {i2 7→ at2}. That is, ∆; C ` Σ1 = Σ2.

– Case ∆; C ` Σ′1 ⊗ {i1 7→ at1} = Σ2, ∆;C |= i′1 = i2 and ∆; C `
at ′1 = at2, where Σ1 ≡ Σ′1 ⊗ {i′1 = at ′1}
By the typing rule EQMEMLOC, we have ∆; C ` Σ′1 ⊗ {i1 7→
at2} = Σ′1 ⊗ {i′1 7→ at ′1}(≡ Σ1), because ∆; C |= i1 = i2 = i′1,
∆;C ` at1 = at2 = at ′1 and ∆;C ` Σ′1 = Σ′1. Thus, ∆; C ` Σ1 =
Σ2.

– Case ∆; C ` Σ′2 ⊗ {i2 7→ at2} = Σ2, ∆;C |= i1 = i′2 and ∆; C `
at1 = at ′2, where Σ2 ≡ Σ′2 ⊗ {i′2 = at ′2}
Same as the previous case.

• Case EQMEMVAR

By the typing rule, we have Σ1 ≡ Σ′1 ⊗ ε, Σ2 ≡ Σ′2 ⊗ ε, ∆; C ` Σ′1 ⊗
{i1 7→ at1} = Σ′2 ⊗ {i2 7→ at2}. Here, by the induction hypothesis,
∆; C ` Σ′1 = Σ′2. Now, by the typing rule EQMEMVAR, we have
∆; C ` Σ1 = Σ2.

• Case EQMEMZEROARRAYL
The proof is by case analysis of the premises of the typing rule.

– Case ∆; C ` Σ1 = Σ2 ⊗ {i2 7→ at2}, ∆;C ` j1 = 0, where
at1 ≡ τ1[j1]
Let at2 ≡ τ2[j2]. Then, from the typing rule EQARRAY, ∆; C `
j1 = j2 = 0. Here, by the typing rule EQMEMZEROARRAYR, we
have ∆; C ` Σ1 = Σ2.
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– Case ∆; C ` Σ′1⊗{i1 7→ at1 = Σ2⊗{i2 7→ at2} and ∆; C ` j′1 = 0,
where Σ1 ≡ Σ′1 ⊗ {i′1 7→ τ ′[j′1]}
By the induction hypothesis, we have ∆; C ` Σ′1 = Σ2. Here,
by the typing rule EQMEMZEROARRAYL, we have ∆; C ` Σ′1 ⊗
{i′1 7→ τ ′[j′1]} = Σ2.

• Case EQMEMZEROARRAYR
Same as Case EQMEMZEROARRAYL.

Lemma A.5
If ∆;C ` Σ1 ⊗ ε = Σ2 ⊗ ε, then ∆; C ` Σ1 = Σ2.

Proof By induction on the derivation of ∆;C ` Σ1 ⊗ ε = Σ2 ⊗ ε. The proof
is by case analysis on the last rule of the derivation.

• Case EQMEMEMPTY

This case never occurs because Σ1 ⊗ ε 6≡ ·.
• Case EQMEMLOC

From the typing rule, we have ∆;C ` Σ′1 ⊗ ε = Σ′2 ⊗ ε, where
Σ1 ≡ Σ′1 ⊗ {i1 7→ at1} and Σ2 ≡ Σ′2 ⊗ {i2 7→ at2}. Here, by the
induction hypothesis, we have ∆; C ` Σ′1 = Σ′2. Now, by the typing
rule EQMEMLOC, ∆;C ` Σ1 = Σ2.

• Case EQMEMVAR

The proof is by case analysis of the premises of the typing rule.

– Case ∆; C ` Σ1 = Σ2

From the premise, we have ∆; C ` Σ1 = Σ2.

– Case ∆; C ` Σ′1⊗ε = Σ′2⊗ε, where Σ1 ≡ Σ′1⊗ε′ and Σ2 ≡ Σ′2⊗ε′

By the induction hypothesis, we have ∆; C ` Σ′1 = Σ′2. Here, by
the typing rule EQMEMVAR, ∆; C ` Σ′1 ⊗ ε′ = Σ′2 ⊗ ε′. That is,
∆; C ` Σ1 = Σ2.

• Case EQMEMZEROARRAYL
By the typing rule, we have ∆; C ` Σ′1⊗ ε = Σ2⊗ ε and ∆; C |= j = 0,
where Σ1 ≡ Σ′1 ⊗ {i 7→ τ [j]}. By the induction hypothesis, we have
∆;C ` Σ′1 = Σ2. Now, by the typing rule EQMEMZEROARRAYL,
∆;C ` Σ′1 ⊗ {i 7→ τ [j]} = Σ2. That is, ∆;C ` Σ1 = Σ2.

• Case EQMEMZEROARRAYR
Same as Case EQMEMZEROARRAYL.
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Lemma A.6
If ∆; C ` Σ1 ⊗ {i 7→ τ [j]} = Σ2 and ∆; C |= j = 0, then ∆; C ` Σ1 = Σ2.

Proof By induction on the derivation of ∆; C ` Σ1⊗{i1 7→ at1}. The proof
is by case analysis on the last rule of the derivation.

• Case EQMEMEMPTY

This case never occurs because Σ1 ⊗ {i 7→ τ [j]} 6≡ ·.

• Case EQMEMLOC

The proof is by case analysis of the premises of the typing rule.

– Case ∆;C ` Σ′1 ⊗ {i 7→ τ [j]} = Σ′2, where Σ1 ≡ Σ′1 ⊗ {i′1 7→ at ′1},
Σ2 ≡ Σ′2 ⊗ {i′2 7→ at ′2}, ∆;C |= i′1 = i′2 and ∆;C ` at ′1 = at ′2
By the induction hypothesis, we have ∆; C ` Σ′1 = Σ′2. Now, by
the typing rule EQMEMLOC, we have ∆;C ` Σ′1 ⊗ {i′1 7→ at ′1} =
Σ′2 ⊗ {i′2 7→ at ′2}. That is, ∆; C ` Σ1 = Σ2.

– Case ∆; C ` Σ1 = Σ′2, where Σ2 ≡ Σ′2⊗{i′2 7→ at ′2}, ∆; C |= i = i′2
and ∆;C ` τ [j] = at ′2
Let at ′2 ≡ τ ′[j′]. Then, from the typing rule EQARRAY, we have
∆;C ` τ = τ ′ and ∆; C |= j′ = j = 0. Therefore, by the typing
rule EQMEMZEROARRAYR, we have ∆; C ` Σ1 = Σ′2 ⊗ {i′2 7→
at ′2}. That is, ∆;C ` Σ1 = Σ2.

• Case EQMEMVAR

By the typing rule, we have ∆; C ` Σ′1 ⊗ {i 7→ τ [j]} = Σ′2, where
Σ1 ≡ Σ′1 ⊗ ε and Σ2 ≡ Σ′2 ⊗ ε. Here, by the induction hypothesis,
∆; C ` Σ′1 = Σ′2. Now, by the typing rule EQMEMVAR, we have
∆; C ` Σ′1 ⊗ ε = Σ′2 ⊗ ε. That is, ∆; C ` Σ1 = Σ2.

• Case EQMEMZEROARRAYL
The proof is by case analysis of the premises of the typing rule.

– Case ∆;C ` Σ1 = Σ2

From the premise, we have ∆; C ` Σ1 = Σ2.

– Case ∆;C ` Σ′1 ⊗ {i 7→ τ [j]} = Σ2 and ∆; C |= j′ = 0, where
Σ1 ≡ Σ′1 ⊗ {i′ 7→ τ ′[j′]}
By the induction hypothesis, we have ∆;Σ′1 = Σ2. Then, by the
typing rule EQMEMZEROARRAYL, ∆;C ` Σ′1 ⊗ {i′ 7→ τ ′[j′]} =
Σ2. That is, ∆; C ` Σ1 = Σ2.
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• Case EQMEMZEROARRAYR
From the typing rule, we have ∆; C ` Σ1 ⊗ {i 7→ τ [j]} = Σ′2 and
∆;C |= j′ = 0, where Σ2 ≡ Σ′2 ⊗ {i′ 7→ τ ′[j′]}. Here, by the in-
duction hypothesis, we have ∆;C ` Σ1 = Σ′2. Now, by the typing
rule EQMEMZEROARRAYR, ∆; C ` Σ1 = Σ′2 ⊗ {i′ 7→ τ ′[j′]}. That is,
∆;C ` Σ1 = Σ2.

Lemma A.7
If ∆;C ` Σ1 = Σ2 ⊗ {i 7→ τ [j]}, then ∆;C ` Σ1 = Σ2.

Proof Same as the proof of the lemma A.7.

Lemma A.8
If ∆;C ` Σ⊗ Σ′ = Σ1 ⊗ Σ2 and ∆; C ` Σ = Σ1, then ∆; C ` Σ′ = Σ2.

Proof By induction on the derivation of ∆; C ` Σ = Σ1. The proof is by
case analysis on the last rule of the derivation.

• Case EQMEMEMPTY

By the typing rule, we have Σ ≡ Σ1 ≡ ·. That is, Σ ⊗ Σ′ ≡ Σ′ and
Σ1 ⊗ Σ2 ≡ Σ2. Therefore, ∆;C ` Σ′ = Σ2.

• Case EQMEMLOC

By the typing rule, we have Σ ≡ Σ′′ ⊗ {i1 7→ at1}, Σ1 ≡ Σ′′1 ⊗ {i2 7→
at2}, ∆;C ` Σ′′ = Σ′′1 , ∆; C |= i1 = i2 and ∆;C ` at1 = at2.

Here, by the lemma A.4, we have ∆;C ` Σ′′ ⊗ Σ′ = Σ′′1 ⊗ Σ2. Then,
by the induction hypothesis, ∆; C ` Σ′ = Σ2.

• Case EQMEMVAR

By the typing rule, we have Σ ≡ Σ′′ε, Σ1 ≡ Σ′′1ε and ∆; C ` Σ′′ = Σ′′1 .

Here, by the lemma A.5, we have ∆;C ` Σ′′ ⊗ Σ′ = Σ′′1 ⊗ Σ2. Then,
by the induction hypothesis, ∆; C ` Σ′ = Σ2.

• Case EQMEMZEROARRAYL
By the typing rule, we have Σ ≡ Σ′′ ⊗ {i 7→ τ [j]}, ∆; C |= j = 0 and
∆;C ` Σ′′ = Σ1.

Here, by the lemma A.6, we have ∆;C ` Σ′′ ⊗ Σ′ = Σ′′1 ⊗ Σ2. Then,
by the induction hypothesis, ∆; C ` Σ′ = Σ2.

• Case EQMEMZEROARRAYR
Same as Case EQMEMZEROARRAYL.
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Lemma A.9
If ∆; C ` Σ = Σ′ and ∆; C ` Σ1 = Σ2, then ∆;C ` Σ⊗ Σ1 = Σ′ ⊗ Σ2.

Proof By induction on the derivation of ∆;C ` Σ = Σ′. The proof is by
case analysis on the last rule of the derivation.

• Case EQMEMEMPTY

By the typing rule, Σ ≡ Σ′ ≡ ·. Therefore, Σ⊗Σ1 ≡ Σ1 and Σ′⊗Σ2 ≡
Σ2. Thus, ∆;C ` Σ⊗ Σ1 = Σ′ ⊗ Σ2.

• Case EQMEMLOC

By the typing rule, we have Σ ≡ Σ′1 ⊗ {i1 7→ at1}, Σ′ ≡ Σ′2 ⊗ {i2 7→
at2}, ∆; C ` Σ′1 = Σ′2, ∆;C |= i1 = i2 and ∆;C ` at1 = at2.

Here, by the induction hypothesis, we have ∆; C ` Σ′1⊗Σ1 = Σ′2⊗Σ2.
Now, by the typing rule EQMEMLOC, we have ∆; C ` Σ′1⊗Σ1⊗{i1 7→
at1} = Σ′2 ⊗ Σ2 ⊗ {i2 7→ at2}. That is, ∆; C ` Σ⊗ Σ1 = Σ′ ⊗ Σ2.

• Case EQMEMVAR

By the typing rule, we have Σ ≡ Σ′1 ⊗ ε, Σ′ ≡ Σ′2 ⊗ ε and ∆; C ` Σ′1 =
Σ′2.

Here, by the induction hypothesis, we have ∆; C ` Σ′1⊗Σ1 = Σ′2⊗Σ2.
Now, by the typing rule EQMEMVAR, ∆;C ` Σ′1⊗Σ1⊗ε = Σ′2⊗Σ2⊗ε.
That is, ∆; C ` Σ⊗ Σ1 = Σ′ ⊗ Σ2.

• Case EQMEMZEROARRAYL
By the typing rule, we have Σ ≡ Σ′1 ⊗ {i 7→ τ [j]}, ∆;C |= j = 0 and
∆; C ` Σ′1 = Σ′.

Here, by the induction hypothesis, we have ∆;C ` Σ′1⊗Σ1 = Σ′⊗Σ2.
Now, by the typing rule EQMEMZEROARRAYL, ∆; C ` Σ′1⊗Σ1⊗{i 7→
τ [j]} = Σ′ ⊗ Σ2. That is, ∆;C ` Σ⊗ Σ1 = Σ′ ⊗ Σ2.

• Case EQMEMZEROARRAYR
Same as Case EQMEMZEROARRAYL.

Lemma A.10
If ` MM ′ : Σ⊗ Σ′ and ` M ′ : Σ′, then ` M : Σ.

Proof Let M ≡ {n1 7→ a1} . . . {nk 7→ ak}, M ′ ≡ {n′1 7→ a′1} . . . {n′m 7→ a′m},
Σ1 ≡ {n1 7→ at1}⊗ . . .⊗{nk 7→ atk}, Σ2 ≡ {n′1 7→ at ′1}⊗ . . .⊗{n′m 7→ at ′m}.
Then, by the typing rule MEMORY, ` M : Σ1 and ` M ′ : Σ2. In addition,
we have ·; · ` Σ⊗Σ′ = Σ1⊗Σ2 and ·; · ` Σ′ = Σ2, because ` MM ′ : Σ⊗Σ′.

Here, by the lemma A.8, we have ·; · ` Σ = Σ1. Now, by the lemma A.40,
` M : Σ.
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Lemma A.11
If ` M : Σ, ` M ′ : Σ′ and GU(MM ′), then ` MM ′ : Σ⊗ Σ′.

Proof Let M ≡ {n1 7→ a1} . . . {nk 7→ ak} and M ′ ≡ {n′1 7→ a′1} . . . {n′m 7→
a′m}. Then, by the typing rule MEMORY, we have ·; · ` {n1 7→ at1} ⊗ . . . ⊗
{nk 7→ atk} = Σ and ·; · ` {n′1 7→ at ′1} ⊗ . . . ⊗ {n′m 7→ at ′m} = Σ′, where
∀i.·; · ` ai : at i and ∀i.·; · ` a′i : at ′i.

Here, by the typing rule MEMORY, we have ` MM ′ : {n1 7→ at1} ⊗
. . . ⊗ {nk 7→ atk} ⊗ {n′1 7→ at ′1} ⊗ . . . ⊗ {n′m 7→ at ′m} because GU(MM ′).
Now, by the lemma A.9, ·; · ` {n1 7→ at1} ⊗ . . . ⊗ {nk 7→ atk} ⊗ {n′1 7→
at ′1} ⊗ . . . ⊗ {n′m 7→ at ′m} = Σ ⊗ Σ′. Thus, by the lemma A.40, we have
` MM ′ : Σ⊗ Σ′.

A.2 Type substitution lemmas

Lemma A.12 (Type substitution: integer constraints)
If ∆∆′∆′′;C |= C ′, then ∆∆′′; C [c1, . . . , cn/∆′] ` C ′ [c1, . . . , cn/∆′].

Proof From the definition of the relation |=, C ′ is deduced from C, no
matter how the integer variables in ∆∆′∆′′ are instantiated. Therefore,
C [c1, . . . , cn/∆′] is deduced from C [c1, . . . , cn/∆′], no matter how the in-
teger variables in ∆∆′′ are instantiated. Thus, ∆∆′′; C [c1, . . . , cn/∆′] `
C ′ [c1, . . . , cn/∆′].

Lemma A.13 (Type substitution: integer constraints equality)
If ∆∆′∆′′; C ` C1 = C2, then ∆∆′′;C [c1, . . . , cn/∆′] ` C1 [c1, . . . , cn/∆′] =
C2 [c1, . . . , cn/∆′].

Proof From the typing rule EQCSTRT, we have ∆∆′∆′′; C ∧ C1 |= C2 and
∆∆′∆′′; C ∧ C2 |= C1. Here, by the lemma A.12, ∆∆′′;Cθ ∧ C1θ |= C2θ
and ∆∆′′; Cθ ∧ C2θ |= C1θ. Thus, by the typing rule EQCSTRT, ∆∆′′; Cθ `
C1θ = C2θ.

Lemma A.14 (Type substitution: value type equality)
If ∆∆′∆′′; C ` σ = σ′, then ∆∆′′; C [c1, . . . , cn/∆′] ` σ [c1, . . . , cn/∆′] =
σ′ [c1, . . . , cn/∆′].

Lemma A.15 (Type substitution: tuple type equality)
If ∆∆′∆′′; C ` τ = τ ′, then ∆∆′′; C [c1, . . . , cn/∆′] ` τ [c1, . . . , cn/∆′] =
τ ′ [c1, . . . , cn/∆′].
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Lemma A.16 (Type substitution: array type equality)
If ∆∆′∆′′;C ` at = at ′, then ∆∆′′; C [c1, . . . , cn/∆′] ` at [c1, . . . , cn/∆′] =
at ′ [c1, . . . , cn/∆′].

Lemma A.17 (Type substitution: memory type equality)
If ∆∆′∆′′; C ` Σ = Σ′, then ∆∆′′; C [c1, . . . , cn/∆′] ` Σ [c1, . . . , cn/∆′] =
Σ′ [c1, . . . , cn/∆′].

