
Writing practical memory management code
with a strictly typed assembly language

(Extended Version)

Toshiyuki Maeda
Graduate School of Information Science and

Technology, The University of Tokyo
7-3-1, Hongo, Bunkyo-ku,

Tokyo, Japan

tosh@is.s.u-tokyo.ac.jp

Akinori Yonezawa
Graduate School of Information Science and

Technology, The University of Tokyo
7-3-1, Hongo, Bunkyo-ku,

Tokyo, Japan

yonezawa@is.s.u-tokyo.ac.jp

ABSTRACT
Memory management (e.g., malloc/free) cannot be imple-
mented in traditional strictly typed programming languages
because they do not allow programmers to reuse memory re-
gions, in order to preserve memory safety. Therefore, they
depend on external memory management facilities, such as
garbage collection. Thus, many important programs that re-
quire explicit memory management (e.g., operating systems)
have been written in weakly typed programming languages
(e.g., C). To address the problem, we designed a new strictly
and statically typed assembly language which is flexible and
expressive enough to implement memory management. The
key idea of our typed assembly language is that it supports
variable-length arrays (the arrays whose size is not known
until runtime) as language primitives, maintains integer con-
straints between variables, and keeps track of pointer aliases.
Based on the idea, we implemented a prototype implemen-
tation of the language. We also implemented a small oper-
ating system kernel which provides a memory management
facility with the language.

1. INTRODUCTION
Today, computers (PCs, cell-phones, etc.) are widely used

in the world and their network becomes one of the indis-
pensable social infrastructures. Therefore, the importance
of ensuring safety of software is commonly recognized and
many programs come to be written in strictly typed lan-
guages (e.g., Java [11], C# [4], Objective Caml [15]).

However, there still exist programs that have not been
written in strictly typed languages. For example, existing
OSes (e.g., Linux, FreeBSD, Windows XP and Solaris) are
written in C and assembly languages. In addition, many In-
ternet servers, for example, Apache httpd server, sendmail
mail server and BIND DNS server are written in C. There-
fore, many vulnerabilities that may result in a serious secu-
rity breach (e.g., system crash and/or intrusion) are found
in the programs, because it is very hard to ensure and/or
verify their safety.

One of the reasons why the programs are written in weakly-
typed languages despite the security problem is that exist-
ing strictly typed programming languages do not allow pro-
grammers to directly manage memory. In simple words,

malloc/free cannot be implemented in the languages. For
example, Java, C# and Objective Caml depend on an ex-
ternal memory management facility, garbage collection. In
the languages, programmers cannot free or reuse memory
regions explicitly.

To address the problem, we designed and implemented a
strictly and statically typed language which is flexible and
expressive enough to implement memory management (mal-
loc/free), and actually implemented memory management
code in the language. The language is a variant of Typed
Assembly Language (TAL) [14, 13] extended with the sup-
port for variable-length arrays (the arrays whose size is not
known until runtime) and integer constraints, and the idea
of tracking aliases of pointers explicitly [20, 25].

There are two reasons why we chose TAL for writing mem-
ory management code. The first reason is that TAL can
express low-level memory operations that are necessary for
implementing memory management, because TAL is an or-
dinary assembly language (except for being typed). The
second reason is that the TAL programs can be type-checkd
at the level of binary executables by annotating the executa-
bles with the type information of TAL. This means that we
can verify the safety of memory management code with the
type-checker without its source code.

The rest of the paper is organized as follows. First, we
argue what is required to implement memory management
in Sec. 2. Next, we explain our language, called TALK, in
Sec. 3. We also describe its type system and type-checking
in the section. Next, we explain how memory management
can be implemented using TALK in Sec. 4. Then, we briefly
describe the prototype implementation of our language and
the small toy OS kernel built with the implementation in
Sec. 5. Last, we mention related work in Sec. 6 and conclude
this paper in Sec. 7.

2. REQUISITES FOR IMPLEMENTING MEM-
ORY MANAGEMENT

2.1 Variable-length arrays
First of all, memory management code must be able to

handle memory. Typically, the memory consists of memory
regions. At the lowest level, the memory region is just an
array of bytes. One important point is that the array is
a variable-length array because its size is not known until
runtime. For example, let us think of the program that

is executed just after a system boots. The program cannot
make any assumption about the size of the memory, because
the amount of the available memory varies from system to
system. Therefore, the type system is required to support
variable-length arrays. Otherwise we cannot even know the
size of the available memory, rather than implement memory
management.

2.2 Integer constraints
The simplest representation of the variable-length array

is a pair of the array and its size. In addition, we introduce
special functions for accessing the pairs and do not allow
programmers to directly access the pair. With this repre-
sentation, the type system needs not to maintain the size of
the arrays.

However, this approach has a big problem: we cannot
implement an allocation function of the pair (the variable-
length array) in the type system. This contradicts our goal,
designing the statically typed programming language that
is able to implement memory management without external
trusted memory management facilities.

To avoid the problem, we need to introduce the idea of
dependent type [27, 26] to the type system. For example, the
type of a variable-length array of integers can be represented
as int [α]. Here, [α] indicates the size of the array, but the
exact value, α, is not known. The type is a kind of dependent
type because it depends on the integer value α.

In addition, we need to handle all integers with the de-
pendent type (more specifically, singleton types), as well as
the variable-length arrays, because the type information is
removed and not available at runtime. For example, let us
think of a program that accesses an element of the above
array. Let us also suppose that a variable (say x) holds an
integer index to the array. To ensure memory safety, the
type system must be able to check whether the access is
safe or not. That is, the type system must be able to check
whether the value of x is smaller than α.