Lemma A.18 (Type substitution: registers type equality)
If ∆∆′∆′′; C ` Γ = Γ′, then ∆∆′′; C [c1, . . . , cn/∆′] ` Γ [c1, . . . , cn/∆′] =
Γ′ [c1, . . . , cn/∆′].

Proof By induction on the typing derivation. the type substitution lem-
mas A.14,A.15,A.16,A.17 and A.18 are proved simultaneously. Let θ =
[c1, . . . , cn/∆′].

Proof of the lemma A.14
The proof is by case analysis on the last rule of the derivation.

• Case EQINT

From the typing rule, ∆∆′∆′′; C |= i = i′, where σ ≡ i and σ′ ≡ i′.
This means that i = i′ is deduced from C for all the instantiation of
the integer variables in ∆∆′∆′′. Therefore, ∆∆′′; Cθ |= iθ = i′θ. Thus,
by the typing rule EQINT, ∆∆′′; Cθ ` σθ = σ′θ.

• Case EQLABEL

From the typing rule, ∆∆′∆′′∆1; C ` C1 = C2, ∆∆′∆′′∆1; C ∧ C1 `
Σ1 = Σ2 and ∆∆′∆′′∆1; C∧C1 ` Γ1 = Γ2, where σ1 ≡ ∀∆1.|C1|[Σ1](Γ1),
σ2 ≡ ∀∆1.|C2|[Σ2](Γ2). By the induction hypothesis and the lem-
mas A.13, A.17 and A.18, we have ∆∆′′∆1; Cθ ` C1θ = C2θ, ∆∆′′∆1; Cθ∧
C1θ ` Σ1θ = Σ2θ and ∆∆′′∆1; Cθ ∧ C1θ ` Γ1θ = Γ2θ. Thus, by the
typing rule EQLABEL, ∆∆′′; Cθ ` σθ = σ′θ.

Proof of the lemma A.15
The proof is by case analysis on the last rule of the derivation.

• Case EQTUPLE

From the typing rule, ∀i.∆∆′∆′′; C ` σi = σ′i, where τ = 〈σ1, . . . , σn〉
and τ ′ = 〈σ′1, . . . , σ′n〉. Here, by the induction hypothesis and the
lemma A.14, ∀i.∆∆′′;Cθ ` σiθ = σ′iθ. Thus, by the typing rule
EQTUPLE, ∆∆′′; Cθ ` τθ = τ ′θ.
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• Case EQEX

From the typing rule, ∆∆′∆′′∆1;C ` C1 = C2, ∆∆′∆′′∆1;C ∧ C1 `
Σ1 = Σ2 and ∆∆′∆′′∆1; C ∧ C1 ` τ1 = τ2, where τ = ∃∆1.|C1|[Σ1]τ1,
τ ′ = ∃∆1.|C2|[Σ2]τ2. Here, by the induction hypothesis and the lem-
mas A.13 and A.17, we have ∆∆′′∆1 ` C1θ = C2θ, ∆∆′′∆1;Cθ∧C1θ `
Σ1θ = Σ2θ and ∆∆′′∆1; Cθ ∧ C1θ ` τ1θ = τ2θ. Thus, by the typing
rule EQEX, ∆∆′′; Cθ ` τθ = τ ′θ.

• Case EQREC

From the typing rule, we have τ ≡ τ ′. where τ = ρ (c1, . . . , cn). Thus,
by the typing rule EQREC, ∆∆′′; Cθ ` τθ = τ ′θ.

Proof of the lemma A.16
From the typing rule EQARRAY, we have ∆∆′∆′′; C ` τ = τ ′ and ∆∆′∆′′; C `

i = i′, where at ≡ τ [i] and at ′ ≡ τ ′[i′]. Here, by the induction hypothesis
and the lemmas A.15 and A.14 ∆∆′′;Cθ ` τθ = τ ′θ and ∆∆′′; Cθ ` iθ = i′θ.
Thus, by the typing rule EQARRAY, ∆∆′′;Cθ ` atθ = at ′θ.

Proof of the lemma A.17
The proof is by case analysis on the last rule of the derivation.

• Case EQMEMEMPTY

From the typing rule, we have ∆1; C1 ` · = · for any ∆1 and C1. Thus,
∆∆′′;Cθ ` · = ·.

• Case EQMEMLOC

From the typing rule, we have ∆∆′∆′′; C ` Σ1 = Σ2, ∆∆′∆′′; C `
i1 = i2 and ∆∆′∆′′; C ` at1 = at2, where Σ ≡ Σ1 ⊗ {i1 7→ at1} and
Σ′ ≡ Σ2 ⊗ {i2 7→ at2}. Here, by the induction hypothesis, ∆∆′′; Cθ `
Σ1θ = Σ2θ. In addition, by the lemmas A.14 and A.16, ∆∆′′; Cθ `
i1θ = i2θ and ∆∆′′; Cθ ` at1θ = at2θ. Thus, by the typing rule
EQMEMLOC, ∆∆′′; Cθ ` Σθ = Σ′θ.

• Case EQMEMVAR

From the typing rule, we have ∆∆′∆′′; C ` Σ1 = Σ2, where Σ ≡ Σ1⊗ε
and Σ′ ≡ Σ2⊗ε. Now, by the induction hypothesis, ∆∆′′; Cθ ` Σ1θ =
Σ2θ. Here if ε /∈ ∆′, then by the typing rule EQMEMVAR, ∆∆′′; Cθ `
Σθ = Σ′θ. Otherwise (if ε ∈ ∆′), Σθ ≡ Σ1θ ⊗ Σ′′ and Σ′θ ≡ Σ2θ ⊗ Σ′′,
where [Σ′′/ε] ∈ θ. Here ∆∆′′; Cθ ` Σ′′ = Σ′′. Thus, by the lemma A.9,
∆∆′′;Cθ ` Σθ = Σ′θ.

129



• Case EQMEMZEROARRAYL
From the typing rule, we have ∆∆′∆′′; C ` Σ′′ = Σ′, ∆∆′∆′′; C ` i2 =
0, where Σ ≡ Σ′′ ⊗ {i1 7→ τ [i2]}. Here, by the induction hypothesis,
∆∆′′; Cθ ` Σ′′θ = Σ′θ. In addition, by the lemma A.14, ∆∆′′; Cθ `
i2θ = 0. Thus, by the typing rule EQMEMZEROARRAYL, ∆∆′′; Cθ `
Σθ = Σ′θ.

• Case EQMEMZEROARRAYR
Same as the case EQMEMZEROARRAYL.

Proof of the lemma A.18
The proof is by case analysis on the last rule of the derivation.

• Case EQREGSNULL

From the typing rule, we have ∆1; C1 ` · = · for any ∆1 and C1. Thus,
∆∆′′; Cθ ` · = ·.

• Case EQREGSREG

From the typing rule, we have ∆∆′∆′′;C ` Γ1 = Γ2 and ∆∆′∆′′; C `
σ = σ′, where Γ ≡ Γ1{r : σ} and Γ′ ≡ Γ2{r : σ′}. Now, by the
induction hypothesis and the lemma A.14, ∆∆′′; Cθ ` Γ1θ = Γ2θ
and ∆∆′′;Cθ ` σθ = σ′θ. Thus, by the typing rule EQREGSREG,
∆∆′′; Cθ ` Γθ = Γ′θ.

Lemma A.19 (Type substitution: registers type subtyping)
If ∆∆′∆′′; C ` Γ ≤ Γ′, then ∆∆′′; C [c1, . . . , cn/∆′] ` Γ [c1, . . . , cn/∆′] ≤
Γ′ [c1, . . . , cn/∆′].

Proof By case analysis on the last rule of the derivation. Let θ ≡ [c1, . . . , cn/∆′].

• Case SUBREGSNULL

From the typing rule, Γ′ ≡ ·. Thus, by the typing rule SUBREGSNULL,
∆∆′′; Cθ ` Γθ ≤ ·.

• Case SUBREGSREG

From the typing rule, we have ∆∆′∆′′;C ` Γ1 ≤ Γ2 and ∆∆′∆′′; C `
σ = σ′, where Γ ≡ Γ1{r : σ} and Γ′ ≡ Γ2{r : σ′}. Now, by the
induction hypothesis and the lemma A.14, ∆∆′′; Cθ ` Γ1θ ≤ Γ2θ
and ∆∆′′; Cθ ` σθ = σ′θ. Thus, by the typing rule SUBREGSREG,
∆∆′′; Cθ ` Γθ ≤ Γ′θ.

Lemma A.20 (Type substitution: value)
If ∆∆′∆′′; C ` v : σ, then ∆∆′′;C [c1, . . . , cn/∆′] ` v [c1, . . . , cn/∆′] : σ [c1, . . . , cn/∆′].
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Proof By case analysis on the last rule of the derivation. Let θ ≡ [c1, . . . , cn/∆′].

• Case VALUEINTEGER

From the typing rule, ∆∆′∆′′; C |= n = i, where v ≡ n and σ ≡ i.
Here, by the lemma A.12, ∆∆′′; Cθ |= n = iθ. Thus, by the typing
rule VALUEINTEGER, we have ∆∆′′;Cθ ` n = iθ. That is, ∆∆′′;Cθ `
vθ : σθ.

• Case VALUELABEL

From the typing rule, v ≡ lθ′ and ∆∆′∆′′;C ` σ = ∀∆1\∆2.|C ′′|[Σ′′](Γ′′),
where θ′ ≡ [c′1, . . . , c′m/∆2], C ′′ ≡ C ′θ′, Σ′′ ≡ Σ′θ′, Γ′′ ≡ Γ′θ′ and
Φ(l) ≡ ∀∆1.|C ′|[Σ′](Γ′). Now, by the lemma A.14, ∆∆′′; Cθσθ =
(∀∆1\∆2.|C ′′|[Σ′′](Γ′′))θ. Here (∀∆1\∆2.|C ′′|[Σ′′](Γ′′))θ ≡ ∀∆1\∆2.|C ′′θ|[Σ′′θ](Γ′′θ).
In addition, let θ′′ ≡ [c1θ, . . . , cnθ/∆′′]. Then, C ′′ ≡ C ′θ′′, Σ′′ ≡ C ′θ′′,
Γ′′ ≡ Γ′θ′′ and lθ′θ ≡ lθ′′. Thus, by the typing rule VALUELABEL,
∆∆′′;Cθ ` vθ : σθ.

Lemma A.21 (Type substitution: instructions)
If ∆∆′∆′′; Γ; C; Σ ` I , then ∆∆′′; Γ[c1, . . . , cn/∆′];C[c1, . . . , cn/∆′]; Σ[c1, . . . , cn/∆′] `
I[c1, . . . , cn/∆′].

Proof By case analysis on the last rule of the derivation. Let θ ≡ [c1, . . . , cn/∆′].

• Case LOAD

From the typing rule, we have I = ld [rs + n], rd; I ′, ∆∆′∆′′;C ` Σ =
Σ′ ⊗ {Γ(rs) 7→ 〈σ1, . . . , σn, . . . , σ′n〉} and ∆∆′∆′′; Γ{rd 7→ σn}; C; Σ `
I ′. Here, by the lemma A.17, ∆∆′′; Cθ ` Σθ = Σ′θ ⊗ {Γ(rs)θ 7→
〈σ1θ, . . . , σnθ, . . . , σ′nθ〉}. Therefore, ∆∆′′;Cθ ` Σθ = Σ′θ⊗{Γθ(rs) 7→
〈σ1θ, . . . , σnθ, . . . , σ′nθ〉} because Γ(rs)θ = Γθ(rs). Now, by the in-
duction hypothesis, ∆∆′′; Γθ{rd 7→ σnθ}; Cθ; Σθ ` I ′θ. Thus, by the
typing rule LOAD, ∆∆′′; Γθ; Cθ; Σθ ` Iθ.

• Case STORE

From the typing rule, we have I = st rs, [rd + n]; I ′, ∆∆′∆′′;C ` Σ =
Σ′ ⊗ {Γ(rd) 7→ 〈σ1, . . . , σn, . . . , σ′n〉} and ∆∆′∆′′; Γ; C; Σ′ ⊗ {Γ(rd) 7→
〈σ1, . . . , Γ(rs), . . . , σ′n〉} ` I ′. Here, by the lemma A.17, ∆∆′′; Cθ `
Σθ = Σ′θ⊗{Γ(rd)θ 7→ 〈σ1θ, . . . , σnθ, . . . , σn′θ〉}. Therefore, ∆∆′′; Cθ `
Σθ = Σ′θ ⊗ {Γθ(rd) 7→ 〈σ1θ, . . . , σnθ, . . . , σn′θ〉}, because Γθ(rd) =
Γ(rd)θ. Now, by the induction hypothesis, ∆∆′′; Γθ;Cθ; Σ′θ⊗{Γθ(rd) 7→
〈σ1θ, . . . ,Γθ(rs), . . . , σ′n〉}. Thus, by the typing rule STORE, ∆∆′′; Γθ;Cθ; Σθ `
Iθ.
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• Case MOVE

From the typing rule, we have I = mov rs, rd; I ′ and ∆∆′∆′′; Γ{rd 7→
Γ(rs)}; C; Σ ` I ′. Here, by the induction hypothesis, ∆∆′′; Γθ{rd 7→
Γθ(rs)}; Cθ; Σθ ` I ′θ. Thus, by the typing rule MOVE, ∆∆′′; Γθ; Cθ; Σθ `
Iθ.

• Case MOVEI

From the typing rule, we have I = movi v, rd; I ′, ∆∆′∆′′ ` v : σ and
∆∆′∆′′; Γ{rd 7→ σ}; C; Σ ` I ′. Here, by the induction hypothesis and
the lemma A.20, ∆∆′′ ` vθ : σθ and ∆∆′′ `; Γθ{rd 7→ σθ}; Cθ; Σθ `
I ′θ. Thus, by the typing rule MOVEI ∆∆′′; Γθ; Cθ; Σθ ` Iθ.

• Case ARITH

From the typing rule, we have I = (add, sub, mul) rs1 , rs2 , rd; I ′ and
∆∆′∆′′; Γ{rd 7→ Γ(rs2)(+,−, ∗)Γ(rs1)}; C; Σ ` I . Thus, by the induc-
tion hypothesis, ∆∆′′; Γθ{rd 7→ Γθ(rs2)(+,−, ∗)Γθ(rs1)}; Cθ; Σθ ` Iθ.
Thus, by the typing rule ARITH, ∆∆′′; Γθ; Cθ; Σθ ` Iθ.

• Case BRANCH

From the typing rule, we have I = (beq, ble) rs1 , rs2 , rd; I ′, ∆∆′∆′′; C `
Γ(rd) = ∀.|C ′|[Σ′](γ′), ∆∆′∆′′; C ′′ ` C ′, ∆∆′∆′′; C ′′ ` Σ = Σ′, ∆∆′∆′′; C ′′ `
Γ ≤ Γ′ and ∆∆′∆′′; C ∧ Γ(rs1)(6=, >)Γ(rs2); Σ ` I ′, where C ′′ ≡
C∧Γ(rs1)(=,≤)Γ(rs2). Here, by the induction hypothesis, ∆∆′′;Cθ `
Γθ(rd) = (∀.|C ′|[Σ′](Γ′))θ = ∀.|C ′θ|[Σ′θ](Γ′θ) (by the lemma A.14,
∆∆′′; C ′′θ ` C ′θ (by the lemma A.12, ∆∆′′; C ′′θ ` Σθ = Σ′θ (by
the lemma A.17), ∆∆′′;C ′′θ ` Γθ ≤ Γ′θ (by the lemma A.19) and
∆∆′′; Cθ ∧ Γθ(rs1)( 6=, >)Γθ(rs2); Σθ ` I ′θ. Thus, by the typing rule
BRANCH, we have ∆∆′′; Γθ; Cθ; Σθ ` Iθ.

• Case JUMP

From the typing rule, we have I = jmp rd, ∆∆′∆′′;C ` Γ(rd) =
∀.|C ′|[Σ′](Γ′), ∆∆′∆′′; C ` C ′, ∆∆′∆′′; C ` Σ = Σ′ and ∆∆′∆′′; C `
Γ ≤ Γ′. Here, by the induction hypothesis, ∆∆′′;Cθ ` Γθ(rd) =
(∀.|C ′|[Σ′](Γ′))θ = ∀.|C ′θ|[Σ′θ](Γ′θ), ∆∆′′; Cθ ` C ′θ, ∆∆′′; Cθ ` Σθ =
Σ′θ and ∆∆′′; Cθ ` Γθ ≤ Γ′θ. Thus, by the typing rule JUMP, ∆∆′′; Γθ; Cθ; Σθ `
Iθ.

• Case APPLY

From the typing rule, we have I = apply r [c′1, . . . , c′m/∆2] ; I ′, Γ(r) ≡
∀∆1.|C ′|[Σ′](Γ′) and ∆∆′∆′′; Γ{r 7→ ∀∆1\∆2.|C ′′|[Σ′′](Γ′′)}; C; Σ ` I ′,
where C ′′ ≡ C ′θ′, Σ′′ ≡ Σ′θ′, Γ′′ ≡ Γ′θ′ and θ′ ≡ [c′1, . . . , c′m/∆2]. Here,
by the induction hypothesis, ∆∆′′; Γθ{r 7→ (∀∆1\∆2.|C ′′|[Σ′′](Γ′′))θ};Cθ; Σθ `
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I ′θ. Now, (∀∆1\∆2.|C ′′|[Σ′′](Γ′′))θ ≡ ∀∆1\∆2.|C ′′θ|[Σ′′θ](Γ′′θ). Here
let θ′′ ≡ [c′1θ, . . . , c′mθ/∆2]. Then, C ′′θ ≡ (C ′θ′)θ = (C ′θ)θ′′, Σ′′ ≡
(Σ′θ′)θ = (Σ′θ)θ′′ and Γ′′ ≡ (Γ′θ′)θ = (Γ′θ)θ′′. Thus, we have ∆∆′′; Γθ{r 7→
∀∆1\∆2.|(C ′θ)θ′′|[(Σ′θ)θ′′]((Γ′θ)θ′′)}; Cθ; Σθ ` Iθ. Therefore, by the
typing rule APPLY, ∆∆′′; Γθ;Cθ; Σθ ` Iθ because Iθ ≡ apply rθ′′; I ′θ.