To achieve this, the type system needs to keep track of the
value of x with the singleton types. For example, the type of
x must be int(β), instead of int. Here, β indicates the value
of x, but the exact value is not known to the type system. In
addition, the type system also needs to keep track of integer
constraints (the constraint between α and β in this case).
For example, if the type system knows that α > β, the
array access is safe. Such constraints are generated by usual
branch operations. For example, if the type of a variable
y is int(α), the branch operation if y > x {...} else {...}
generates the constraint α > β for the taken branch and
α ≤ β for the other branch. Here, α is the size of the
variable-length arrays. Therefore, the type system knows
that it is safe to access the array by the index x in the taken
branch.

2.3 Alias tracking
The previous section argued how to represent memory

in the type system with the variable-length arrays. As the
next step, this section discusses how to manage the memory.
From the viewpoint of type theory, memory management is
almost the same as changing types of memory regions. For
example, changing a type of a memory region from a pointer
type to an integer type can be viewed as freeing the memory
region that contains a pointer and reusing it for holding
an integer. Fig. 1 is an example C code which performs

this memory reuse. The function reuses the memory region
pointed by pointer x (line 3).

1 void pointer_to_int(int** x)

2 {

3 int* y = (int*)x;

4 *y = 1;

5 }

Figure 1: Example of C code that reuses a memory
region

However, existing strictly and statically typed program-
ming languages do not allow programmers to change types
of memory regions, because memory safety cannot be en-
sured. For example, using the function in Fig. 1, we can
write a function as in Fig. 2. The function passes the type
check of C, but it is apparently unsafe because it tries to
dereference an integer which is no longer a pointer (line 4).
Thus, memory management cannot be implemented in the
existing strictly and statically typed languages and they de-
pend on external memory management mechanisms, such as
garbage collection.

1 void dangerous_func(int** x)

2 {

3 pointer_to_int(x);

4 **x;

5 ...

Figure 2: Example of C code that breaches memory
safety

The essential problem is that the type system does not
know that y in the function pointer to int and the argu-
ment x of function dangerous func alias, that is, point to
the same memory location.

To solve the problem, we need to introduce the idea of
alias types [25] to the type system in order to keep track
of aliases explicitly. The basic idea of the alias types is to
change the representation of pointer types. In usual type
systems, the type of a pointer is represented as the type
of the memory region pointed by the pointer. In the alias
type system, on the other hand, the type of the pointer is
just the address of the memory region. The type of the
memory region is separately maintained as memory type.
The memory type is a map from addresses to the types of
the memory regions at the addresses.

For example, based on the idea of alias types, the code
in Fig. 1 can be rewritten as in Fig. 3. First, the type
of the argument x is changed from int** to ptr(p) (line
2). ptr(p) indicates that x is a pointer which points to
the address p. Next, the part surrounded by “[” and “]”
represents the memory type. The memory type added before
the function indicates the state of the memory before the
function is called (line 1). The other memory type added
after the function indicates the state of the memory after
the function is executed (line 6). Here, the memory type
before the function indicates that the memory region at the
address p has pointer type ptr(q) and the memory region
at the address q has the integer type. Thus, the type system

knows that x is a pointer to a pointer to an integer. Then,
the body of the function stores an integer to the memory
region at the address p (line 4). Therefore, the memory
type after the function indicates that the memory region at
the address p is an integer. (Please note that the alias type
system ensures that p and q are different integers, because
the memory type is a map.)

1 [p --> ptr(q), q --> int]

2 void pointer_to_int(ptr(p) x)

3 {

4 *x = 1;

5 }

6 [p --> int, q --> int]

Figure 3: Example of pseudo code based on the idea
of alias type

In addition, the code of Fig. 2 can be rewritten as Fig. 4.
The type check of the alias type system rejects the rewritten
code at line 5, because after the function call (pointer to int,
line 4), the type of the memory region is changed from a
pointer type (ptr(q)) to the integer type (int). Thus, the
alias type system allows programmers to reuse memory re-
gions explicitly because it keeps track of aliases in the mem-
ory type.

1 [p --> ptr(q), q --> int]

2 void dangerous_func(ptr(p) x)

3 {

4 pointer_to_int(x);

5 **x;

6 ...

Figure 4: Example of pseudo code that causes a type
error

2.4 Split and Concatenation of Arrays
As described above, we can handle memory with the variable-

length arrays and the integer constraints and reuse regions
in the memory by explicitly tracking pointer aliases with
alias types. However, we need one more mechanism in the
type system to implement practical memory management.
For example, let us suppose that free memory (not in use
memory) is represented as an array of integers. Then, its
memory type is represented as int [a] (here we assume that
a > 0). Now, let us think of the code in Fig. 5 that allocates
one element from the top of the free memory and reuses it
as a pointer to integer (line 4). The access to the array is
obviously safe because a > 0. However, there is a problem
in how to represent the memory type of the memory after
the memory reuse. More specifically, the problem is that
it is difficult to represent the variable-length array whose
elements are integers except for its first element.

To solve the problem, we need a notion of split (and con-
catenation) of arrays in the type system. For example, mem-
ory type [p --> int[a]], which indicates that there is an
array of size a at address p, can be split to memory type [

p --> int[a1], p2 --> int[a2]], which indicates that
there is one array of size a1 at address p and the other array

1 [p --> int[a], q --> int] where a > 0

2 void alloc_and_reuse(ptr(p) x, ptr(q) y)

3 {

4 x[0] = y;

5 ...

Figure 5: Example of pseudo code that allocates a
pointer to integer from free memory (incomplete)

of size a2 at address p2, where a = a1+ a2 and p2 = p+ a1.
In addition, the latter memory type can be concatenated
back to the former memory type.

With the notion of the split of the arrays, the code of
Fig. 5 can be rewritten as in Fig. 6. The split operation
(line 4) splits the free memory into new array of size 1 at p

and the rest of the free memory at p + 1. In this case, we
can naturally represent the memory type of the free memory
after line 5 as [p --> ptr(q), (p + 1) --> int[a - 1]

].

1 [p --> int[a], q --> int] where a > 0

2 void alloc_and_reuse(ptr(p) x, ptr(q) y)

3 {

4 split p, 1;

5 x[0] = y;

6 ...

Figure 6: Example of pseudo code that allocates a
pointer to integer from free memory (complete)

3. OUR LANGUAGE: TALK
This section introduces our strictly typed assembly lan-

guage for writing memory management code. Although the
language explained in this section is based on a virtual CPU
architecture, the actual implementation is based on the IA-
32 [10] assembly language. In this section, we first explain
its abstract machine and types. Then, its operational se-
mantics and typing rules are described. The syntax of our
language is shown in Fig. 7 and Fig.8.

3.1 Abstract Machine
A state of the abstract machine consists of program P ,

memory M , registers R and instructions I. The instructions
I is explained in Sec. 3.3. The program P is a map from
label l to the instructions I. The registers R is a map from
register r to value v.

The memory M is a map from an integer n to heap value
h. The heap value h is array a or stack s. The array
a consists of tuples t, and the tuples consist of values v.
(roll (t) and pack[c1,...,cn|M] (t) are introduced only for for-

mal arguments of recursive types and existential types.) The
value v is integer n or the label l. (The suffix of the label l
([c1, . . . , cn/∆])is required only by type checkers. It has no
meaning at runtime.) The stack s consists of the values v.
Strictly speaking, the stacks are not necessary because they
can be represented by the arrays. However, in this paper,
we introduce the stacks for ease of understating examples.
In addition, we assume that the stacks are unbounded in

this paper. The actual implementation handles the bounded
stacks properly.

(state) S ::= (P, M, R, I)
(prog .) P ::= · | {l 7→ I}P
(memory) M ::= · | {n 7→ h}M
(regs.) R ::= {r1 7→ v1, . . . , rn 7→ vn}
(register) r ::= r1 | . . . | rn
(heap) h ::= a | s
(array) a ::= 〈t1, . . . , tn〉
(tuple) t ::= 〈v1, . . . , vn〉 | roll (t)

| pack[c1,...,cn|M] (t)

(stack) s ::= · | v :: s
(value) v ::= n | l [c1, . . . , cn/∆]
(integer) n
(label) l
(insts.) I ::= ld [rs + n], rd; I | st rs, [rd + n]; I

| mov rs, rd; I | movi v, rd; I | add rs1, rs2, rd; I
| sub rs1, rs2, rd; I | mul rs1, rs2, rd; I | push rs, [rd]; I
| pop [rs], rd; I | beq rs1, rs2, rd; I | ble rs1, rs2, rd; I
| jmp rd | apply r [c1, . . . , cn/∆] ; I
| rollµη[∆].τ(c1,...,cn) i; I | unroll i; I
| pack[c1,...,cn|Σ1]as∃∆.|C|[Σ2].τ i; I | unpack i with ∆; I

| split i1, i2; I | concat i1, i2, i3; I
| tuple split i1, n2; I | tuple concat i1, i2; I

Figure 7: Syntax of Abstract Machine

3.2 Types
The type of integers is represented by i. The integer type

i is integer constants n, type variables α or the result of
integer arithmetic operations i1 aop i2. For example, if a
certain register r has the integer type 3, the register r holds
the value 3. In addition, if two registers r1 and r2 have the
same type α, we know that r1 = r2, though the exact values
of r1 and r2 is not known.

The type of memory is represented as Σ. The memory
type Σ consists of maps from the integer type i to heap type
ht , and type variables ε. For example, {0xc0345810 7→ ht}
represents memory in which there is only one heap value of
the type ht at the address 0xc0345810. On the other hand,
{0xc0345810 7→ ht}⊗ ε represents memory in which there is
a heap value of the type ht at the address 0xc0345810 and
there may be some other data (or not). The type variable ε
indicates that there may be some other data in the memory.

The heap type ht is array type at or stack type st . The
array type at is written as τ [i]. This represents an array
whose elements have the type τ and whose size is i. Because
we can use type variables for representing sizes of arrays, we
can deal with the variable-length arrays.

The type of elements of arrays is the tuple type τ . There
are three kinds of the tuple type. 〈σ1, . . . , σn〉 represents a
type of tuples whose elements have types σi. ∃∆. |C| [Σ] .τ
represents the type of a tuple which is packed as an exis-
tential type. (The details of existential types are explained
later.) ρ (c1, . . . , cn) is a (parametric) recursive type for re-
cursive data structures. The type of elements of tuples, σ,
can be the integer type i or label type lt .

The stack type st consists of null stack type (·), a pair of
the small value type σ which represents the top of the stack

and the stack type st which represents the rest of the stack,
and type variable γ. For example, 42 :: γ represents the
type of a stack whose top element is an integer value (42)
and the rest is unknown (γ).

The label type is written as ∀∆. |C| [Σ] (Γ). It indicates a
constraint condition that must be satisfied whenever a con-
trol flow reaches the label. First, ∆ represents a set of type
variables. This means that the instructions of the label is
polymorphic over the type variables. Next, C represents
integer constraints. The instructions of the label are type-
checked under the assumption that the constraints are satis-
fied, because our typing rules ensure that the constraints are
satisfied at all the points of jumping to the label. Then, Σ is
the memory type described above. As with the integer con-
straints, the instructions of the label are type-checked under
the assumption that the memory has the memory type Σ,
because our typing rules ensure that the memory has the
type Σ at all the points of jumping to the label. Last, the
registers type Γ indicates the condition for registers that
must be satisfied whenever execution reaches the label. For
example, ∀α, β, ε. |β ≤ 128| [ε⊗ {α 7→ 〈0〉 [β]}] (r1 : α) repre-
sents instructions that take a pointer (register r1) to an ar-
ray whose size is not greater than 128 and whose elements
are 0.