• Case ROLL

From the typing rule, we have I = rollτ i; I ′, ∆∆′∆′′; C ` Σ =
Σ′⊗{i 7→ τ ′[µη[∆1].τ ′/η][c′1, . . . , c′m/∆1]} and ∆∆′∆′′; Γ; C; Σ′⊗{i 7→
τ} ` I ′, where τ ≡ µη[∆1].τ ′(c′1, . . . , c′m). Here, by the induction
hypothesis and the lemma A.17, ∆∆′′; Cθ ` Σθ = Σ′θ ⊗ {iθ 7→
(τ ′[µη[∆1].τ ′/η][c′1, . . . , c′m/∆1])θ} and ∆∆′′; Γθ; Cθ; Σ′θ⊗{iθ 7→ τθ} `
I ′θ. Now, (τ ′[µη[∆1].τ ′/η][c′1, . . . , c′m/∆1])θ = τ ′θ[µη[∆1].τ ′θ/eta][c′1θ, . . . , c′mθ/∆1].
Thus, by the typing rule ROLL, ∆∆′′; Γθ;Cθ; Σθ ` Iθ(= rollτθ iθ; I ′θ).

• Case UNROLL

From the typing rule, we have I = unroll i; I ′, ∆∆′∆′′; C ` Σ = Σ′⊗
{i 7→ µη[∆1].τ ′(c′1, . . . , c′m)} and ∆∆′∆′′; Γ; C; Σ′ ⊗{i 7→ τ ′[µη[∆1].
τ ′/η][c′1, . . . , c′m/∆1] ` I ′. Here, by the induction hypothesis and
the lemma A.17, ∆∆′′;Cθ ` Σθ = Σ′θ ⊗ {ıθ(µη[∆1].τ ′(c′1, . . . , c′m))θ}
and ∆∆′′; Γθ; Cθ; Σ′θ ⊗ {iθ 7→ (τ ′[µη[∆1].τ ′/η][c′1, . . . , c′m/∆1])θ ` I ′θ.
Now, because (µη[∆1].τ ′(c′1, . . . , c′m))θ = µη[∆1].τ ′θ(c′1θ, . . . , c′mθ) and
(τ ′[µη[∆1].τ ′/η][c′1, . . . , c′m/∆1])θ = τ ′θ[µη[∆1].τ ′θ/η][c′1θ, . . . , c′mθ/∆1],
we have ∆∆′′; Γθ; Cθ; Σθ ` Iθ(= unroll iθ; I ′θ) by the typing rule
UNROLL.

• Case PACK

From the typing rule, we have I = pack[c′1,...,c′m|Σ′θ′]as τ i; I ′, ∆∆′∆′′; C `
Σ = Σ′′ ⊗ {i 7→ τ ′θ′} ⊗Σ′θ′, ∆∆′∆′′; C |= C ′θ′ and ∆∆′∆′′; Γ;C; Σ′′ ⊗
{i 7→ τ} ` I ′, where θ′ ≡ [c′1, . . . , c′m/∆1] and τ ≡ ∃∆′.|C ′|[Σ′]τ ′. Here,
by the induction hypothesis and the lemma A.17, ∆∆′′;Cθ ` Σθ =
Σ′′θ⊗{iθ 7→ (τ ′θ′)θ}⊗(Σ′θ′)θ, ∆∆′′; Cθ |= (C ′θ′)θ and ∆∆′′; Γθ;Cθ; Σ′′θ⊗
{iθ 7→ τθ} ` I ′θ Now, let θ′′ ≡ [c′1θ, . . . , c′mθ/∆1]. Then, (τ ′θ′)θ ≡
(τ ′θ)θ′′, (Σ′θ′)θ ≡ (Σ′θ)θ′′ and (C ′θ′)θ ≡ (C ′θ)θ′′. In addition, τθ ≡
∃∆1.|C ′θ|[Σ′θ]τ ′θ. Thus, we have ∆∆′′; Cθ ` Σθ = Σ′′θ ⊗ {iθ 7→
(τ ′θ)θ′′}, ∆∆′′; Cθ ` (C ′θ)θ′′ and ∆∆′′; Γθ; Cθ; Σ′′θ⊗{iθ 7→ ∃∆1.|C ′θ|[Σ′θ]τ ′θ.
Here Iθ = pack[c′1θ,...,c′m|Σ′θ′′]as ∃∆1.|C′θ|[Σ′θ]τ ′θ iθ; I ′θ. Therefore, by the
typing rule PACK, ∆∆′′; Γθ;Cθ; Σθ ` I .

• Case UNPACK

From the typing rule, we have I = unpack i with ∆2; I ′, ∆∆′∆′′; C `
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Σ = Σ′′⊗{i 7→ ∃∆1.|C ′|[Σ′]τ} and ∆∆′∆′′∆2; Γ; C ∧C ′ [∆2/∆1] ; Σ′′⊗
{i 7→ τ [∆2/∆1]}⊗Σ′ [∆2/∆1] ` I ′. Here, by the induction hypothesis
and the lemma A.17, ∆∆′′; Cθ ` Σθ = Σ′′θ ⊗ {iθ 7→ (∃∆1.|C ′|[Σ′]τ)θ}
and ∆∆′′∆2; Γθ; Cθ ∧ (C ′ [∆2/∆1])θ; Σ′′θ ⊗ {iθ 7→ (τ [∆2/∆1])θ} ⊗
(Σ′ [∆2/∆1])θ ` I ′θ. Now, (∃∆1.|C ′|[Σ′]τ)θ ≡ ∃∆1.|C ′θ|[Σ′θ]τθ, (C ′ [∆2/∆1])θ ≡
(C ′θ) [∆2/∆1], (τ [∆2/∆1])θ ≡ (τθ) [∆2/∆1] and (Σ′ [∆2/∆1])θ ≡ (Σ′θ) [∆2/∆1].
Thus, by the typing rule UNPACK, we have ∆∆′′; Γθ; Cθ; Σθ ` Iθ, be-
cause Iθ ≡ unroll iθ; I ′θ.

• Case SPLIT

From the typing rule, we have I = split i1, i2; I ′, ∆∆′∆′′; C ` Σ =
Σ′ ⊗ {i1 7→ τ [j1]}, ∆∆′∆′′;C |= 0 ≤ i2 ≤ j1 and ∆∆′∆′′; Γ; C; Σ′ ⊗
{i1 7→ τ [i2]} ⊗ {k1 7→ τ [k2]} ` I ′, where k1 ≡ i1 + sizeof (τ) ∗ i2 and
k2 ≡ j1 − i2. Here, by the induction hypothesis and the lemmas A.17
and A.12, ∆∆′′; Cθ ` Σθ = Σ′θ ⊗ {i1θ 7→ τθ[j1θ]}, ∆∆′′;Cθ |= 0 ≤
i2θ ≤ j1θ and ∆∆′′; Γθ;Cθ; Σ′θ⊗{i1θ 7→ τθ[i2θ]}⊗ {k1θ 7→ τθ[k2θ]} `
I ′θ. Now, because sizeof (τ) = sizeof (τθ), by the typing rule SPLIT,
we have ∆∆′′; Γθ;Cθ; Σθ ` Iθ(= split i1θ, i2θ; I ′θ).

• Case CONCAT

From the typing rule, we have I = conat i1, i2, i3; I ′, ∆∆′∆′′; C ` Σ =
Σ′ ⊗ {i1 7→ τ [i2]} ⊗ {j1 7→ τ [j2]}, ∆∆′∆′′;C |= j1 = i1 + sizeof (τ) ∗ i2
and ∆∆′∆′′; Γ; C; Σ′ ⊗ {i1 7→ τ [i2 + j2]} ` I ′. Here, by the induc-
tion hypothesis and the lemmas A.17 and A.12, ∆∆′′; Cθ ` Σθ =
Σ′θ⊗{i1θ 7→ τθ[i2θ]}⊗{j1θ 7→ τθ[j2θ]} and ∆∆′′; Γθ; Cθ; Σ′θ⊗{i1θ 7→
τθ[i2θ + j2θ]} ` I ′θ. Now, because sizeof (τ) = sizeof (τθ), by the typ-
ing rule CONCAT, we have ∆∆′′; Γθ; Cθ; Σθ ` Iθ(= concat i1θ, i2θ, i3θ; I ′θ).

• Case TUPLESPLIT

From the typing rule, we have I = tuple split i1, n2; I ′, ∆∆′∆′′; C `
Σ = Σ′⊗{i1 7→ 〈σ1, . . . , σn〉}, ∆∆′∆′′; C |= 0 < n2 < n and ∆∆′∆′′; Γ; C; Σ′⊗
{i1 7→ 〈σ1, . . . , σn2〉} ⊗ {i1 + n2 7→ 〈σn2+1, . . . , σn〉} ` I ′. Here, by
the induction hypothesis and the lemmas A.17 and A.12, ∆∆′′; Cθ `
Σθ = Σ′θ ⊗ {i1θ 7→ 〈σ1θ, . . . , σnθ〉}, ∆∆′′; Cθ |= 0 < n2 < n and
∆∆′′; Γθ;Cθ; Σ′θ⊗{i1θ 7→ 〈σ1θ, . . . , σn2θ〉}⊗{i1θ+n2 7→ 〈σn2+1θ, . . . , σnθ〉} `
I ′θ. Now, by the typing rule TUPLESPLIT, ∆∆′′; Γθ;Cθ; Σθ ` Iθ(=
tuple split i1θ, n2; I ′θ).

• Case TUPLECONCAT

From the typing rule, we have I = tuple concat i1, i2; I ′, ∆∆′∆′′;C `
Σ = Σ′⊗{i1 7→ 〈σ1, . . . , σn〉}⊗{i2 7→ 〈σ′1, . . . , σ′m〉}, ∆∆′∆′′; C |= i2 =
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i1 + n and ∆∆′∆′′; Γ; C; Σ′ ⊗ {i1 7→ 〈σ1, . . . , σn, σ′1, . . . , σ′m〉} ` I ′.
Here, by the induction hypothesis and the lemmas A.17 and A.12,
∆∆′′;Cθ ` Σθ = Σ′θ⊗{i1θ 7→ 〈σ1θ, . . . , σnθ〉}⊗{i2θ 7→ 〈σ′1θ, . . . , σ′mθ〉},
∆∆′′;Cθ |= i2θ = i1θ + n and ∆∆′′; Γθ; Cθ; Σ′θ⊗ {i1θ 7→
〈σ1θ, . . . , σnθ, σ′1θ, . . . , σ′mθ〉} ` I ′θ. Now, by the typing rule TUPLECONCAT,
∆∆′′; Γθ; Cθ; Σθ ` Iθ(= tuple concat i1θ, i2θ; I ′θ).

A.3 Constraints weakening lemmas

Lemma A.22 (Constraints weakening: integer constraints)
If ∆;C ′ |= C and ∆;C |= C ′′, then ∆;C ′ |= C ′′.

Proof From the definition of the relation |=, C ′′ is deduced from C and C
is deduced from C ′. That is, C ′′ is deduced from C. Thus, ∆; C ′ |= C ′′.

Lemma A.23 (Constraints weakening: integer constraints equality)
If ∆;C ′ |= C and ∆;C ` C1 = C2, then ∆;C ′ ` C1 = C2.

Proof From the typing rule, we have ∆; C ∧ C1 |= C2 and ∆; C ∧ C2 |=
C1. Here, from the definition of the relation |=, ∆; C ′ ∧ C1 |= C ∧ C1 and
∆; C ′ ∧ C2 |= C ∧ C2. Thus, by the typing rule EQCSTRT, ∆;C ′ ` C1 = C2.

Lemma A.24 (Constraints weakening: value type equality)
If ∆;C ′ |= C and ∆;C ` σ = σ′, then ∆;C ′ ` σ = σ′.

Lemma A.25 (Constraints weakening: tuple type equality)
If ∆;C ′ |= C and ∆;C ` τ = τ ′, then ∆; C ′ ` τ = τ ′.

Lemma A.26 (Constraints weakening: array type equality)
If ∆;C ′ |= C and ∆;C ` at = at ′, then ∆; C ′ ` at = at ′.

Lemma A.27 (Constraints weakening: memory type equality)
If ∆;C ′ |= C and ∆;C ` Σ = Σ′, then ∆; C ′ ` Σ = Σ′.

Lemma A.28 (Constraints weakening: registers type equality)
If ∆;C ′ |= C and ∆;C ` Γ = Γ′, then ∆; C ′ ` Γ = Γ′.

Proof By induction on the typing derivation. the lemmas A.24, A.25, A.26,
A.27 and A.28 are proved simultaneously.
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Proof of the lemma A.24
The proof is by case analysis on the last rule of the derivation.

• Case EQINT

From the typing rule, we have σ ≡ i, σ′ ≡ i′ and ∆; C |= i = i′. Here,
by the lemma A.22, ∆; C ′ |= i = i′. Thus, by the typing rule EQINT,
we have ∆; C ′ |= σ = σ′.

• Case EQLABEL

From the typing rule, we have ∆∆′; C ` C1 = C2, ∆∆′; C ∧ C1 `
Σ1 = Σ2 and ∆∆′;C ∧C1 ` Γ1 = Γ2, where σ ≡ ∀∆′.|C1|[Σ1](Γ1) and
σ′ ≡ ∀∆′.|C2|[Σ2](Γ2). Here, by the lemma A.23, ∆∆′; C ′ ` C1 = C2.
Next, by the definition of the relation |=, we have ∆∆′; C ′ ∧ C1 |=
C ∧ C1. Therefore, by the induction hypothesis and the lemma A.27,
∆∆′;C ′∧C1 ` Σ1 = Σ2. In addition, by the induction hypothesis and
the lemma A.28, ∆∆′;C ′ ∧ C1 ` Γ1 = Γ2. Thus, by the typing rule
EQLABEL, we have ∆;C ′ ` σ = σ′.

Proof of the lemma A.25
The proof is by case analysis on the last rule of the derivation.

• Case EQTUPLE

From the typing rule, ∀i.∆;C ` σi = σ′i, where τ ≡ 〈σ1, . . . , σn〉
and τ ′ ≡ 〈σ′1, . . . , σ′n〉. Here, by the induction hypothesis and the
lemma A.24, ∀i.∆;C7 ` σi = σ′i. Thus, by the typing rule EQTUPLE,
we have ∆; C ` τ = τ ′.

• Case EQEX

From the typing rule, we have ∆∆′; C ` C1 = C2, ∆∆′; C ∧ C1 `
Σ1 = Σ2 and ∆∆′;C ∧ C1 ` τ1 = τ2, where τ ≡ ∃∆′.|C1|[Σ1]τ1 and
τ ′ ≡ ∃∆′.|C2|[Σ2]τ2. Here, by the lemma A.23, ∆∆′; C ′ ` C1 = C2.
Next, by the induction hypothesis and the lemma A.27, ∆∆′; C ′∧C1 `
Σ1 = Σ2 because ∆∆′;C ′ ∧ C1 |= C ∧ C1. Last, by the induction
hypothesis, ∆∆′; C ′ ∧ C1 ` τ1 = τ2. Thus, by the typing rule EQEX,
we have ∆; C ′ ` τ = τ ′.

• Case EQREC

From the typing rule, τ ≡≡ τ ′ρ (c1, . . . , cn). Thus, by the typing rule
EQREC, we have ∆; C ′ ` τ = τ ′, because the rule does not depend on
integer constraints.
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Proof of the lemma A.26
From the typing rule EQARRAY, we have ∆; C ` τ = τ ′ and ∆;C |=

i = i′, where at ≡ τ [i] and at ′ ≡ τ ′[i′]. Here, by the induction hypothesis
and the lemma A.25, ∆;C ′ ` τ = τ ′. In addition, by the lemma A.22,
∆; C ′ |= i = i′. Thus, by the typing rule EQARRAY, we have ∆;C ` at = at ′

Proof of the lemma A.27
The proof is by case analysis on the last rule of the derivation.

• Case EQMEMEMPTY

From the typing rule, Σ ≡ Σ′ ≡ ·. Thus, by the typing rule EQMEMEMPTY,
∆;C ′ ` Σ = Σ′.

• Case EQMEMLOC

From the typing rule, we have Σ ≡ Σ1 ⊗ {i1 7→ at1} = Σ2 ⊗ {i2 7→
at2}, ∆; C ` Σ1 = Σ2, ∆; C |= i1 = i2 and ∆; C ` at1 = at2.
Here, by the induction hypothesis, ∆; C ′ ` Σ1 = Σ2. Next, by the
lemma A.22, ∆;C ′ ` i1 = i2. Then, by the induction hypothesis
and the lemma A.26, ∆;C ′ ` at1 = at2. Thus, by the typing rule
EQMEMLOC, we have ∆;C ′ ` Σ = Σ′.

• Case EQMEMVAR

From the typing rule, we have Σ ≡ Σ1 ⊗ ε and Σ′ ≡ Σ2 ⊗ ε and
∆;C ` Σ1 = Σ2. Here, by the induction hypothesis, we have ∆; C ′ `
Σ1 = Σ2. Thus, by the typing rule EQMEMVAR, ∆; C ′ ` Σ = Σ′.

• Case EQMEMZEROARRAYL
From the typing rule, we have Σ ≡ Σ1 ⊗ {i1 7→ τ [i2]}, ∆;C ` Σ1 = Σ′

and ∆;C |= i2 = 0. Here, by the induction hypothesis, ∆; C ′ ` Σ1 =
Σ′. Then, by the lemma A.22, ∆; C ′ |= i2 = 0. Thus, by the typing
rule EQMEMZEROARRAYL, we have ∆;C ′ ` Σ = Σ′.

• Case EQMEMZEROARRAYR
Same as the case EQMEMZEROARRAYL.