Additionally, the existential type ∃∆. |C| [Σ] τ represents
tuples that have the type τ , and indicates that the integer
constraints C are satisfied and there exists memory whose
type is Σ. For example, ∃α, β. |β ≤ 128| [{α 7→ 〈0〉 [β]}] 〈α〉
represents a tuple whose only element is a pointer to an
array whose size is not greater than 128, and ensures that
the array exists surely.

In addition, the actual implementation of our language
supports a variant type, but we do not explain it in this
paper for brevity.

The program type Φ represents the type of program P . It
is a map from the label l to the label type lt .

(label type) lt ::= ∀∆. |C| [Σ] (Γ)
(small type) σ ::= i | lt
(integer type) i ::= n | α | i1 aop i2
(type var .) δ ::= α, γ, ε
(type vars.) ∆ ::= · | δ, ∆
(type) τ ::= 〈σ1, . . . , σn〉 | ∃∆. |C| [Σ] τ

| ρ (c1, . . . , cn)
(type scheme) ρ ::= η | µη [∆] .τ
(array type) at ::= τ [i] | τ (= τ [1])
(stack type) st ::= · | σ :: st | γ
(heap type) ht ::= at | st
(memory type) Σ ::= · | Σ⊗ {i 7→ ht} | Σ⊗ ε
(regs. type) Γ ::= · | {r 7→ σ}Γ
(prog . type) Φ ::= · | {l 7→ lt}Φ
(constructor) c ::= i | Σ | st
(constraints) C ::= · | i1 cop i2

| C ∧ C| C ∨ C | ¬C
(compareop.) cop ::= = | < | ≤ | > | ≥
(arithop.) aop ::= + | − | ∗

Figure 8: Syntax of Types

3.3 Instructions and Operational Semantics

There are two kinds of instructions in our language. One
is the ordinary instructions that update the state of the ab-
stract machine. The other is the coerce instructions that up-
date only the type information when type-checking. Fig. 9
and Fig. 10 represent their operational semantics. (In this
paper, e [b/a] represents a capture-avoiding substitution of
b for free variable a in e. In addition, e [b1, b2/a1, a2] is an
abbreviation of e [b1/a1, b2/a2].)

3.3.1 Ordinary Instructions
There are 12 ordinary instructions in our language. ld [rs+

n], rd is a load instruction which loads nth element of a tuple
which resides in the address specified by the register rs and
stores the element to the register rd. st rs, [rd +n] is a store
instruction which stores the value of the register rs into nth
element of a tuple which resides in the address specified by
the register rd.
mov rs, rd is a register-copy instruction which just copies

the value of the register rs to the register rd. movi v, rd is
a constant-load instruction which loads the value v to the
register rd.
add rs1, rs2, rd is an add instruction which stores the sum

of rs1 and rs2 into the register rd. sub and mul is a subtrac-
tion and multiplication instruction, respectively. In our lan-
guage, there is no reference types or pointer types. Memory
addresses are only integers. Therefore, the address calcula-
tion are performed with the arithmetic instructions.
push rs, [rd] is an instruction for manipulating memory

stacks. It pushes the value stored in the register rs to the
stack that resides in the address specified by the register rd.
Then, it decrements the register rd by one. pop [rs], rd is the
other instruction for manipulating memory stacks. It pops
the top of the stack that resides in the address specified by
the register rs and stores the value to the register rd. Then,
it increments the register rs by one.
beq rs1, rs2, rd is a branch instruction which jumps to the

label specified by the register rd if rs1 = rs2. ble rs1, rs2, rd

is the other branch instruction which jumps to the label
specified by the register rd if rs1 ≤ rs2.
jmp rd is a jump instruction which jumps to the label

specified by the register rd and executes the instructions of
the label.

3.3.2 Coerce Instructions
There are 9 coerce instructions for manipulating type in-

formation when type-checking. The instructions incur no
runtime overhead because they are interpreted only by type
checkers and not executed at runtime.
apply r [c1, . . . , cn/∆] is a type application instruction

which substitutes c1, . . . , cn for the type variables ∆ that
are bound by the type of the label specified by the register
r. A type variable (δ) is an integer type variable (α), a stack
type variable (γ) or a memory type variable (ε).
rollµη[∆].τ(c1,...,cn) i and unroll i are instructions for re-

cursive types which unroll a recursive type once (unroll)
and vice versa (roll).
pack[c1,...,cn|Σ]as τ i and unpack i with ∆ are instructions

for existential types which pack the type of the tuple that
resides in the address i into an existential type (pack) and
vice versa (unpack). As in the alias type system [25], we can
hide part of memory in existential types. The encapsulated
memory cannot be accessed unless the existential type is
unpacked.

split i1, i2 and concat i1, i2, i3 are instructions for the
array types. split splits an array type into two adjacent ar-
ray types and concat concatenates two adjacent array types
into one array type. These instructions are used to access
an element of an array (see Sec. 3.4.4 for details). In addi-
tion, they are useful for implementing memory management
facilities (see Sec. 4 for details).
tuple split i1, n2 and tuple concat i1, i2 resemble split

and concat, but for tuple types. tuple concat is used for
creating a tuple type from adjacent arrays of size 1, and
tuple split is vice versa. In our language, allocation of a
tuple can be represented as follows. First, an array is ob-
tained by split from one of the arrays that represent the
free memory. Then, the obtained array is further split into
adjacent arrays of size 1. Then the arrays are concatenated
into a tuple by tuple concat (see the example of Sec. 4 for
details)