Proof of the lemma A.28
The proof is by case analysis on the last rule of the derivation.

• Case EQREGSNULL

From the typing rule, Γ ≡ Γ′ ≡ ·. Now, by the typing rule EQREGSNULL,
∆;C ′ ` Γ = Γ′, because the rule does not depend on integer con-
straints.
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• Case EQREGSREG

From the typing rule, Γ ≡ Γ1{r : σ}, Γ′ ≡ Γ2{r : σ′}, ∆; C ` Γ1 = Γ2

and ∆; C ` σ = σ′. Here, by the induction hypothesis, ∆;C ′ ` Γ1 =
Γ2. In addition, by the induction hypothesis and the lemma A.24,
∆; C ′ ` σ = σ′. Thus, by the typing rule EQREGSREG, ∆; C ` Γ = Γ′.

Lemma A.29 (Constraints weakening: registers type subtyping)
If ∆; C ′ |= C and ∆; C ` Γ ≤ Γ′, then ∆;C ′ ` Γ ≤ Γ′.

Proof By induction on the derivation ∆; C ` Γ ≤ Γ′. The proof is by case
analysis on the last rule of the derivation.

• Case SUBREGSNULL

From the typing rule, Γ′ ≡ ·. Thus, ∆;C ` Γ ≤ Γ′, because the rule
does not depend on integer constraints.

• Case SUBREGSREG

From the typing rule, Γ ≡ Γ1{r : σ}, Γ ≡ Γ2{r : σ′}, ∆; C ` Γ1 ≤ Γ2

and ∆; C ` σ = σ′. Here, by the induction hypothesis, ∆;C ′ ` Γ1 ≤
Γ2. In addition, by the lemma A.24, ∆; C ′ ` σ = σ′. Thus, by the
typing rule SUBREGSREG, ∆;C ′ ` Γ ≤ Γ′.

Lemma A.30 (Constraints weakening: value type)
If ∆; C ′ |= C and ∆; C ` v : σ, then ∆;C ′ ` v : σ.

Proof By case analysis on the last rule of the derivation ∆; C ` v : σ.

• Case VALUEINTEGER

From the typing rule, ∆; C |= n = i, where v ≡ n and σ ≡ i. Here,
by the lemma A.22, ∆;C ′ |= n = i. Therefore, by the typing rule
VALUEINTEGER, we have ∆;C ′ ` v : σ.

• Case VALUELABEL

From the typing rule, v ≡ lθ and ∆;C ` σ = ∀∆′\∆′′.|C ′′|[Σ′′](Γ′′),
where θ ≡ [c1, . . . , cn/∆′′], Φ(l) ≡ ∀∆′.|C1|[Σ′](Γ′), C ′′ ≡ C1θ, Σ′′ ≡
Σ′θ and Γ′′ ≡ Γ′θ. Here, by the lemma A.24, ∆; C ′ ` σ = ∀∆′\∆′′.|C ′′|[Σ′′](Γ′′).
Thus, by the typing rule VALUELABEL, we have ∆; C ` v : σ.

Lemma A.31 (Constraints weakening: tuple type)
If ∆; C ′ |= C and ∆; C ` t : τ , then ∆;C ′ ` t : τ .

Proof By straightforward induction on the derivation of ∆; C ` t : τ .
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Lemma A.32 (Constraints weakening: instructions)
If ∆;C ′ |= C and ∆;Γ; C; Σ ` I , then ∆;Γ; C ′; Σ ` I .

Proof By induction on the derivation of ∆;Γ; C; Σ ` I . The proof is by case
analysis on the last rule of the derivation.

• Case LOAD

From the typing rule, we have I ≡ ld [rs + n], rd; I ′, ∆; C ` Σ =
Σ′ ⊗ {Γ(rs) 7→ 〈. . . , σn, . . .〉} and ∆; Γ{rd 7→ σn};C; Σ ` I ′. Here, by
the lemma A.27, ∆; C ′ ` Σ = Σ′⊗{Γ(rs) 7→ 〈. . . , σn, . . .〉}. In addition,
by the induction hypothesis, ∆;Γ{rd 7→ σn};C ′; Σ ` I ′. Thus, by the
typing rule LOAD, we have ∆; Γ;C ′; Σ ` I .

• Case STORE

From the typing rule, we have I ≡ st rs, [rd + n]; I ′, ∆;C ` Σ = Σ′ ⊗
{Γ(rd) 7→ 〈. . . , σn, . . .〉} and ∆;Γ; C; Σ′ ⊗ {Γ(rd) 7→ 〈. . . , Γ(rs), . . .〉} `
I ′. Here, by the lemma A.27, ∆;C ′ ` Σ = Σ′⊗{Γ(rd) 7→ 〈. . . , σn, . . .〉}.
In addition, by the induction hypothesis, ∆;Γ; C ′; Σ′⊗{Γ(rd) 7→ 〈. . . , Γ(rs), . . .〉} `
I ′. Thus, by the typing rule STORE, we have ∆;Γ;C ′; Σ ` I .

• Case MOVE

From the typing rule, we have I ≡ mov rs, rd; I ′ and ∆;Γ{rd 7→ Γ(rs)};C; Σ `
I ′. Here, by the induction hypothesis, ∆;Γ{rd 7→ Γ(rs)}; C ′; Σ ` I ′.
Thus, by the typing rule MOVE, we have ∆;Γ; C ′; Σ ` I .

• Case MOVEI

From the typing rule, we have I ≡ movi v, rd; I ′, ∆; C ` v : σ and
∆;Γ{rd 7→ σ};C; Σ ` I ′. Here, by the lemma A.30, ∆; C ′ ` v : σ.
In addition, by the induction hypothesis, ∆;Γ{rd 7→ σ}; C ′; Σ ` I ′.
Thus, by the typing rule MOVEI, we have ∆;Γ; C ′; Σ ` I .

• Case ARITH

From the typing rule, we have I ≡ (add, sub, mul) rs1 , rs2 , rd; I ′ and
∆;Γ{rd 7→ Γ(rs2)(+,−, ∗)Γ(rs1)}; C; Σ ` I ′. Here, by the induction
hypothesis, ∆;Γ{rd 7→ Γ(rs2)(+,−, ∗)Γ(rs1)}; C ′; Σ ` I ′. Thus, by the
typing rule ARITH, we have ∆;Γ; C ′; Σ ` I .

• Case BRANCH

From the typing rule, we have I ≡ (beq, ble) rs1 , rs2 , rd; I ′, ∆;C `
Γ(rd) = ∀.|C1|[Σ′](Γ′), ∆;C ′′ |= C1, ∆;C ′′ ` Σ = Σ′ ∆;C ′′ ` Γ ≤ Γ′,
and ∆;Γ; C ∧ Γ(rs1)(6=, >)Γ(rs2); Σ ` I ′, where C ′′ ≡ C ∧ Γ(rs1)(=
,≤)Γ(rs2). Now, let C2 ≡ C ′ ∧ Γ(rs1)(=,≤)Γ(rs2). Here, by the
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lemma A.24, ∆;C ′ ` Γ(rd) = ∀.|C1|[Σ′](Γ′). In addition, by the
lemma A.22, we have ∆;C2 |= C1. Next, by the lemma A.27, ∆; C2 `
Σ = Σ′. Then, by the lemma A.29, ∆; C2 ` Γ ≤ Γ′. Last, by the in-
duction hypothesis, ∆;Γ; C ′∧Γ(rs1)(6=, >)Γ(rs2); Σ ` I ′. Thus, by the
typing rule BRANCH, we have ∆;Γ; C ′; Σ ` I .

• Case JUMP

From the typing rule, we have I ≡ jmp rd, ∆; C ` Γ(rd) = ∀.|C1|[Σ′](Γ′),
∆; C |= C1, ∆; C ` Σ = Σ′ and ∆; C ` Γ ≤ Γ′. Here, by the
lemma A.24, ∆;C ′ ` Γ(rd) = ∀.|C1|[Σ′](Γ′). Next, by the lemma A.22,
∆; C ′ |= C1. In addition, by the lemma A.27, ∆; C ′ ` Σ = Σ′. Last, by
the lemma A.29, ∆; C ′ ` Γ ≤ Γ′. Thus, by the typing rule JUMP, we
have ∆;Γ; C ′; Σ ` I .

• Case APPLY

From the typing rule, we have I ≡ apply rθ; I ′, ∆;Γ{r 7→ σf};C; Σ `
I , where σf ≡ ∀∆′\∆′′.|C ′′|[Σ′′](Γ′′), C ′′ ≡ C1θ, Σ′′ ≡ Σ′θ, Γ′′ ≡ Γ′θ,
Γ(r) ≡ ∀∆′.|C1|[Σ′](Γ′) and θ ≡ [c1, . . . , cn/∆′′]. Here, by the induc-
tion hypothesis, ∆; Γ{r 7→ σf};C ′; Σ ` I ′. Thus, by the typing rule
APPLY, ∆;Γ; C ′; Σ ` I .

• Case ROLL

From the typing rule, we have I ≡ rollτ (c1, . . . , cn), ∆; C ` Σ =
Σ′⊗{i 7→ τ ′[µη[∆′].τ ′/η][c1, . . . , cn/∆′]} and ∆;Γ; C; Σ′⊗{i 7→ τ} ` I ′,
where τ ≡ µη[∆′].τ ′ (c1, . . . , cn). Here, by the lemma A.27, ∆;C ′ `
Σ = Σ′ ⊗ {i 7→ τ ′[µη[∆′].τ ′/η][c1, . . . , cn/∆′]}. In addition, by the
induction hypothesis, ∆; Γ;C ′; Σ′ ⊗ {i 7→ τ} ` I ′. Thus, by the typing
rule ROLL, ∆;Γ; C ′; Σ ` I .

• Case UNROLL

From the typing rule, we have I ≡ unroll i; I ′, ∆; C ` Σ = Σ′⊗{i 7→
µη[∆′].τ ′(c1, . . . , cn)} and ∆; Γ;C; Σ′⊗{i 7→ τ ′[µη[∆′].τ ′/η][c1, . . . , cn/∆′]} `
I ′. Here, by the lemma A.27, ∆;C ` Σ = Σ′⊗{i 7→ µη[∆′].τ ′(c1, . . . , cn)}.
In addition, by the induction hypothesis, ∆;Γ; C ′; Σ′⊗{i 7→ τ ′[µη[∆′].τ ′/η][c1, . . . , cn/∆′]} `
I ′. Thus, by the typing rule UNROLL, ∆;Γ; C ′; Σ ` I .

• Case PACK

From the typing rule, we have I ≡ pack[c1,...,cn|Σ′θ]as τ i; I ′, ∆; C ` Σ =
Σ′′⊗{i 7→ τ ′θ}⊗Σ′θ, ∆; C |= C1θ and ∆;Γ; C; Σ′′⊗{i 7→ τ} ` I ′, where
τ ≡ ∃∆′.|C1|[Σ′]τ ′ and θ ≡ [c1, . . . , cn/∆′]. Here, by the lemma A.27,
∆; C ′ ` Σ = Σ′′ ⊗ {i 7→ τ ′θ} ⊗ Σ′θ. Next, by the lemma A.22, ∆;C ′ |=
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C1θ. In addition, by the induction hypothesis, ∆;Γ; C ′; Σ′′ ⊗ {i 7→
τ} ` I ′. Thus, by the typing rule PACK, ∆; Γ;C ′; Σ ` I .

• Case UNPACK

From the typing rule, we have I ≡ unpack i with ∆′′; I ′, ∆; C ` Σ =
Σ′′⊗{i 7→ ∃∆′.|C1|[Σ′]τ} and ∆∆′′; Γ; C∧C1θ; Σ′⊗{i 7→ τθ}⊗Σ′θ ` I ,
where θ ≡ [∆′′/∆′]. Here, by the lemma A.27, ∆;C ′ ` Σ = Σ′′ ⊗
{i 7→ ∃∆′.|C1|[Σ′]τ}. Now, by the lemma A.22, ∆∆′′; C ′ ∧ C1θ |=
C∧C1θ. Therefore, by the induction hypothesis, ∆∆′′; Γ; C ′∧C1θ; Σ′′⊗
{i 7→ τθ} ⊗ Σ′θ ` I ′. Thus, by the typing rule UNPACK, we have
∆;Γ; C ′; Σ ` I .

• Case SPLIT

From the typing rule, we have I ≡ split i1, i2; I ′, ∆;C ` Σ = Σ′ ⊗
{i1 7→ τ [j1]}, ∆; C |= 0 ≤ i2 ≤ j1 and ∆; Γ;C; Σ′⊗{i1 7→ τ [i2]}⊗{k1 7→
τ [k2]} ` I ′, where k1 ≡ i1 + sizeof (τ) ∗ i2 and k2 ≡ j1 − i2. Here,
by the lemma A.27, ∆; C ′ ` Σ = Σ′ ⊗ {i1 7→ τ [j1]}. Next, by the
lemma A.22, ∆;C ′ |= 0 ≤ i2 ≤ j1. In addition, by the induction
hypothesis, ∆;Γ; C ′; Σ′ ⊗ {i1 7→ τ [i2]} ⊗ {k1 7→ τ [k2]} ` I ′. Thus, by
the typing rule SPLIT, we have ∆;Γ; C ′; Σ ` I .

• Case CONCAT

From the typing rule, we have I ≡ concat i1, j1, j2; I ′, ∆;C ` Σ =
Σ′ ⊗ {i1 7→ τ [i2]} ⊗ {j1 7→ τ [j2]}, ∆; C |= j1 = i1 + sizeof (τ) ∗ i2
and ∆;Γ; C; Σ′ ⊗ {i1 7→ τ [i2 + j2]} ` I ′. Here, by the lemma A.27,
∆;C ′ ` Σ = Σ′⊗{i1 7→ τ [i2]}⊗{j1 7→ τ [j2]}. Then, by the lemma A.22,
∆;C ′ |= j1 = i1 + sizeof (τ) ∗ i2. In addition, by the induction hypoth-
esis, ∆;Γ; C ′; Σ′ ⊗ {i1 7→ τ [i2 + j2]} ` I ′. Thus, by the typing rule
CONCAT, we have ∆;Γ; C ′; Σ ` I .

• Case TUPLESPLIT

From the typing rule, we have I ≡ tuple split i1, n2; I ′, ∆; C ` Σ =
Σ′ ⊗ {i1 7→ 〈σ1, . . . , σn〉}, ∆;C |= 0 < n2 < n and ∆;Γ; C; Σ′ ⊗
{i1 7→ 〈σ1, . . . , σn2〉} ⊗ {i1 + n2 7→ 〈σn2+1, . . . , σn〉} ` I ′. Here, by
the lemma A.27, ∆; C ′ ` Σ = Σ′ ⊗ {i1 7→ 〈σ1, . . . , σn〉}. Then, by
the lemma A.22, ∆; C ′ |= 0 < n2 < n. In addition, by the induc-
tion hypothesis, ∆;Γ; C ′; Σ′ ⊗ {i1 7→ 〈σ1, . . . , σn2〉} ⊗ {i1 + n2 7→
〈σn2+1, . . . , σn〉} ` I ′. Thus, by the typing rule TUPLESPLIT, we have
∆;Γ; C ′; Σ ` I .

• Case TUPLECONCAT

From the typing rule, we have I ≡ tuple concat i1, i2; i′, ∆;C `
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Σ = Σ′ ⊗ {i1 7→ 〈σ1, . . . , σn〉} ⊗ {i2 7→ 〈σ′1, . . . , σ′m〉}, ∆;C |= i2 =
i1 + n and ∆;Γ; C; Σ′ ⊗ {i1 7→ 〈σ1, . . . , σn, σ′1, . . . , σ′m〉} ` I ′. Here,
by the lemma A.27, ∆; C ′ ` Σ = Σ′ ⊗ {i1 7→ 〈σ1, . . . , σn〉} ⊗ {i2 7→
〈σ′1, . . . , σ′m〉}. Next, by the lemma A.22, ∆; C ′ |= i2 = i1 + n. In addi-
tion, by the induction hypothesis, ∆; Γ;C ′; Σ′⊗{i1 7→ 〈σ1, . . . , σn, σ′1, . . . , σ′m〉} `
I ′. Thus, by the typing rule TUPLECONCAT, we have ∆;Γ; C ′; Σ ` I .

Lemma A.33
If ∆; C ` a : τ [i], then ∆; C |= i > 0.

Proof From the typing rule ARRAY, we have a = 〈t1, . . . , tn〉 and ∆;C |=
n = i. Thus, ∆;C |= i > 0, because n > 0

Lemma A.34
If ` M : Σ, then ∀m ∈ Dom(Σ).nm ≥ 0 where Σ(m) ≡ τm[nm].

Proof From the typing rule MEMORY, M ≡ {n′1 7→ a1} . . . {n′k 7→ ak},
Σ ≡ {n′1 7→ τ1[n1]} ⊗ . . . ⊗ {n′k 7→ τk[nk]} ⊗ Σ′, ∀i.·; · ` ai : τi[ni] and
∀m ∈ Dom(Σ′).·; · ` Σ′(m) = τm[0]. Therefore, ∀i ∈ {n′1, . . . , n′k}.ni > 0
by the lemma A.33. In addition, ∀m ∈ Dom.nm = 0 from the typing rule
EQARRAY. Thus, ∀m ∈ Dom(Σ).nm ≥ 0.

Lemma A.35 (Null Array Addition)
If ` M : Σ, then ` M : Σ⊗ {n 7→ τ [0]}.

Proof From the typing rule MEMORY, we have GU(M), ∀i.·; · ` ai : at i and
∀m ∈ Dom(Σ′).·; · ` Σ′(m) = τm[0], where M ≡ {n1 7→ a1} . . . {nk 7→ ak}
and Σ ≡ {n1 7→ at1} ⊗ . . . ⊗ {nk 7→ atk} ⊗ Σ′. Here Σ ⊗ {n 7→ τ [0]} ≡
Σ ≡ {n1 7→ at1} ⊗ . . . ⊗ {nk 7→ atk} ⊗ Σ′ ⊗ {n 7→ τ [0]}. In addition,
∀m ∈ Dom(Σ′ ⊗ {n 7→ τ [0]}).·; · ` Σ′(m) = τm[0]. Thus, by the typing rule
MEMORY, ` M : Σ⊗ {n 7→ τ [0]}.