3.4 Typing Rules
Typing rules are shown in Fig. 11, Fig. 12 and Fig. 13.

` S states that the abstract machine state S is well-formed.
If (P, M, R, I) is well-formed, there exists a certain state
(P, M ′, R′, I ′) which is also well-formed and (P, M, R, I) 7→S

(P, M ′, R′, I ′), that is, no runtime errors occur. Strictly
speaking, the above statement holds true if all the stacks
in memory never conflict with other heap values. This is
because the language presented in this paper assumes that
the stacks can grow infinitely, but this is impossible in prac-
tice. Thus, we can prove the above statement except for the
rules for the stacks. This is only a minor matter, because
the stacks are not necessary as mentioned in Sec. 3.1

Our type system is based on the one proposed in [25].
Although Walker and Morrisett proved type soundness in
[25], their language falls short of a practical language. This
is why, for the purpose of writing practical memory man-
agement code, we essentially added a variable-length array
type to their type system. We claim that those changes
are unlikely to break type soundness, because, in TALK,
the strong updates that may change types of memory re-
gions are only for tuples (the arrays of size 1) as described
in Sec. 3.4.4. This is almost the same as in the type system
of [25]. The only concern is the effect of split/concatenation
of variable-length arrays, but the typing rules for them are
quite straightforward.

The judgement of abstract machine states consists of the
judgement of program, memory, registers and instructions.

3.4.1 Well-formedness of program
` P : Φ states that the program P is well-formed (PRO-

GRAM). The rule checks whether all the labels in the pro-
gram are typed in the program type Φ. It also checks
whether each block of instructions in the program is well-
formed according to its label type specified in Φ. The well-
formedness of instructions are described in Sec. 3.4.4.

3.4.2 Well-formedness of registers
` R : Γ states that the registers R is well-formed (REGIS-

TERS). The rule checks whether the value of each register
has the small value type specified in the registers type Γ.

3.4.3 Well-formedness of memory
` M : Σ states that the memory M has the memory

type Σ (MEMORY). The judgement rule checks whether

(P, M{R(rs) 7→ 〈〈v1, . . . , vn〉〉}, R, ld [rs + n′], rd; I) 7→S (P, M{R(rs) 7→ 〈〈v1, . . . , vn〉〉}, R{rd 7→ vn′}, I)
(P, M{R(rd) 7→ 〈〈. . . , vn′ , . . .〉〉}, R, st rs, [rd + n′]; I) 7→S (P, M{R(rd) 7→ 〈〈. . . , R(rs), . . .〉〉}, R, I)
(P, M, R, mov rs, rd; I) 7→S (P, M, R{rd 7→ R(rs)}, I)
(P, M, R, movi v, rd; I) 7→S (P, M, R{rd 7→ v}, I)
(P, M, R, add rs1, rs2, rd; I) 7→S (P, M, R{rd 7→ R(rs2) + R(rs1)}, I)
(P, M, R, sub rs1, rs2, rd; I) 7→S (P, M, R{rd 7→ R(rs2)−R(rs1)}, I)
(P, M, R, mul rs1, rs2, rd; I) 7→S (P, M, R{rd 7→ R(rs2) ∗R(rs1)}, I)
(P, M{R(rd) 7→ s}, R, push rs, [rd]; I) 7→S (P, M{R(rd)− 1 7→ R(rs) :: s}, R{rd 7→ R(rd)− 1}, I)
(P, M{R(rs) 7→ v :: s}, R, pop [rs], rd; I) 7→S (P, M{R(rs) + 1 7→ s}, R{rd 7→ v}{rs 7→ R(rs) + 1}, I)
(P, M, R, beq rs1, rs2, rd; I) 7→S if R(rs1) = R(rs2) then (P, M, R, P (l) [c1, . . . , cn/∆])

else (P, M, R, I)
where R(rd) = l [c1, . . . , cn/∆]

(P, M, R, ble rs1, rs2, rd; I) 7→S if R(rs1) ≤ R(rs2) then (P, M, R, P (l) [c1, . . . , cn/∆])
else (P, M, R, I)
where R(rd) = l [c1, . . . , cn/∆]

(P, M, R, jmp rd) 7→S (P, M, R, P (l) [c1, . . . , cn/∆])
where R(rd) = l [c1, . . . , cn/∆]

Figure 9: Operational Semantics (instructions)

(P, M, R, apply rd [c1, . . . , cn/∆] ; I) 7→S (P, M, R{rd 7→ R(rd) [c1, . . . , cn/∆]}, I)
where R(rd) = l [c′1, . . . , c

′
m/∆′] (l ∈ P)

(P, M{n 7→ 〈t〉}, R, rollτ n; I) 7→S (P, M{n 7→ 〈roll (t)〉}, R, I)
(P, M{n 7→ 〈roll (t)〉}, R, unroll n; I) 7→S (P, M{n 7→ 〈t〉}, R, I)“
P, M{n 7→ 〈t〉}M ′, R, pack[c1,...,cn|Σ]as τ n; I

”
7→S

“
P, M{n 7→

D
pack[c1,...,cn|M′] (t)

E
}, R, I

”

where Dom(M ′) ⊆ Dom(Σ)

(P, M{n 7→
D
pack[c1,...,cn|M′] (t)