Lemma A.36 (Null Array Deletion)
If ` M : Σ⊗ {n 7→ τ [0]}, then ` M : Σ.

Proof From the typing rule MEMORY, we have GU(M), ∀i.·; · ` ai : at i and
∀m ∈ Dom(Σ′).·; · ` Σ′(m) = τm[0], where M ≡ {n1 7→ a1} . . . {nk 7→ ak}
and Σ ⊗ {n 7→ τ [0]} ≡ {n1 7→ at1} ⊗ . . . ⊗ {nk 7→ atk} ⊗ Σ′. Here Σ′ ≡
Σ′′ ⊗ {n 7→ τ [0]} because ∀i.mi > 0 where at i ≡ τi[mi], by the lemma A.33.
Therefore, Σ ≡ {n1 7→ at1} ⊗ . . . ⊗ {nk 7→ atk} ⊗ Σ′′. Thus, by the typing
rule MEMORY, ` M : Σ because ∀m ∈ Dom(Σ′′).·; · ` Σ′′(m) = τm[0].
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A.4 Transitivity lemmas

Lemma A.37 (Value type transitivity)
If ∆;C ` v : σ and ∆;C ` σ = σ′, then ∆;C ` v : σ′.

Proof By induction on the derivation of ∆; C ` v : σ. The proof is by case
analysis on the last rule of the derivation.

• Case VALUEINTEGER

From the typing rule, we have ∆; C |= v = σ. Therefore, ∆;C |= v =
σ′. Thus, by the typing rule VALUEINTEGER, ∆; C ` v : σ′.

• Case VALUELABEL

From the typing rule, we have ∆; C ` σ = ∀∆′\∆′′.|C ′′|[Σ′′](Γ′′), for
some Σ′′ and Γ′′. Now, we have ∆; C ` σ′ = ∀∆′\∆′′.|C ′′|[Σ′′](Γ′′).
Thus, from the typing rule VALUELABEL, ∆; C ` v : σ′.

Lemma A.38 (Tuple type transitivity)
If ∆;C ` t : τ and ∆;C ` τ = τ ′, then ∆; C ` t : τ ′.

Proof By induction on the derivation of ∆;C ` t : τ . The proof is by case
analysis on the last rule of the derivation.

• Case TUPLE

From the typing rule, we have t ≡ 〈v1, . . . , vn〉, τ ≡ 〈σ1, . . . , σn〉 and
∀j.∆;C ` vj : σj . Because of the form of τ , the last rule of the deriva-
tion ∆; C ` τ = τ ′ is EQTUPLE. Therefore, ∀j.∆; C ` σj = σ′j , where
τ ′ ≡ 〈σ′1, . . . , σ′n〉. Here, by the lemma A.37, ∀j.∆; C ` vj : σ′j . Thus,
∆;C ` t : τ ′.

• Case TUPLEROLL

From the typing rule, we have t ≡ roll(t′) and ∆;C ` t′ [ρ/η] [c1, . . . , cn/∆1],
where τ ≡ ρ (c1, . . . , cn) and ρ ≡ µη [∆1] .τ1. Because of the form of
τ , the last rule of the derivation ∆;C ` τ = τ ′ is EQREC. There-
fore, τ ′ ≡ ρ (c1, . . . , cn). That is, τ ≡ τ ′. Thus, by the typing rule
TUPLEROLL, ∆;C ` t : τ ′(= τ).

• Case TUPLEPACK

From the typing rule, we have t ≡ pack[c1,...,cn|M ](t
′), ∆; C ` t′ :

τ1 [c1, . . . , cn/∆1], ` M : Σ1 [c1, . . . , cn/∆1] and ∆; C |= C1 [c1, . . . , cn/∆1],
where τ ≡ ∃∆1.|C1|[Σ1]τ1. Because of the form of τ , the last rule of
the derivation ∆;C ` τ = τ ′ is EQEX. Therefore, ∆∆1;C ` C1 = C2,
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∆∆1; C ∧ C1 ` Σ1 = Σ2 and ∆∆1; C ∧ C1 ` τ1 = τ2, where τ ′ ≡
∃∆1.|C2|[Σ2]τ2. Here, by the lemma A.15, ∆; C ∧ C1 [c1, . . . , cn/∆1] `
τ1 [c1, . . . , cn/∆1] = τ2 [c1, . . . , cn/∆1], because C [c1, . . . , cn/∆1] ≡ C.
Now, by the induction hypothesis, ∆; C ∧ C1 [c1, . . . , cn/∆1] ` t′ :
τ2 [c1, . . . , cn/∆1]. Here, by the lemma A.31, ∆; C ` t′ : τ2 [c1, . . . , cn/∆1].

Next, by the lemma A.17, ∆;C∧C1 [c1, . . . , cn/∆1] ` Σ1 [c1, . . . , cn/∆1] =
Σ2 [c1, . . . , cn/∆1]. Here, from the ` M : Σ1 [c1, . . . , cn/∆1], Σ1 [c1, . . . , cn/∆1]
does not contain any type variables. Therefore, ·; · ` Σ1 [c1, . . . , cn/∆1] =
Σ2 [c1, . . . , cn/∆1]. Thus, ` M : Σ2 [c1, . . . , cn/∆1].

Then, by the lemma A.13, ∆; C ` Σ1 [c1, . . . , cn/∆1] = Σ2 [c1, . . . , cn/∆1].
Here, by the typing rule EQCSTRT, ∆;C∧C1 [c1, . . . , cn/∆1] |= C2 [c1, . . . , cn/∆1].
Now, by the lemma A.22, ∆; C |= C2 [c1, . . . , cn/∆1], because ∆; C |=
C1 [c1, . . . , cn/∆1] and ∆;C |= C.

Thus, ∆; C ` t : τ ′.

Lemma A.39 (Array type transitivity)
If ∆; C ` a : at and ∆;C ` at = at ′, then ∆;C ` a : at ′.

Proof From the typing rule ARRAY, we have a ≡ 〈t1, . . . , tn〉, ∀j.∆; C `
tj : τ and ∆;C |= n = i, where at ≡ τ [i]. Now, from the typing rule
EQARRAY, ∆; C ` τ = τ ′ and ∆; C |= i = i′, where at ′ ≡ τ ′[i′]. Here, by the
induction hypothesis and the lemma A.38, ∀j.∆; C ` tj : τ ′. In addition,
∆;C |= n = i′. Thus, by the typing rule ARRAY, ∆; C ` a : at ′.

Lemma A.40 (Memory type transitivity)
If ` M : Σ and ·; · ` Σ = Σ′, then ` M : Σ′.

Proof By induction on the derivation of ·; · ` Σ = Σ′. The proof is by case
analysis on the last rule of the derivation.

• Case EQMEMEMPTY

From the typing rule, Σ ≡ Σ′ ≡ ·. Therefore, by the typing rule
MEMORY, M ≡ · and GU(M). Thus, ` M : Σ′ by the typing rule
MEMORY.

• Case EQMEMLOC

From the typing rule, Σ ≡ Σ1 ⊗ {n1 7→ at1}, Σ′ ≡ Σ2 ⊗ {n2 7→ at2},
·; · ` Σ1 = Σ2, ·; · |= n1 = n2 and ·; · ` at1 = at2.

Here let at1 ≡ τ1[m1] and at2 ≡ τ2[m2]. Then, by the typing rule
EQARRAY, ·; · ` m1 = m2. Here, by the lemma A.34, m1(= m2) ≥ 0
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If m1(= m2) > 0, then, by the lemma A.43, M = M ′ ⊗ {n1 7→ a}
where ·; · ` a : at1 and ` M ′ : Σ1. Now, by the induction hypothesis,
` M ′ : Σ2. In addition, by the lemma A.39, ·; · ` a : at2. Therefore, by
the lemma A.11, ` M : Σ′, because Σ′ ≡ Σ2 ⊗ {n2 7→ at2} = Σ′ and
M = M ′ ⊗ {n2 7→ a}.

If m1(= m2) = 0, then, by the lemma A.36, ` M : Σ1. Here, by the
induction hypothesis, ` M : Σ2. Now, by the lemma A.35, ` M : Σ′.

• Case EQMEMVAR

This rule never be used because ∆ ≡ ·.

• Case EQMEMZEROARRAYL
By the lemma B.9, we have ·; · ` Σ′ = Σ. Then, the rest is the same as
the case EQMEMZEROARRAYR.

• Case EQMEMZEROARRAYR
From the typing rule, Σ′ ≡ Σ2 ⊗ {n1 7→ τ [n2]}, ·; · ` Σ = Σ2 and
·; · |= n2 = 0. Now, by the induction hypothesis, ` M : Σ2. Then, by
the lemma A.35, ` M : Σ′.

Lemma A.41 (Registers type equality transitivity)
If ` R : Γ and ·; · ` Γ = Γ′, then ` R : Γ′.

Proof By straightforward induction on the derivation of ·; · ` Γ = Γ′.

Lemma A.42 (Registers type subtyping)
If ` R : Γ and ·; · ` Γ ≤ Γ′, then ` R : Γ′.

Proof By straightforward induction on the derivation of ·; · ` Γ ≤ Γ′.

A.5 Canonical forms lemmas
Lemma A.43 (Canonical form: memory)
If ` M : Σ ⊗ {n 7→ τ [n′]} and n′ > 0, then M = M ′{n 7→ a}, ` M ′ : Σ and
·; · ` a : τ [n′].

Proof By induction on the size of the memory M .

• Case |M | = 0
By the typing rule MEMORY, we have ·; · ` · = Σ⊗{n 7→ τ [n′]}. How-
ever, this contradicts the lemma A.48. Thus, this case never occurs.
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• Case |M | = 1
Let M ≡ {m 7→ a}. Then, by the typing rule MEMORY, we have
·; · ` {m 7→ at} = Σ⊗ {n 7→ τ [n′]} and ·; · ` a : at .

Here if m 6= n, it contradicts the lemma A.48. Thus, m = n. In
addition, by the lemma A.48, we have ·; · ` at = τ [n′] and ·; · ` · = Σ.
Now, by the lemma A.39, ·; · ` a : τ [n′]. Here, by the typing rule
MEMORY, ` · : Σ.

• Case |M | = k
Let M ≡ M ′{m 7→ a}. Then, by the typing rule MEMORY, we have
·; · ` Σ′′ ⊗ {m 7→ at} = Σ⊗ {n 7→ τ [n′]}, ` M ′ : Σ′′ and ·; · ` a : at .

Here if m 6= n, then Σ′′ ≡ Σ1⊗{n 7→ τ ′[n′′]}, ·; · ` Σ1⊗{m 7→ at} = Σ
and ∆; C ` τ = τ ′ and ∆;C |= n′ = n′′, by the lemma A.48. Now,
by the induction hypothesis, M ′ ≡ M ′′{n 7→ a′}, ` M ′′ : Σ1, ·; · ` a′ :
τ ′[n′′] Here let M1 ≡ M ′′{m 7→ a}. Then, M ≡ M1{n 7→ a′}. Now, by
the lemma A.11, ` M1 : Σ1 ⊗ {m 7→ at}, because ` {m 7→ a} : {m 7→
at}. Thus, ` M1 : Σ, because of the lemma A.40. In addition, by the
lemma A.39, ·; · ` a′ : τ [n′].

Lemma A.44 (Canonical form: array)
If ·; · ` 〈t1, . . . , tn〉 : at , then ∀i.·; · ` ti : τ and ·; · |= n = m, where at ≡ τ [m].

Proof From the typing rule ARRAY, we have at ≡ τ [m], ∀i.·; · ` ti : τ and
·; · |= n = m.

Lemma A.45 (Canonical form: tuple)
If ·; · ` t : τ , then

• if τ ≡ 〈σ1, . . . , σn〉, then t ≡ 〈v1, . . . , vn〉 and ∀i.·; · ` ti : σi.

• if τ ≡ µη[∆].τ ′(c1, . . . , cn), then t ≡ roll(t′) and ·; · ` t′ : τ ′[µη[∆].τ ′/η][c1, . . . , cn/∆].

• if τ ≡ ∃∆.|C|[Σ]τ ′, then t ≡ pack[c1,...,cn|M ](t
′), ·; · ` t′ : τ ′[c1, . . . , cn/∆]

and ` M : Σ[c1, . . . , cn/∆].

Proof If τ ≡ 〈σ1, . . . , σn〉, then the last rule of the derivation ·; · ` t : τ is
TUPLE. Therefore, from the typing rule TUPLE, we have t ≡ 〈v1, . . . , vn〉
and ∀i.·; · ` vi : σi.

If τ ≡ µη[∆].τ ′(c1, . . . , cn), then the last rule of the derivation ·; · ` t : τ
is TUPLEROLL. Therefore, from the typing rule TUPLEROLL, we have t ≡
roll(t′) and ·; · ` t′ : τ ′[µη[∆].τ ′/η][c1, . . . , cn/∆].
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If τ ≡ ∃∆.|C|[Σ]τ ′, then the last rule of the derivation of ·; · ` t : τ
is TUPLEPACK. Therefore, from the typing rule TUPLEPACK, we have t ≡
pack[c1,...,cn|M ](t

′), ·; · ` t′ : τ ′[c1, . . . , cn/∆] and ` M : Σ[c1, . . . , cn/∆].

Lemma A.46 (Canonical form: value)
If ∆;C ` v : σ, then

• if σ = i, then ∆;C |= v = i.

• if σ = ∀∆′.|C ′|[Σ′](Γ′), then v = lθ and ∆;C ` σ = ∀∆′′\∆1|C ′′θ|[Σ′′θ](Γ′′θ)
where θ ≡ [c1, . . . , cn/∆1] and Φ(l) ≡ ∀∆2.|C ′′|[Σ′′](Γ′′)

Proof If σ = i, then the last derivation of ∆; C ` v : σ is the typing rule
VALUEINTEGER. Thus, by the typing rule, we have ∆; C |= v = i.

If σ = ∀∆′.|C ′|[Σ′](Γ′), then the last derivation of ∆;C ` v : σ is the
typing rule VALUELABEL. Therefore, by the typing rule, we have ∆;C `
σ = ∀∆1\∆2.|C2|[Σ2](Γ2) and v ≡ lθ, where θ ≡ [c1, . . . , cn/∆2], Phi(l) ≡
∀∆1.|C1|[Σ1](Γ1), C2 ≡ C1θ, Σ2 ≡ Σ1θ and Γ2 ≡ Γ1θ.

Lemma A.47 (Canonical form: memory type zero arrays)
If ∆; C ` Σ = Σ′ ⊗ {i′ 7→ at ′} and ∆;C |= j′ = 0 (where at ′ ≡ τ ′[j′]), then
∆; C ` Σ = Σ′,

Proof By straightforward induction on the derivation of ∆;C ` Σ = Σ′ ⊗
{i′ 7→ at ′}.

Lemma A.48 (Canonical form: memory type location)
If ∆; C ` Σ = Σ′ ⊗ {i′ 7→ at ′} and ∆;C |= j′ > 0 (where at ′ ≡ τ ′[j′]), then
Σ ≡ Σ′′ ⊗ {i 7→ at}, ∆; C ` Σ′′ = Σ′, ∆;C |= i = i′ and ∆;C ` at = at ′.

Proof By induction on the derivation of ∆;C ` Σ = Σ′ ⊗ {i′ 7→ τ ′[j′]}. The
proof is by case analysis on the last rule of the derivation.

• Case EQMEMEMPTY

This case never occurs because Σ′ ⊗ {i′ 7→ at ′} 6≡ ·.
• Case EQMEMLOC

By the typing rule, we have Σ ≡ Σ′′ ⊗ {i 7→ τ [j]}, ∆;C ` Σ′′ = Σ′,
∆;C |= i = i′ and ∆; C ` at = at ′.

• Case EQMEMVAR

By the typing rule, we have Σ′ ≡ Σ1 ⊗ ε, Σ ≡ Σ2 ⊗ ε and ∆;C ` Σ2 =
Σ1 ⊗ {i′ 7→ at ′}. Now, by the induction hypothesis, Σ2 ≡ Σ′2 ⊗ {i 7→
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at}, ∆;C ` Σ′2 = Σ1, ∆; C |= i = i′ and ∆;C ` at = at ′. Here let
Σ′′ ≡ Σ′2⊗ ε. Then, Σ ≡ Σ′′⊗{i 7→ at}. In addition, by the typing rule
EQMEMVAR, we have ∆;C ` Σ′′ = Σ′.

• Case EQMEMZEROARRAYL
By the typing rule, we have Σ′ ≡ Σ1 ⊗ {k 7→ τ ′′[m]}, ∆;C |= m = 0
and ∆;C ` Σ = Σ1 ⊗ {i′ 7→ at ′}. Now, by the induction hypothesis,
Σ ≡ Σ′′ ⊗ {i 7→ at}, ∆; C ` Σ′′ = Σ1, ∆; C |= i = i′ and ∆;C ` at =
at ′. Here, by the typing rule EQMEMVAR, we have ∆;C ` Σ′′ = Σ′(≡
Σ1 ⊗ {k 7→ τ ′′[m]}).

• Case EQMEMZEROARRAYR
Same as Case EQMEMZEROARRAYL.

Lemma A.49 (Canonical form: memory type variable)
If ∆; C ` Σ = Σ′ ⊗ ε, then Σ ≡ Σ′′ ⊗ ε and ∆; C ` Σ′′ = Σ′.

Proof By induction on the derivation of ∆;C ` Σ = Σ′ ⊗ ε. The proof is by
case analysis of the last rule of the derivation.

• Case EQMEMEMPTY

This case never occurs because Σ′ ⊗ ε 6≡ ·.

• Case EQMEMLOC

By the typing rule, we have Σ ≡ Σ2 ⊗ {i 7→ at}, Σ′ ≡ Σ1 ⊗ {i′ 7→ at ′},
∆; C ` Σ2 = Σ1 ⊗ ε, ∆;C |= i = i′ and ∆;C ` at = at ′. Here, by
the induction hypothesis, we have Σ2 ≡ Σ′2 ⊗ ε and ∆;C ` Σ′2 = Σ1.
Now, let Σ′′ ≡ Σ′2 ⊗ {i 7→ at}. Then, Σ ≡ Σ′′ ⊗ ε. In addition, by the
typing rule EQMEMLOC, ∆;C ` Σ′′ = Σ′.

• Case EQMEMVAR

By the typing rule, we have Σ ≡ Σ′′ ⊗ ε and ∆; C ` Σ′′ = Σ′.

• Case EQMEMZEROARRAYL
By the typing rule, we have Σ′ ≡ Σ1⊗{i′ 7→ τ ′[j′]}, ∆;C |= j′ = 0 and
∆; C ` Σ = Σ1 ⊗ ε. Here, by the induction hypothesis, we have Σ =
Σ′′⊗ε, ∆; C ` Σ′′ = Σ1. Now, by the typing rule EQMEMZEROARRAYR,
we have ∆; C ` Σ′′ = Σ′(≡ Σ1 ⊗ {i′ 7→ τ ′[j′]}).

• Case EQMEMZEROARRAYR
Same as Case EQMEMZEROARRAYR.
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A.6 Preservation lemma
Lemma A.50 (Preservation)
If ` S and there exists S′ such that S 7→ S′, then ` S′.

Proof By cases on the operational rules.

• Case ld
Let S ≡ (P,M,R, ld [rs + n] , rd; I). Then, S′ ≡ (P,M,R {rd 7→ vn} , I),
where M ≡ M ′{n′ 7→ 〈〈. . . , vn, . . .〉〉} and n′ ≡ R(rs). From the as-
sumption ` S, we have P ` Φ, ` M : Σ, ` R : Γ and ·; Γ; ·; Σ `
ld [rs + n] , rd; I .

Now, from the typing rule LOAD, ·; · ` Σ = Σ′ ⊗ {n′ 7→ 〈. . . , σn, . . .〉}
and ·; Γ{rd 7→ σn}; ·; Σ ` I , because n′ ≡ R(rs) ≡ Γ(rs).

Here, by the lemma A.40, ` M ′{n′ 7→ 〈〈. . . , vn, . . .〉〉} : Σ′ ⊗ {n′ 7→
〈. . . , σn, . . .〉}. Thus, by the lemma A.43,·; · ` 〈〈. . . , vn, . . .〉〉 : 〈. . . , σn, . . .〉.
Therefore, from the typing rule REGISTERS, we have ·; · ` R {rd 7→ vn} :
Γ {rd 7→ σn}. Thus, ` S′.

• Case st
Let S ≡ (P,M ≡ M ′ {n′ 7→ 〈〈. . . , vn, . . . , 〉〉} , R, st rs, [rd + n] ; I). Then,
S′ ≡ (P, M ′ {n′ 7→ 〈〈. . . , v, . . .〉〉} , R, I), where n′ ≡ R(rd) and v ≡
R(rs). From the assumption ` S, we have P ` Φ, ` M : Σ, ` R : Γ
and ·; Γ; ·; Σ ` st rs, [rd + n] ; I .

Now, from the typing rule STORE, ·; · ` Σ = Σ′ ⊗ {n′ 7→ 〈. . . , σn, . . .〉}
and ·; Γ; C; Σ′ ⊗ {n′ 7→ 〈. . . ,Γ(rs), . . .〉} ` I , because n′ ≡ R(rd) ≡
Γ(rd).

Here, by the lemma A.40, ` M ′{n′ 7→ 〈〈. . . , vn, . . .〉〉} : Σ′ ⊗ {n′ 7→
〈. . . , σn, . . .〉}. Now, by the lemma A.43,·; · ` 〈〈. . . , v, . . .〉〉 : 〈. . . , σn, . . .〉.
Therefore, by the lemma A.10, ·; · ` M ′ : Σ′. Then, by the lemma A.11,
` M ′{n′ 7→ 〈〈. . . , v, . . .〉〉} : Σ′ ⊗ {n′ 7→ 〈. . . , σ, . . .〉} where σ ≡ Γ(rs),
because ·; · ` {n′ 7→ 〈〈. . . , v, . . .〉〉} : {n′ 7→ 〈. . . , σ, . . .〉}. Thus, ` S′.

• Case mov
Let S ≡ (P, M, R, mov rs, rd; I). Then, S′ ≡ (P, M, R {rd 7→ v} , I),
where v ≡ R(rs). From the assumption ` S, we have P ` Φ, ` M : Σ,
` R : Γ and ·; Γ; ·; Σ ` mov rs, rd; I .

From ` R : Γ, we have ·; · ` v : σ, where σ ≡ Γ(rs). Therefore, `
R {rd 7→ v} : Γ {rd 7→ σ}. Last, from the typing rule MOVE, ·; Γ {rd 7→ σ} ; ·; Σ `
I . Thus, ` S′.
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• Case movi
Let S ≡ (P,M,R, movi v, rd; I). Then, S′ ≡ (P,M,R {rd 7→ v} , I).
From the assumption ` S, we have P ` Φ, ` M : Σ, ` R : Γ and
·; Γ; ·; Σ ` movi v, rd; I .

Now, from the typing rule MOVEI, ·; Γ {rd 7→ σ} ; ·; Σ ` I and ·; · ` v :
σ. Therefore, ` R {rd 7→ v} : Γ {rd 7→ σ}. Thus, ` S′.

• Case add,sub and mul
Let S ≡ (P, M, R, (add, sub, mul) rs1, rs2, rd; I). Then, S′ ≡ (P, M,R {rd 7→ v} , I),
where v ≡ R(rs2)(+,−, ∗)R(rs1). From the assumption ` S, we have
P ` Φ, ` M : Σ, ` R : Γ and ·; Γ; ·; Σ ` (add, sub, mul) rs1, rs2, rd; I .

Now, from the typing rule ARITH, ·; Γ {rd 7→ Γ(rs2)(+,−, ∗)Γ(rs1)} ; ·; Σ `
I . Here ` R {rd 7→ v} : Γ {rd 7→ Γ(rs2)(+,−, ∗)Γ(rs1)} because R(rs2) ≡
Γ(rs2) and R(rs1) ≡ Γ(rs1). Thus, ` S′.

• Case beq and ble
Let S ≡ (P, M, R, (beq, ble) rs1, rs2, rd; I). From the assumption ` S,
we have P ` Φ, ` M : Σ, ` R : Γ and ·; Γ; ·; Σ ` (beq, ble) rs1, rs2, rd; I .

First, if R(rs1)(=,≤)R(rs2), then S′ ≡ (P, M, R, I ′θ) where P (l) ≡ I ′

and R(rd) ≡ lθ and θ ≡ [c1, . . . , cn/∆]. Now, from P ` Φ, we have
∆1; Γ1; C1; Σ1 ` I ′, where Φ(l) ≡ ∀∆1. |C1| [Σ1] (Γ1). Here, by the
assumption, ·; · ` lθ : Γ(rd). In addition, by the lemma A.2, Γ(rd) ≡
∀∆2. |C2| [Σ2] (Γ2) and ·; · ` Γ(rd) = ∆1\∆.|C1θ|[Σ1θ](Γ1θ).

Now, from the typing rule BRANCH, we have ·; · ` ∆1\∆.|C1θ|[Σ1θ](Γ1θ) =
Γ(rd) == ∀.|C ′|[Σ′](Γ′). Here, by the typing rule EQLABEL, we have
∆1 ≡ ∆, ·; · ` C1θ = C ′, ·; · ` Σ1θ = Σ′, ·; · ` Γ1θ = Γ′.

In addition, from the typing rule BRANCH, we have ·; C |= C ′, ·; C `
Σ = Σ′ and ·;C ` Γ ≤ Γ′, where C ≡ Γ(rs1)(=,≤)Γ(rs2). Here
·; · |= Γ(rs1)(=,≤)Γ(rs2) because Γ(rs1) = R(rs1) and Γ(rs2) = R(rs2).
Therefore, by the lemmas A.22, A.27 and A.29, we have ·; · |= C ′,
·; · ` Σ = Σ′ and ·; · ` Γ ≤ Γ′. Further, from ·; · ` C1θ = C ′, we have
·; C ′ |= C1θ, Thus, ·; · |= C1θ.

Here, by the type substitution lemma A.21, we have ·; Γ1θ;C1θ; Σ1θ `
I ′θ. Now, by the lemma A.32, ·; Γ1θ; ·; Σ1θ ` I ′θ, because ·; · |= C1θ.
Therefore, to prove ` S′, we need to show that ` M : Σ1θ and ` R :
Γ1θ. Here, by the lemma A.40, ` M : Σ1θ, because ·; · ` Σ1θ = Σ′ =
Σ. In addition, by the lemmas A.41 and A.42, ` R : Γ1θ, because
·; · ` Γ1θ = γ′ ≥ Γ. Thus, ` S′.
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Second, if R(rs1)(6=, >)R(rs2), then S′ =≡ (P, M, R, I). From the
typing rule BRANCH, we have ·; Γ; Γ(rs1)(6=, >)Γ(rs2); Σ ` I . Here
·; · |= Γ(rs1)(6=, >)Γ(rs2) because Γ(rs1) ≡ R(rs1) and Γ(rs2) ≡ R(rs2).
Therefore, by the lemma A.32, we have ·; Γ; ·; Σ ` I . Thus, ` S′.

• Case jmp
Let S ≡ (P, M,R, jmp rd). Then, S′ ≡ (P, M, R, Iθ) where P (l) ≡ I ,
R(rd) ≡ lθ and θ ≡ [c1, . . . , cn/∆]. From the assumption ` S, we have
P ` Φ, ` M : Σ, ` R : Γ and ·; Γ; ·; Σ ` jmp rd.

Here, from P ` Φ, we have ∆1; Γ1;C1; Σ1 ` I where Φ(l) ≡ ∀∆1.
|C1| [Σ1] (Γ1) Now, by the assumption, ·; · ` lθ : Γ(rd). In addi-
tion, by the lemma A.2, Γ(rd) ≡ ∀∆2. |C2| [Σ2] (Γ2) and ·; · ` Γ(rd) =
∆1\∆.|C1θ|[Σ1θ](Γ1θ).

Now, from the typing rule JUMP, we have ·; · ` ∀∆1\∆.|C1θ|[Σ1θ](Γ1θ) =
∀.|C ′|[Σ′](Γ′). Here, by the typing rule EQLABEL, we have ∆1 ≡ ∆,
·; · ` C1θ = C ′, ·; · ` Σ1θ = Σ′, ·; · ` Γ1θ = Γ′.

In addition, from the typing rule JUMP, we have ·; · |= C ′, ·; · ` Σ = Σ′

and ·; · ` Γ ≤ Γ′. Further, by ·; · ` C1θ = C ′, we have ·; · |= C1θ, be-
cause ·; C ′ |= C1θ from the typing rule EQLABEL and the lemma A.22.

Here, by the type substitution lemma A.21, we have ·; Γ1θ; C1θ; Σ1θ `
I ′θ. Now, by the lemma A.32, ·; Γ1θ; ·; Σ1θ ` I ′θ, because ·; · |= C1θ.
Therefore, to prove ` S′, we need to show that ` M : Σ1θ and ` R :
Γ1θ. Here, by the lemma A.40, ` M : Σ1θ, because ·; · ` Σ1θ = Σ′ =
Σ. In addition, by the lemmas A.41 and A.42, ` R : Γ1θ, because
·; · ` Γ1θ = Γ′ ≥ Γ. Thus, ` S′.

• Case apply
Let S ≡ (P, M, R, apply rθ; I) and θ ≡ [c1, . . . , cn/∆]. Then, S′ ≡
(P, M, R{r 7→ vθ}, I), where v ≡ R(r) ≡ lθ′ and θ′ ≡ [c′1, . . . , c′m/∆′].

From the assumption ` S, we have ` P ` Φ, ` M : Σ and ` R : Γ.
Here let Φ(l) = ∀∆1.|C1|[Σ1](Γ1). Then, from the lemma A.2 and ·; · `
v : Γ(r), Γ(r) ≡ ∀∆2.|C2|[Σ2](Γ2) and ·; · ` Γ(r) = ∀∆1\∆′.|C1θ

′|[Σ1θ
′](Γ1θ

′).
Thus, from the typing rule EQLABEL, ∆2 ≡ ∆1\∆′, ∆2; · ` C2 = C1θ

′,
∆2; C2 ` Σ2 = Σ1θ

′, ∆2; C2 ` Γ2 = Σ1θ
′.

Here, by the lemmas A.13, A.17 and A.18, ∆2\∆; ·C2θ = C1θ
′, ∆2\∆;C2θ `

Σ2θ = Σ1θ
′, ∆2\∆;C2θ ` Γ2θ = Σ1θ

′. Now, let σf ≡ ∀∆2\∆.|C2θ|[Σ2θ](Γ2θ).
Then, by the typing rule EQLABEL, σf = ∀∆1\∆′∆.|C1θ

′θ|[Σ1θ
′θ](Γ1θ

′θ).

Now, by the typing rule APPLY, we have ·; Γ{r 7→ σf}; ·; Σ ` I .
Thus, to prove ` S′, we need to show ·; · ` R{r 7→ vθ} : Γ{r 7→
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σf}. That is, we need to show ·; · ` vθ : σf . Here, by the typing
rule VALUELABEL, ·; · ` lθ′θ(= vθ) : ∀∆1\∆′∆.|C1θ

′θ|[Σ1θ
′θ](Γ1θ

′θ).
Thus, by the lemma A.37, we have ·; · ` vθ : σf . Thus, ` S′.

• Case roll
Let S ≡ (P, M{n 7→ 〈t〉}, R, rollτ n; I). Then, S′ ≡ (P, M{n 7→ 〈roll (t)〉}, R, I).
From the assumption ` S, we have ` P : Φ, ` M{n 7→ 〈t〉} : Σ,
` R : Γ and ·; Γ; ·; Σ ` rollτ n; I .

Here, from the typing rule ROLL, we have ·; · ` Σ = Σ′ ⊗ {i 7→
τ ′[µη[∆′].τ ′/η][c1, . . . , cn/∆′]} and ·; Γ; ·; Σ′ ⊗ {i 7→ τ} ` I , where
τ = µη[∆′].τ ′(c1, . . . , cn).

Now, by the lemma A.40, ` M{n 7→ 〈t〉} : Σ′⊗{n 7→ τ ′[µη[∆′].τ ′/η][c1, . . . , cn/∆′]}.
Thus, by the lemma A.43,·; · ` {n 7→ 〈t〉} : {n 7→ τ ′[µη[∆′].τ ′/η][c1, . . . , cn/∆′]}.
Therefore, by the lemma A.10, ` M : Σ′.

Here ` {n 7→ 〈roll(t)〉} : {n 7→ τ} because ·; · ` roll(t) : τ . Thus, by
the lemma A.11, ` M{n 7→ 〈roll(t)〉} : Σ′ ⊗ {n 7→ τ}. Thus, ` S′.

• Case unroll
Let S ≡ (P, M{n 7→ 〈roll (t)〉}, R, unroll n; I). Then, S′ = (P, M{n 7→
〈t〉}, R, I). From the assumption ` S, we have ` P : Φ, ` M{n 7→
〈roll(t)〉} : Σ, ` R : Γ and ·; Γ; ·; Σ ` unroll n; I .

Here, from the typing rule UNROLL, we have ·; · ` Σ = Σ′ ⊗ {n 7→ τ}
and ·; Γ; ·; Σ′ ⊗ {n 7→ τ ′[µη[∆′].τ ′/η][c1, . . . , cn/∆′]} ` I , where τ ≡
µη[∆′].τ ′(c1, . . . , cn).

Now, by the lemma A.40, ` M{n 7→ 〈roll(t)〉} : Σ′ ⊗ {n 7→ τ}. Here,
by the lemma A.43,` {n 7→ 〈roll(t)〉} : {n 7→ τ}. Therefore, by the
lemma A.10, ` M : Σ′.

Here, by the typing rule TUPLEROLL, ·; · ` t : τ ′[µη[∆′].τ ′/η][c1, . . . , cn/∆′].
Thus, ` {n 7→ 〈t〉} : {n 7→ τ ′[µη[∆′].τ ′/η][c1, . . . , cn/∆′]. Therefore, by
the lemma A.11, ` M{n 7→ 〈t〉} : Σ′⊗{n 7→ τ ′[µη[∆′].τ ′/η][c1, . . . , cn/∆′].
Thus, ` S′.

• Case pack
Let S ≡ (P, M{n 7→ 〈t〉}M ′, R, pack[c1,...,cn|Σ1]as τ n; I). Then, S′ ≡
(P, M{n 7→

〈
pack[c1,...,cn|M ′] (t)

〉
}, R, I), where Dom(M ′) = {n|n ∈

Dom(Σ1)s.t.Σ1(n) ≡ τn[m(> 0)]}. From the assumption ` S, we
have ` P : Φ, ` R : Γ, ` M{n 7→ 〈t〉}M ′ : Σ and ·; Γ; ·; Σ `
pack[c1,...,cn|Σ]as τ n; I .
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Now, from the typing rule PACK, we have τ ≡ ∃∆′.|C ′|[Σ′]τ ′, ·; · `
Σ = Σ′′ ⊗ {n 7→ τ ′θ} ⊗ Σ′θ, ·; · |= C ′θ and ·; Γ; ·; Σ′′ ⊗ {n 7→ τ} ` I ,
where θ ≡ [c1, . . . , cn/∆′] and Σ1 ≡ Σ′θ.