E
}, R,

unpack n with ∆; I) 7→S (P, MM ′{n 7→ 〈t〉}, R, [c1, . . . , cn/∆]I)
(P, M{n1 7→ 〈t1, . . . , tn〉}, R, split n1, n2; I) 7→S (P, M{n1 7→ 〈t1, . . . , tn2〉}{n′1 7→ 〈tn2+1, . . . , tn〉}, R, I)

where 0 < n2 < n and n′1 = n1 +
Pn2

i=1 sizeof (ti)
(P, M, R, split n1, 0; I) 7→S (P, M, R, I)
(P, M{n1 7→ 〈t1, . . . , tn〉}, R, split n1, n; I) 7→S (P, M{n1 7→ 〈t1, . . . , tn〉}, R, I)
(P, M{n1 7→ 〈t1, . . . , tn〉}{n2 7→ 〈t′1, . . . , t′m〉}, R,

concat n1, n2, m; I) 7→S (P, M{n1 7→ 〈t1, . . . , tn, t′1, . . . , t
′
m〉}, R; I)

where m > 0 and n2 = n1 +
Pn

i=1 sizeof (ti)
(P, M{n1 7→ 〈t1, . . . , tn〉}, R, concat n1, n2, 0; I) 7→S (P, M{n1 7→ 〈t1, . . . , tn〉}, R, I)

where n2 = n1 +
Pn

i=1 sizeof (ti)
(P, M{n1 7→ 〈t1, . . . , tm〉}, R, concat n1, n1, m; I) 7→S (P, M{n1 7→ 〈t1, . . . , tm〉}, R, I)

where m > 0
(P, M, R, concat n, n, 0; I) 7→S (P, M, R, I)
(P, M{n1 7→ 〈〈v1, . . . , vn〉〉}, R, tuple split n1, n2; I) 7→S (P, M{n1 7→ 〈〈v1, . . . , vn2〉〉}{n′1 7→ 〈〈vn2+1, . . . , vn〉〉}, R, I)

where n′1 = n1 + n2

(P, M{n1 7→ 〈〈v1, . . . , vn〉〉}{n2 7→ 〈〈v′1, . . . , v′m〉〉}, R,
tuple concat n1, n2; I) 7→S (P, M{n1 7→ 〈〈v1, . . . , vn, v′1, . . . , v

′
m〉〉}, R; I)

where n2 = n1 + n

Figure 10: Operational Semantics (coerce)

the heap value M(n) has the heap type Σ(n) for each ad-
dress n ∈ Dom(M). In addition, the rule states that all the
heap values in the memory (including encapsulated mem-
ory regions inside existential packages) do not overlap each
other (which is denoted as GU(M)) in order to keep track of
pointer aliases properly.

∆; C ` a : at states that, with the type variables ∆
and under the assumption that the integer constraints C
are satisfied, the array a has the array type at . The typ-
ing rule ARRAY checks whether all the elements of the ar-
ray have the same tuple type τ and the size of the array
equals to the size specified in the array type. For example,
∆; C ` 〈t1, t2〉 : τ [i] checks whether the tuples t1 and t2
have the type τ . It also checks whether i = 2 under the
assumption C, using a constraint solver. We write this as
∆; C |= i = 2. We do not show the rules for ∆; C |= C′

(read as C′ can be deduced from C) in this paper. It is well-
known that the problem of integer constraints is decidable
if the constraints are linear. The only instruction that may
introduce a non-linear constraint is the mul instruction.

∆; C ` s : st states that, with the type variables ∆ and
under the assumption that the integer constraints C are sat-
isfied, the stack s has the stack type st .

∆; C ` t : τ states that the element t of an array has
the type τ . The typing rule TUPLE checks whether each
element (vi) of an tuple has the type (σi) specified in the
tuple type. The typing rule TUPLE PACK is for existential
types and the typing rule TUPLE ROLL is for recursive
types.

∆; C ` v : σ states that the value v has the type σ.
There are two typing rules for integers (VALUE INTEGER)
and labels (VALUE LABEL). The VALUE INTEGER rule
checks whether the integer n equals to the type i using a
constraint solver (∆; C |= n = i). The VALUE LABEL rule
checks whether the type of the label l can be instantiated
to the specified label type σ according to the substitution
[c1, . . . , cn/∆′′].

3.4.4 Well-formedness of instructions
∆;Γ; C; Σ ` I states that the instructions I is well-formed

with the type variables ∆, with the registers that satisfies
the registers type Γ and under the assumption that the in-
teger constraints C are satisfied and the memory has the
memory type Σ.

The typing rule LOAD is for type-checking the load in-
struction. First, the rule checks whether the value of the
register rs is a valid memory address in the memory type Σ
and an array resides in the address. Then, it checks whether
the size of the array equals to 1 and the size of the tuple
that is only element of the array is larger than n. Finally, it
checks the rest of instructions I under the new register type
that is modified so that the register rd has the type σn that
represents the loaded value.

The typing rule STORE is for type-checking the store in-
struction. As with LOAD, it checks whether the value of the
register rd is a valid memory address in the memory type Σ
and an array resides in the address. Then, it checks whether
the size of the array that resides in the address equals to 1
and the size of the tuple that is only element of the array
is larger than n. Finally, it checks the rest of instructions I
under the modified memory type such that the nth element
of the tuple that resides in the address is replaced with the
type of rs.