Here, by the lemma A.40, ` M{n 7→ 〈t〉}M ′ : Σ′′ ⊗ {n 7→ τ ′θ} ⊗
Σ1. Then, by the lemma A.10, ` M : Σ′′ and ` M ′ : Σ′θ(= Σ1). In
addition, by the lemma A.43,·; · ` {n 7→ 〈t〉} : {n 7→ τ ′θ}. That is,
·; · ` t : τ ′θ.

Now, from the typing rule TUPLEPACK, ·; · ` pack[c1,...,cn|M ′](t) : τ .
Thus, ·; · ` {n 7→ 〈t〉} : {n 7→ τ}. Here, by the lemma A.11, ` M{n 7→〈
pack[c1,...,cn|M ′](t)

〉
} : Σ′′ ⊗ {n 7→ τ}. Thus, ` S′.

• Case unpack
Let S ≡ (P, M, R, unpack n with ∆; I). Then, S′ ≡ (P,M ′′{n 7→
〈t〉}M ′, R, I [c1, . . . , cn/∆]), where M = M ′′{n 7→

〈
pack[c1,...,cn|M ′] (t)

〉
}.

From the assumption ` S, we have ` P : Φ, ` M : Σ, ` R : Γ and
·; Γ; ·; Σ ` unpack n with ∆; I .

Now, from the typing rule UNPACK, we have ·; · ` Σ = Σ′′⊗{n 7→ τ},
∆;Γ; C ′θ; Σ′′ ⊗ {n 7→ τ ′θ} ⊗ Σ′θ ` I , where θ ≡ [∆/∆′] and τ ≡
∃∆′.|C ′|[Σ′]τ ′.
Here, by the lemma A.40, ` M ′′{n 7→

〈
pack[c1,...,cn|M ′](t)

〉
: Σ′′ ⊗

{n 7→ τ}. Then, by the lemma A.10, ` M ′′ : Σ′′. In addition, by
the lemma A.43,·; · ` {n 7→

〈
pack[c1,...,cn|M ′](t)

〉
: {n 7→ τ}. Then,

·; · ` pack[c1,...,cn|M ′](t) : τ .

Now, from the type TUPLEPACK, we have ·; · ` t : τ ′[c1, . . . , cn/∆′],
` M ′ : Σ′[c1, . . . , cn/∆′] and ·; · |= C ′[c1, . . . , cn/∆′].

Here, by the lemma A.21, ·; Γθ′; C ′θθ′; Σ′′θ′⊗{n 7→ τ ′θθ′}⊗Σ′θθ′ ` Iθ′,
where θ′ ≡ [c1, . . . , cn/∆]. Here Γθ′ ≡ Γ and Σ′′θ′ ≡ Σ′′, because Γ and
Σ′′ do not contain the type variables of ∆. Thus, ·; Γ; C ′θθ′; Σ′′⊗{n 7→
τ ′θθ′}⊗Σ′θθ′ ` Iθ′. Here θθ′ ≡ [c1, . . . , cn/∆′]. Thus, ·; Γ;C ′ [c1, . . . , cn/∆′] ; Σ′′⊗
{n 7→ τ ′ [c1, . . . , cn/∆′]}⊗Σ′ [c1, . . . , cn/∆′] ` Iθ′. Here, by the lemma A.32
and ·; · |= C ′[c1, . . . , cn/∆′], we have ·; Γ; ·; Σ′′⊗{n 7→ τ ′ [c1, . . . , cn/∆′]}⊗
Σ′ [c1, . . . , cn/∆′] ` Iθ′.

Now, by the lemma A.11, ` M ′′{n 7→ 〈t〉}M ′ : Σ′′{n 7→ τ ′ [c1, . . . , cn/∆′]}⊗
Σ′ [c1, . . . , cn/∆′]. Thus, ` S′.

• Case split
Let S ≡ (P, M, R, split n1, n2; I). From the assumption ` S, we have
` P : Φ, ` M : Σ, ` R : Γ and ·; Γ; ·; Σ ` split n1, n2; I .

153



First, if n2 = 0, then S′ ≡ (P,M, R, I). By the typing rule SPLIT, we
have ` M : Σ′ ⊗ {n1 7→ τ [n]} and ·; Γ; ·; Σ′ ⊗ {n1 7→ τ [0]} ⊗ {n1 7→
τ [n]} ` I . Therefore, if ` M : Σ′ ⊗ {n1 7→ τ [0]} ⊗ {n1 7→ τ [n]},
then ` S′. Here, by the typing rule EQMEMZEROARRAYL, we have
·; · ` Σ′⊗{n1 7→ τ [0]}⊗{n1 7→ τ [n]} = Σ′⊗{n1 7→ τ [n]}. Now, by the
lemma A.40, we have ` M : Σ′ ⊗ {n1 7→ τ [0]} ⊗ {n1 7→ τ [n]}. Thus,
` S′.

Second, if n2 6= 0 and M ≡ M ′{n1 7→ 〈t1, . . . , tn2〉}, then S′ ≡
(P, M, R, I). Here, by the typing rule SPLIT, we have ·; · ` Σ = Σ′ ⊗
{n1 7→ τ [n2]} and ·; Γ; ·; Σ′⊗{n1 7→ τ [n2]}⊗{(n1+

∑n2
i=1 sizeof (ti)) 7→

τ [0]}.

Now, from the typing rule EQMEMZEROARRAYR, ·; · ` Σ′ ⊗ {n1 7→
τ [n2]} = Σ′⊗{n1 7→ τ [n2]}⊗{(n1+sizeof (τ)∗n2) 7→ τ [0]}. Therefore,
by the lemma A.40, ` M : Σ′⊗{n1 7→ τ [n]}⊗{(n1 + sizeof (τ)∗n2) 7→
τ [0]}. Thus, ` S′(= S).

Last, if 0 < n2 < n, then S′ ≡ (P, M ′{n1 7→ 〈t1, . . . , tn2〉}{n′ 7→
〈tn2+1, . . . , tn〉 , R, I), where M ≡ M ′{n1 7→ 〈t1, . . . , tn2 , . . . , tn〉} and
n′ ≡ n1 +

∑n
i=1 sizeof (ti). Here, by the typing rule SPLIT, we have

·; · ` Σ = Σ′ ⊗ {n1 7→ τ [n]} and ·; Γ; ·; Σ′ ⊗ {n1 7→ τ [n2]} ⊗ {(n1 +
sizeof (τ) ∗ n2) 7→ τ [n− n2]}.

Now, by the lemma A.40, ` M ′{n1 7→ 〈t1, . . . , tn2 , . . . , tn〉} : Σ′ ⊗
{n1 7→ τ [n]}. Here, by the lemma A.10, ` M ′ : Σ′ and ` {n1 7→
〈t1, . . . , tn2 , . . . , tn〉} : {n1 7→ τ [n]}. That is, foralli.·; · ` τi : τ . There-
fore, ·; · ` 〈t1, . . . , tn2〉 : τ [n2] and ·; · ` 〈tn2+1, . . . , tn〉 : τ [n−n2]. Thus,
by the lemma A.11, ` M ′{n1 7→ 〈t1, . . . , tn2〉}{n′ 7→ 〈tn2+1, . . . , tn〉} :
Σ′ ⊗ {n1 7→ τ [n2]} ⊗ {n′ 7→ τ [n − n2]}. Here, by the definition of
sizeof and ∀i.sizeof (ti) = sizeof (τ), n′ = n1 + sizeof (τ) ∗ n2. There-
fore, ` M ′{n1 7→ 〈t1, . . . , tn2〉}{n′ 7→ 〈tn2+1, . . . , tn〉} : Σ′ ⊗ {n1 7→
τ [n2]} ⊗ {(n1 + sizeof (τ) ∗ n2) 7→ τ [n− n2]}. Thus, ` S′.

• Case concat
Let S ≡ (P,M,R, concat n1, n2, n3; I). From the assumption ` S, we
have ` P : Φ, ` M : Σ, ` R : Γ and ·; Γ; ·; Σ ` concat n1, n2, n3; I .

First, if n3 = 0 and n1 = n2, then S′ ≡ (P,M,R, I). By the typing
rule CONCAT, we have ·; · ` Σ = Σ′ ⊗ {n1 7→ τ [0]} ⊗ {n2 7→ τ [0]}
and ·; Γ; ·; Σ′ ⊗ {n1 7→ τ [0]} ` I . Now, by the lemma A.40, ` M :
Σ′ ⊗ {n1 7→ τ [0]} ⊗ {n2 7→ τ [0]}.

Here, by the typing rule EQMEMZEROARRAYL, ·; · ` Σ′ ⊗ {n1 7→
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τ [0]} ⊗ {n2 7→ τ [0]} = Σ′ ⊗ {n1 7→ τ [0]}. Now, by the lemma A.40,
` M : Σ′ ⊗ {n1 7→ τ [0]}. Thus, ` S′.

Second, if n3 > 0 and n1 = n2, then S′ ≡ (P, M, R, I). By the typing
rule CONCAT, we have ·; · ` Σ = Σ′ ⊗ {n1 7→ τ [0]} ⊗ {n2 7→ τ [n3]}
and ·; Γ; ·; Σ′ ⊗ {n1 7→ τ [n3]} ` I . Now, by the lemma A.40, we have
` M : Σ′ ⊗ {n1 7→ τ [0]} ⊗ {n2 7→ τ [n3]}
Here, by the typing rule EQMEMZEROARRAYL, ·; · ` Σ′ ⊗ {n1 7→
τ [0]} ⊗ {n2 7→ τ [n3]} = Σ′ ⊗ {n2 7→ τ [n3]} = Σ′ ⊗ {n1 7→ τ [n3]}. Now,
by the lemma A.40, ` M : Σ′ ⊗ {n1 7→ τ [n3]}. Thus, ` S′.

Third, if n3 = 0 and n1 6= n2, then S′ ≡ (P, M, R, I), M ≡ M ′{n1 7→
〈t1, . . . , tn〉} and n2 = n1+

∑n
i=1 sizeof (ti). By the typing rule CONCAT,

we have ·; · ` Σ = Σ′⊗{n1 7→ τ [n]}⊗{n2 7→ τ [0]} and ·; Γ; ·; Σ′⊗{n1 7→
τ [n]} ` I . Now, by the lemma A.40, ` M : Σ′ ⊗ {n1 7→ τ [n]} ⊗ {n2 7→
τ [0]}
Here, by the typing rule EQMEMZEROARRAYL, ·; · ` Σ′ ⊗ {n1 7→
τ [n]} ⊗ {n2 7→ τ [0]} = Σ′ ⊗ {n1 7→ τ [n]}. Now, by the lemma A.40,
` M : Σ′ ⊗ {n1 7→ τ [n]}. Thus, ` S′.

Last, if n3 > 0 and n1 6= n2, then S′ ≡ (P, M ′{n1 7→
〈
t1, . . . , tn, t′1, . . . , t′n3

〉}, R, I),
M ≡ M ′{n1 7→ 〈t1, . . . , tn〉}{n2 7→ 〈

t′1, . . . , t′n3

〉} and n2 = n1 +∑n
i=1 sizeof (ti).

By the typing rule CONCAT, we have ·; · ` Σ = Σ′ ⊗ {n1 7→ τ [n]} ⊗
{n2 7→ τ [n3]}, ·; · ` n2 = n1 + sizeof (τ) ∗ n and ·; Γ; ·; Σ′ ⊗ {n1 7→
τ [n + n3]} ` I .

Here, by the lemma A.40, ` M ′{n1 7→ 〈t1, . . . , tn〉}{n2 7→
〈
t′1, . . . , t′n3

〉} :
Σ′ ⊗ {n1 7→ τ [n]} ⊗ {n2 7→ τ [n3]} Now, by the lemma A.10, we
have ` M ′ : Σ′, ` {n1 7→ 〈t1, . . . , tn〉} : {n1 7→ τ [n]} and ` {n2 7→〈
t′1, . . . , t′n3

〉} : {n2 7→ τ [n3]}. Thus, ∀i.τi : τ and ∀i.τ ′i : τ . There-
fore, ·; · ` 〈

t1, . . . , tn, t′1, . . . , t′n3

〉
: τ [n + n3]. Here, by the lemma A.11,

` M ′{n1 7→
〈
t1, . . . , tn, t′1, . . . , t′n3

〉
: Σ′⊗{n1 7→ τ [n+n3]}. Thus, ` S′.

• Case tuple split
Let S ≡ (P,M{n1 7→ 〈〈v1, . . . , vn〉〉}, R, tuple split n1, n2; I). Then,
S′ ≡ (P, M{n1 7→ 〈〈v1, . . . , vn2〉〉}{n′1 7→ 〈〈vn2+1, . . . , vn〉〉}, R, I), where
n′1 = n1 + n2. From the assumption ` S, we have ` P : Φ, ` M{n1 7→
〈〈v1, . . . , vn〉〉} : Σ, ` R : Γ and ·; Γ; ·; Σ ` tuple split n1, n2; I

Here, by the typing rule TUPLESPLIT, we have ·; · ` Σ = Σ′ ⊗ {n1 7→
〈σ1, . . . , σn〉}, ·; · |= 0 < n2 < n, ·; Γ; ·; Σ′ ⊗ {n1 7→ 〈σ1, . . . , σn2〉} ⊗
{n1 + n2 7→ 〈σn2+1, . . . , σn〉} ` I .

155



Now, by the lemma A.40, ` M{n1 7→ 〈〈v1, . . . , vn〉〉} : Σ′ ⊗ {n1 7→
〈σ1, . . . , σn〉}. Here, by the lemma A.10, ` M : Σ′ and ` {n1 7→
〈〈v1, . . . , vn〉〉} : {n1 7→ 〈σ1, . . . , σn〉}. That is, ∀i.·; · ` vi : σi. There-
fore, ·; · ` 〈v1, . . . , vn2〉 : 〈σ1, . . . , σn2〉 and ·; · ` 〈vn2+1, . . . , vn〉 : 〈σn2+1, . . . , σn〉.
Thus, by the lemma A.11, ` M{n1 7→ 〈v1, . . . , vn2〉}{n′1 7→ 〈vn2+1, . . . , vn〉} :
Σ′ ⊗ {n1 7→ 〈σ1, . . . , σn2〉} ⊗ {n′1 7→ 〈σn2+1, . . . , σn〉}. Thus, ` S′.

• Case tuple concat
Let S = (P, M{n1 7→ 〈〈v1, . . . , vn〉〉}{n2 7→ 〈〈v′1, . . . , v′m〉〉}, R, tuple split n1, n2; I).
Then, S′ = (P, M{n1 7→ 〈〈v1, . . . , vn, v′1, . . . , v′m〉〉}{n′1 7→ 〈〈vn2+1, . . . , vn〉〉}, R, I),
where n2 = n1 + n. From the assumption ` S, we have ` P : Φ,
` M ′ : Σ, ` R : Γ and ·; Γ; ·; Σ ` tuple concat n1, n2; I .

Now, by the typing rule TUPLECONCAT, we have ·; · ` Σ = Σ′ ⊗
{n1 7→ 〈σ1, . . . , σn〉} ⊗ {n2 7→ 〈σ′1, . . . , σ′m〉}, ·; · |= n2 = n1 + n and
·; Γ; ·; Σ′ ⊗ {n1 7→ 〈σ1, . . . , σn, σ′1, . . . , σ′m〉} ` I .

Here, by the lemma A.40, ` M{n1 7→ 〈〈v1, . . . , vn〉〉}{n2 7→ 〈〈v′1, . . . , v′m〉〉} :
Σ′ ⊗ {n1 7→ 〈σ1, . . . , σn〉} ⊗ {n2 7→ 〈σ′1, . . . , σ′m〉}. In addition, by the
lemma A.10, ` M : Σ′, ` {n1 7→ 〈〈v1, . . . , vn〉〉} : {n1 7→ 〈σ1, . . . , σn〉}
and ` {n2 7→ 〈〈v′1, . . . , v′m〉〉} : {n2 7→ 〈σ′1, . . . , σ′m〉}. That is, ∀i.·; · `
vi : σi and ∀i.·; · ` v′i : σ′i. Therefore, by the lemma A.11, ` M{n1 7→
〈〈v1, . . . , vn, v′1, . . . , v′m〉〉} : Σ′⊗{n1 7→ 〈σ1, . . . , σn, σ′1, . . . , σ′m〉}. Thus,
` S′.

A.7 Progress lemma

Lemma A.51 (Progress)
If ` S, then there exists S′ such that S 7→ S′.

Proof Let us suppose that S = (P, M, R, I). From the typing rule STATE
and ` S, we have ` P : Φ, ` M : Σ, ` R : Γ and ·; Γ; ·; Σ ` I . We prove by
case analysis on the last typing rule of the typing derivation ·; Γ; ·; Σ ` I .

• Case LOAD

From the typing rule, I = ld [rs + n], rd; I ′. In addition, ` M : Σ′ ⊗
{n′ 7→ 〈. . . , σn, . . .〉} by the lemma A.40, where n′ = Γ(rs) = R(rs).
Therefore, by the lemma A.43, M = M ′{n′ 7→ 〈〈. . . , v, . . .〉〉}. Thus,
by the operational semantics of ld, there exists S′ such that S 7→ S′.

• Case STORE

From the typing rule, I = st rs, [rd + n]; I ′. In addition, ` M : Σ′ ⊗
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{n′ 7→ 〈. . . , σn, . . .〉} by the lemma A.40, where n′ = Γ(rd) = R(rd).
Therefore, by the lemma A.43, M = M ′{n′ 7→ 〈〈. . . , vn, . . .〉〉}. Thus,
by the operational semantics of st, there exists S′ such that S 7→ S′.

• Case MOVE

From the typing rule, I = mov rs, rd; I ′. Thus, by the operational
semantics of mov, there exists S′ such that S 7→ S′.

• Case MOVEI

From the typing rule, I = movi v, rd; I ′. Thus, by the operational
semantics of movi, there exists S′ such that S 7→ S′.

• Case ARITH

From the typing rule, I = (add, sub, mul) rs1 , rs2 , rd; I ′. Thus, by the
operational semantics of (add, sub, mul), there exists S′ such that
S 7→ S′.