` P : Φ ` M : Σ ` R : Γ ·; Γ; ·; Σ ` I

` (P, M, R, I)
(state)

Dom(P) = Dom(Φ)
∀l ∈ Dom(P). ∆;Γ; C; Σ ` P (l) Φ(l) ≡ ∀∆. |C| [Σ] (Γ)

` P : Φ
(program)

GU(M) M ≡ {n1 7→ a1} . . . {nk 7→ ak}
Σ′ ≡ {n1 7→ at1} ⊗ . . .⊗ {nk 7→ atk}
∀i. ·; · ` ai : at i ·; · ` Σ = Σ′

` M : Σ
(memory)

∀ri ∈ Dom(Γ). ·; · ` R(ri) : Γ(ri)

` R : Γ
(registers)

∆; C ` tj : τ ∆; C |= n = i

∆; C ` 〈t1, . . . , tn〉 : τ [i]
(array)

∆; C ` vj : σj

∆; C ` v1 :: . . . :: vn : σ1 :: . . . :: σn
(stack)

∆; C ` vj : σj

∆; C ` 〈v1, . . . , vn〉 : 〈σ1, . . . , σn〉 (tuple)

τ ≡ µη [∆′] .τ ′ (c1, . . . , cn)
∆; C ` t : τ ′ [µη [∆′] .τ ′/η] [c1, . . . , cn/∆′]

∆; C ` roll (t) : τ
(tuple roll)

∆; C ` t : τ ′ [c1, . . . , cn/∆′] τ ≡ ∃∆′. |C′| [Σ′] τ ′
` M : Σ′ [c1, . . . , cn/∆′] ∆; C |= C′ [c1, . . . , cn/∆′]

∆; C ` pack[c1,...,cn|M] (t) : τ

(tuple pack)

∆; C |= n = i

∆; C ` n : i
(value integer)

∀∆′. |C′| [Σ′] (Γ′) ≡ Φ(l) θ ≡ [c1, . . . , cn/∆′′]
C′′ ≡ C′θ Σ′′ ≡ Σ′θ Γ′′ ≡ Γ′θ

∆; C ` σ = ∀∆′\∆′′. |C′′| [Σ′′] (Γ′′)
∆; C ` l [c1, . . . , cn/∆′′] : ∀∆.|C1|[Σ1](Γ1)

(value label)

Figure 11: Typing rules (machine state)

Because LOAD and STORE only permit load/store oper-
ations for arrays whose size is 1, to access an array whose
size is greater than 1, it is required to clip out an array of
size 1 from the array, with the split instruction. At first
glance, this limitation seems to be pointless, but it is es-
sential. For example, let us consider the type of an integer
array. It can be represented as ∃α. 〈α〉 [β] (The integer con-
straints and the memory type are omitted). To load a value
from the array, we must unpack one of its elements. How-
ever, it is difficult to express the type of the array whose all
elements have the existential type, except for the one ele-
ment. The same can be said for storing a value to the array
(as mentioned in Sec. 2.4).

The equality of memory types (∆; C ` Σ = Σ′) is al-
most the same as the ordinary equality of maps. However,
it takes into account the integer constraints between type
variables. For example, α, β; · 6` {α 7→ 〈α〉} = {β 7→ 〈β〉},
but α, β; α = β ` {α 7→ 〈α〉} = {β 7→ 〈β〉}. In addition,
arrays whose size is 0 can be ignored in the equality check.
For example, α, β; β = 0 ` {α 7→ 〈0〉 [β]} = ·.

The typing rule MOVE does almost nothing but checks
the rest of the instructions I with the modified registers
type that indicates that the register rd has the same type
as the register rs. The typing rule MOVEI type-checks the
constant-load instruction. First, it checks the type of the
value to be loaded (∆; C ` v : σ). Then, it checks the
following instructions I with the modified registers type that
indicates that the register rd has the type σ.

The typing rule ARITH type-checks the arithmetic in-
structions. The rule checks whether the operands have the
integer types. Then, it type-checks the rest of instructions
I with the modified register type that indicates that the
register rd has the result of the arithmetic operations.

The typing rule PUSH type-checks the push instruction.
First, it checks whether the value of the register rd is a valid
memory address in the memory type Σ and there is a stack
at the address. Next, it extends the type of the stack by
pushing the type of the register rs. It also modifies the
address of the stack and the type of the register rd. Then,
it type-checks the following instructions I.

The typing rule POP type-checks the pop instruction.
First, it checks whether the value of the register rs is a valid
memory address in the memory type Σ and there is a stack
at the address. Next, it pops out the top of the stack and
overwrites the type of the register rd with it. It also modi-
fies the address of the stack and the type of the register rs.
Then, it type-checks the rest of the instructions I.

The typing rule BRANCH is for type-checking the branch
instructions. For the taken branch, it first checks whether
the value of the register rd has the label type. Then, it
checks whether the condition specified in the label type is
satisfied under the current context (∆; C) extended with the
condition of the taken branch (Γ (rs1) (=,≤)Γ (rs2)). The
relation ∆; C ` Γ ≤ Γ′ means that the registers type Γ
indicates a stronger condition than the registers type Γ′.
For example, α; · ` {r1 7→ α} ≤ {r1 7→ α} and α; · ` {r1
7→ α, r2 7→ 42} ≤ {r1 7→ α}, but α; · 6` {r1 7→ α} ≤ {r1
7→ α, r2 7→ 42}. For the non-taken branch, it checks the
following instructions I under the extended context with
Γ (rs1) (6=, >)Γ (rs2). Moreover, if C′′ (for the taken branch)
or the extended C (for the non-taken branch) contains a
contradiction, the corresponding type-check can be omitted
without breaking the type soundness, because the contra-

diction indicates that execution never reaches the branch.
The typing rule JUMP type-checks the jump instruction.

The rule checks whether the value of the register rd has the
label type. Then, it checks whether the condition specified
in the label type is satisfied under the current context.