• Case BRANCH

From the typing rule, I = (beq, ble) rs1 , rs2 , rd; I ′. Here, by the as-
sumption ` R : Γ, ·; · ` v : Γ(rd), where v = R(rd). Now, by the
lemma A.37, ·; · ` v : ∀.|C ′|[Σ′](Γ′). Therefore, by the lemma A.46,
v = l[c1, . . . , cn/∆]. Thus, by the operational semantics of (beq, ble),
there exists S′ such that S 7→ S′.

• Case JUMP

From the typing rule, I = jmp rd. Here, by the assumption ` R : Γ
and ·; · ` v : Γ(rd), where v = R(rd). Now, by the lemma A.37, ·; · `
v : ∀.|C ′|[Σ′](Γ′). Therefore, by the lemma A.46, v = l[c1, . . . , cn/∆].
Thus, by the operational semantics of jmp, there exists S′ such that
S 7→ S′.

• Case APPLY

From the typing rule, I = apply r [c1, . . . , cn/∆] ; I ′. Here, by the
assumption `: Γ, ·; · ` v : ∀∆′.|C ′|[Σ′](Γ′)(= Γ(r)). Therefore, by the
lemma A.46, v = l[c1, . . . , cn/∆]. Thus, by the operational semantics
of apply, there exists S′ such that S 7→ S′.

• Case ROLL

From the typing rule, I = rollτ n; I ′. In addition, ` M : Σ′ ⊗
{n 7→ τ ′[µη[∆′].τ ′/η][c1, . . . , cn/∆′]} by the lemma A.40, where τ =
µη[∆′].τ ′(c1, . . . , cn). Now, by the lemma A.43 and the lemma A.44,
M = M ′{n 7→ 〈t〉}. Thus, by the operational semantics of roll, there
exists S′ such that S 7→ S′.

157



• Case UNROLL

From the typing rule, I = unroll n; I ′. In addition, by the lemma A.40,
` M : Σ′ ⊗ {n 7→ τ}, where τ = µη[∆′].τ ′(c1, . . . , cn). Now, by the
lemma A.43 and the lemma A.44, M = M ′{n 7→ 〈t〉} and ·; · ` t : τ .
Here, by the lemma A.45, t = roll(t′). Thus, by the operational se-
mantics of unroll, there exists S′ such that S 7→ S′.

• Case PACK

From the typing rule, I = pack[c1,...,cn|Σ′[c1,...,cn/∆′]]as τ n; I ′, where τ =
∃∆.|C|[Σ′]τ ′. In addition, by the lemma A.40, ` M : Σ′′ ⊗ {n 7→
τ ′ [c1, . . . , cn/∆]} ⊗ Σ′ [c1, . . . , cn/∆′]. Now, by the lemma A.43, M =
M ′{n 7→ 〈t〉}M ′′ and Dom(M ′′) ⊆ Dom(Σ′ [c1, . . . , cn/∆′]). Thus, by
the operational semantics of pack, there exists S′ such that S 7→ S′.

• Case UNPACK

From the typing rule, I = unpack n with ∆; I ′. By the lemma A.40,
` M : Σ′′ ⊗ {n 7→ τ}, where τ ≡ ∃∆′.|C ′|[Σ′]τ ′}. Here, by the
lemma A.43, the lemma A.44 and the lemma A.45, we have M =
M ′{n 7→ 〈t〉}, where t = pack[c1,...,cn|M ′′](t

′), ·; · ` t′ : τ ′ [c1, . . . , cn/∆′]
and ` M ′′ : Σ′ [c1, . . . , cn/∆′]. Thus, by the operational semantics of
unpack, there exists S′ such that S 7→ S′.

• Case SPLIT

From the typing rule, I = split n1, n2; I ′.

If n2 = 0, then there exists S′ such that S 7→ S′ by the operational
semantics of split (the second rule).

Otherwise (if n2 > 0), by the lemma A.40, ` M : Σ′⊗{n1 7→ τ [m]} and
n2 ≤ m. Now, by the lemma A.43, M = M ′{n 7→ 〈t1, . . . , tm〉}. Here
if n2 = m, then there exists S′ such that S 7→ S′ by the operational
semantics of split (the third rule). Otherwise (if 0 < n2 < m), there
exists S′ such that S 7→ S′ by the operational semantics of split (the
first rule).

• Case CONCAT

From the typing rule, I = concat n1, n2, n3; I ′.

If n1 = n2 and n3 = 0, then, by the operational semantics of concat
(the forth rule), there exists S′ such that S 7→ S′.

If n1 = n2 and n3 > 0, then, by the lemma A.40, ` M : Σ′ ⊗ {n1 7→
τ [0]} ⊗ {n2 7→ τ [n3]} = Σ′ ⊗ {n1 7→ τ [n3]}. Now, by the lemma A.43,
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M = M ′{n1 7→ 〈t1, . . . , tn3〉. Thus, by the operational semantics of
concat (the third rule), there exists S′ such that S 7→ S′.

If n1 < n2 and n3 = 0, then, by the lemma A.40, ` M : Σ′ ⊗ {n1 7→
τ [m]}⊗{n2 7→ τ [0]} = Σ′⊗{n1 7→ τ [m]}, where n2 = n1+sizeof (τ)∗m.
Now, by the lemma A.43, M = M ′{n1 7→ 〈t1, . . . , tm〉 and ∀i.·; · ` ti :
τ . Therefore, sizeof (τ)∗m =

∑m
i=1 sizeof (ti). Thus, by the operational

semantics of concat (the second rule), there exists S′ such that S 7→
S′.

If n1 < n2 and n3 > 0, then, by the lemma A.40, ` M : Σ′ ⊗ {n1 7→
τ [m]} ⊗ {n2 7→ τ [n3]}, where n2 = n1 + sizeof (τ) ∗ m. Now, by the
lemma A.43, M = M ′{n1 7→ 〈t1, . . . , tm〉}{n2 7→

〈
t′1, . . . , t′n3

〉} and
∀i.·; · ` ti : τ . Therefore, sizeof (τ) ∗m =

∑m
i=1 sizeof (ti). Thus, by the

operational semantics of concat (the first rule), there exists S′ such
that S 7→ S′.

• Case TUPLESPLIT

From the typing rule, I = tuple split n1, n2. By the lemma A.40,
` M : Σ′ ⊗ {n1 7→ 〈σ1, . . . , σn〉}. Now, by the lemma A.43, the
lemma A.44, the lemma A.45 and the lemma A.46, M = M ′{n1 7→
〈〈v1, . . . , vn〉〉}. Here, by the typing rule TUPLESPLIT, n2 < n. Thus,
by the operational semantics of tuple split, there exists S′ such
that S 7→ S′.

• Case TUPLECONCAT

From the typing rule, I = tuple concat n1, n2. By the lemma A.40,
` M : Σ′ ⊗ {n1 7→ 〈σ1, . . . , σn〉}{n2 7→ 〈σ′1, . . . , σ′m〉}. Now, by the
lemma A.43, the lemma A.44, the lemma A.45 and the lemma A.46,
M = M ′{n1 7→ 〈〈v1, . . . , vn〉〉}{n2 7→ 〈〈v′1, . . . , v′m〉〉}. Here, by the
typing rule TUPLECONCAT, n2 = n1 + n. Thus, by the operational
semantics of tuple concat, there exists S′ such that S 7→ S′.

Theorem A.52 (Type Soundness)
If ` S and S 7→∗ S′, then S′ is not stuck.

Proof By induction on the length n of the evaluation steps.

• Case n = 0
S′ (= S) is not stuck because of the lemma A.51.

• Case n = k
Let S′′ be the state after one evaluation step, that is, S 7→ S′′. Then,
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from the lemma A.50, ` S′′. By the assumption of the induction, S′ is
not stuck, because S′′ 7→k−1 S′.
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Appendix B

Basic Lemmas for Proving Type
Soundness

B.1 Reflection
Lemma B.1
∆; C ` C ′ = C ′.

Proof By the definition of the relation |=, we have ∆;C ∧ C ′ |= C ′. Thus,
by the typing rule EQCSTRT, ∆; C ` C ′ = C ′.

Lemma B.2
∆; C ` Γ = Γ.

Proof By induction on the structure of Γ.

• Case Γ ≡ ·
From the typing rule EQREGSNULL, we have ∆; C ` Γ = Γ.

• Case Γ ≡ Γ′{r : σ}
By the induction hypothesis, ∆;C ` Γ′ = Γ′. In addition, by the
lemma B.3, ∆; C ` σ = σ. Thus, by the typing rule EQREGSREG, we
have ∆; C ` Γ = Γ.

Lemma B.3
∆; C ` σ = σ.

Proof By case analysis of the form of σ.
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• Case σ ≡ i
By the definition of the relation |=, we have ∆;C |= i = i. Thus,
∆; C ` σ = σ.

• Case σ ≡ ∀∆′.|C ′|[Σ′](Γ′)
By the lemma B.1, ∆∆′; C ` C ′ = C ′. Next, by the lemma B.6,
∆∆′;C ∧ C ′ ` Σ′ = Σ′. In addition, by the lemma B.2, ∆∆′; C ∧ C ′ `
Γ′ = Γ′. Thus, by the typing rule EQLABEL, we have ∆; C ` σ = σ.

Lemma B.4
∆;C ` τ = τ .

Proof By induction on the structure of τ .

• Case τ ≡ 〈σ1, . . . , σn〉
By the lemma B.3, ∀i.∆; C ` σ1 = σ1. Thus, by the typing rule
EQTUPLE, we have ∆;C ` τ = τ .

• Case τ ≡ ∃∆′.|C ′|[Σ′]τ ′
By the lemma B.1, ∆∆′; C ` C ′ = C ′. Next, by the lemma B.6,
∆∆′;C ∧ C ′ ` Σ′ = Σ′. In addition, by the induction hypothesis,
∆∆′;C ∧ C ′ ` τ ′ = τ ′. Thus, by the typing rule EQEX, we have
∆; C ` τ = τ .

• Case τ ≡ ρ (c1, . . . , cn)
By the typing rule EQREC, we have ∆;C ` τ = τ .

Lemma B.5
∆;C ` at = at .

Proof Let at ≡ τ [i]. Then, by the lemma B.4 and the definition of the
relation |=, we have ∆; C ` τ = τ and ∆; C |= i = i. Thus, we have
∆;C ` at = at .

Lemma B.6
∆;C ` Σ = Σ.

Proof By induction on the structure of Σ.

• Case Σ ≡ ·
By the typing rule EQMEMEMPTY, ∆; C ` Σ = Σ.
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• Case Σ ≡ Σ′ ⊗ {i 7→ at}
By the induction hypothesis, ∆;C ` Σ′ = Σ′. Now, by the typing rule
EQMEMLOC and the lemma B.5, ∆;C ` Σ′⊗{i 7→ at} = Σ′⊗{i 7→ at}.
That is, ∆;C ` Σ = Σ.

• Case Σ ≡ Σ′ ⊗ ε
By the induction hypothesis, ∆;C ` Σ′ = Σ′. Now, by the typing rule
EQMEMVAR, ∆; C ` Σ′ ⊗ ε = Σ′ ⊗ ε. That is, ∆;C ` Σ = Σ.

B.2 Symmetry

Lemma B.7
If ∆;C ` τ = τ ′, then ∆; C ` τ ′ = τ .

Proof By straightforward case analysis on the last rules of the derivation
of ∆;C ` τ = τ ′.

Lemma B.8
If ∆;C ` at = at ′, then ∆; C ` at ′ = at .

Proof Let at ≡ τ [i] and at ′ ≡ τ ′[i′]. Then, by the typing rule, we have
∆; C ` τ = τ ′ and ∆;C |= i = i′. Here, by the lemma B.7 and the definition
of the relation |=, we have ∆; C ` τ ′ = τ and ∆; C |= i′ = i. Thus, ∆;C `
at ′ = at .

Lemma B.9
If ∆;C ` Σ = Σ′, then ∆; C ` Σ′ = Σ.

Proof By induction on the derivation of ∆; C ` Σ = Σ′. The proof is by
case analysis on the last rule of the derivation.

• Case EQMEMEMPTY

By the typing rule, we have Σ ≡ Σ′ ≡ ·. Thus, by the typing rule
EQMEMEMPTY, ∆; C ` Σ′ = Σ.

• Case EQMEMLOC

By the typing rule, we have Σ ≡ Σ1 ⊗ {i1 7→ at1}, Σ′ ≡ Σ2 ⊗ {i2 7→
at2}, ∆; C ` Σ1 = Σ2, ∆; C |= i1 = i2 and ∆;C ` at1 = at2. Here,
by the induction hypothesis, we have ∆; C ` Σ2 = Σ1. Then, by
the definition of the relation |=, ∆; C ` i2 = i1. In addition, by the
lemma B.8, ∆; C ` at2 = at1. Thus, we have ∆;C ` Σ′ = Σ.
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• Case EQMEMVAR

By the typing rule, we have Σ ≡ Σ1 ⊗ ε, Σ′ ≡ Σ2 ⊗ ε and ∆;C `
Σ1 = Σ2. Here, by the induction hypothesis, ∆; C ` Σ2 = Σ1. Now,
by the typing rule EQMEMVAR, ∆;C ` Σ2 ⊗ ε = Σ1 ⊗ ε. That is,
∆; C ` Σ′ = Σ.

• Case EQMEMZEROARRAYL
By the typing rule, we have Σ ≡ Σ1 ⊗ {i1 7→ τ [i2]}, ∆;C ` Σ1 = Σ′

and ∆;C |= i2 = 0. Here, by the induction hypothesis, we have
∆; C ` Σ′ = Σ1. Now, by the typing rule EQMEMZEROARRAYR, we
have ∆;C ` Σ′ = Σ.

• Case EQMEMZEROARRAYR
Same as Case EQMEMZEROARRAYL.

B.3 Transitivity

Lemma B.10
If ∆; C ` τ = τ ′ and ∆; C ` τ ′ = τ ′′, then ∆; C ` τ = τ ′′.

Proof By straightforward case analysis on the last rule of the derivation of
∆;C ` τ = τ ′.

Lemma B.11
If ∆; C ` at = at ′ and ∆; C ` at ′ = at ′′, then ∆; C ` at = at ′′.

Proof Let at ≡ τ [i], at ′ ≡ τ ′[i′] and at ′′ ≡ τ ′′[i′′]. Then, by the typing rule,
we have ∆;C ` τ = τ ′, ∆;C ` τ ′ = τ ′′, ∆; C |= i = i′ and ∆;C |= i′ =
i′′. Here, by the lemma B.10 and the definition of the relation |=, we have
∆;C ` τ = τ ′′ and ∆;C |= i = i′′. Thus, ∆; C ` at = at ′′.

Lemma B.12
If ∆; C ` Σ = Σ′ and ∆; C ` Σ′ = Σ′′, then ∆;C ` Σ = Σ′′.

Proof By induction on the derivation of ∆;C ` Σ = Σ′. The proof is by
case analysis on the last rule of the derivation.

• Case EQMEMEMPTY

By the typing rule, we have Σ ≡ Σ′ ≡ ·. Thus, we have ∆;C ` · = Σ′′.
That is, ∆; C ` Σ = Σ′′.
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• Case EQMEMLOC

By the typing rule, we have Σ ≡ Σ1 ⊗ {i1 7→ at1}, Σ′ ≡ Σ2 ⊗ {i2 7→
at2}, ∆;C ` Σ1 = Σ2, ∆; C |= i1 = i2 and ∆; C ` at1 = at2.

Here let at2 ≡ τ [j]. If ∆; C |= j = 0, by the lemma A.47, we have
∆;C ` Σ2 = Σ′′. Now, by the induction hypothesis, ∆; C ` Σ1 = Σ′′.
Here, by the typing rule EQMEMZEROARRAYL, we have ∆; C ` Σ =
Σ′′, because ∆; C |= j′ = 0 where at1 ≡ τ ′[j′].

Otherwise (if ∆; C |= j 6= 0), by the lemma A.48, we have Σ′′ ≡ Σ3 ⊗
{i3 7→ at3}, ∆;C ` Σ2 = Σ3, ∆;C |= i2 = i3 and ∆; C ` at2 = at3.
Here, by the induction hypothesis, ∆;C ` Σ1 = Σ3. Next, from the
definition of the relation |=, we have ∆;C |= i1 = i3. Then, by the
lemma B.11, ∆;C ` at1 = at3. Now, by the typing rule EQMEMLOC,
we have ∆; C ` Σ1 ⊗ {i1 7→ at1} = Σ3 ⊗ {i3 7→ at3}. That is, ∆; C `
Σ = Σ′′.

• Case EQMEMVAR

By the typing rule, we have Σ ≡ Σ1 ⊗ ε, Σ′ ≡ Σ2 ⊗ ε and ∆;C ` Σ1 =
Σ2. Here, by the lemma A.49, we have Σ′′ ≡ Σ3 ⊗ ε and ∆;C ` Σ2 =
Σ3. Now, by the induction hypothesis, ∆; C ` Σ1 = Σ3. Then, by the
typing rule EQMEMVAR, we have ∆; C ` Σ1 ⊗ ε = Σ3 ⊗ ε. That is,
∆;C ` Σ = Σ′′.

• Case EQMEMZEROARRAYL
By the typing rule, we have Σ ≡ Σ1 ⊗ {i1 7→ τ [i2]}, ∆; C ` Σ1 = Σ′

and ∆; C |= i2 = 0. Here, by the induction hypothesis, we have
∆;C ` Σ1 = Σ′′. Now, by the typing rule EQMEMZEROARRAYL, we
have ∆; C ` Σ = Σ′′.

• Case EQMEMZEROARRAYR
By the typing rule, we have Σ′ ≡ Σ1⊗{i1 7→ τ [i2]}, ∆; C ` Σ = Σ1 and
∆;C |= i2 = 0. Here, by the lemma A.47, we have ∆; C ` Σ1 = Σ′′.
Now, by the induction hypothesis, ∆;C ` Σ = Σ′′.
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