Careful readers might notice that nonsense label types
can be written in our language. For example, the label type
∀α, β.|α = β|[{α 7→ 〈0〉} ⊗ {β 7→ 〈1〉}].(Γ) is nonsense be-
cause the memory type indicates that the tuple at the ad-
dress α(= β) has the integer value 0 and 1. Even if a block
of instructions passes the type check of our language accord-
ing to the nonsense label type, it may raise a runtime error
if it is executed. However, the nonsense label type does not
break the type soundness of our language because the block
is never executed. For example, let us suppose that there
exists a well-formed machine state (P, M, R, I), where the
last instruction of I is the jump instruction and its target
register (rd) has a nonsense label type. From the JUMP
typing rule, we know that the typing context (∆; Γ; C; Σ) is
also nonsense when type-checking the jump instruction. If I
does not contain the branch instructions, it contradicts the
well-formedness of the machine state because the initial typ-
ing context (·; Γ; ·; Σ) is valid (not nonsense) and the only
typing rule that may generate a nonsense context from a
valid context is the BRANCH typing rule, more specifically,
the non-taken branch of the rule. Therefore, there must ex-
ists at least one branch instruction which introduces a new
integer constraint which conflicts with the typing context
of the BRANCH rule. This means that no matter how we
instantiate the type variables, the new constraint is never
satisfied. That is, the branch is never taken at runtime.
Thus, execution never reaches the jump instruction.

The typing rule APPLY type-checks the type application
instruction. The rule type-checks the rest of instructions
I with the modified registers type that indicates that the
register r has the instantiated type σ′f .

The typing rule ROLL and UNROLL check whether the
instructions for recursive types (roll and unroll) are well-
formed. The rule ROLL checks whether the type of the
tuple at the address i can be rolled to the specified recursive
type. Then, it checks the following instructions I with the
new memory type modified so that the type is rolled. The
rule UNROLL is vice versa.

The typing rule PACK and UNPACK type-check the in-
structions for packing and unpacking the existential types
(pack and unpack). The rule PACK first checks whether
the tuple at the address i can be packed into the specified
existential type. Next, it modifies the memory type so that
a tuple is packed into an existential type, and removes the
portion of the memory that is hidden into the existential
type. Then, it checks the rest of the instructions I. The
rule UNPACK is vice versa. The rules ROLL, UNROLL,
PACK and UNPACK only allow arrays whose size is 1, as
with LOAD and STORE.

The typing rule SPLIT and CONCAT check the well-
formedness of the instructions for splitting/concatenating
arrays (split and concat). The rule SPLIT checks whether
the size (j1) of the array to be split is greater than or equal
to the required size (∆; C |= i2 ≤ j1). Then, it splits the ar-
ray into two arrays and extends the memory type with them.
The rule CONCAT checks whether the given two arrays are
adjacent (∆; C |= j1 = i1 + sizeof (τ) ∗ i2). Then, it con-
catenates the two arrays into one and extends the memory

∆; C ` Σ = Σ′ ⊗ {Γ (rs) 7→ 〈. . . , σn, . . .〉}
∆;Γ{rd 7→ σn}; C; Σ ` I

∆;Γ; C; Σ ` ld [rs + n], rd; I
(load)

∆; C ` Σ = Σ′ ⊗ {Γ (rd) 7→ 〈. . . , σn, . . .〉}
∆;Γ; C; Σ′ ⊗ {Γ (rd) 7→ 〈. . . , Γ (rs) , . . .〉} ` I

∆;Γ; C; Σ ` st rs, [rd + n]; I
(store)

∆; Γ{rd 7→ Γ (rs)}; C; Σ ` I

∆;Γ; C; Σ ` mov rs, rd; I
(move)

∆; C ` v : σ ∆;Γ{rd 7→ σ}; C; Σ ` I

∆;Γ; C; Σ ` movi v, rd; I
(movei)

∆; Γ{rd 7→ Γ (rs2) (+,−, ∗)Γ (rs1)}; C; Σ ` I

∆;Γ; C; Σ ` (add, sub, mul) rs1, rs2, rd; I
(arith)

∆; C ` Σ = Σ′ ⊗ {Γ (rd) 7→ st}
∆;Γ{rd 7→ Γ (rd)− 1}; C; Σ′ ⊗ {Γ (rd)− 1 7→ Γ (rs) :: st} ` I

∆;Γ; C; Σ ` push rs, [rd]; I
(push)

∆; C ` Σ = Σ′ ⊗ {Γ (rs) 7→ σ :: st}
∆;Γ{rs 7→ Γ (rs) + 1}{rd 7→ σ}; C; Σ′ ⊗ {Γ (rs) + 1 7→ st} ` I

∆;Γ; C; Σ ` pop [rs], rd; I
(pop)

∆; C ` Γ (rd) = ∀. |C′| [Σ′] (Γ′)
C′′ ≡ C ∧ Γ (rs1) (=,≤)Γ (rs2)

∆; C′′ |= C′ ∆; C′′ ` Σ = Σ′ ∆; C′′ ` Γ ≤ Γ′

∆;Γ; C ∧ Γ (rs1) (6=, >)Γ (rs2) ; Σ ` I

∆;Γ; C; Σ ` (beq, ble) rs1, rs2, rd; I
(branch)

∆; C ` Γ (rd) = ∀. |C′| [Σ′] (Γ′)
∆; C |= C′ ∆; C ` Σ = Σ′ ∆; C ` Γ ≤ Γ′

∆;Γ; C; Σ ` jmp rd
(jump)

Figure 12: Typing rules (instructions)

type with it. Here sizeof (τ) is the size of the tuple repre-
sented by the type τ . If τ is a recursive type (µ . . . τ ′) or an
existential type (∃ . . . τ ′), sizeof (τ) is recursively applied to
the inner tuple type τ ′. Because sizeof (τ) is always a con-
stant integer, the rule SPLIT and CONCAT never generate
non-linear constraints. Please note that the split instruc-
tion can create the array of size 0 (if the second argument
of the instruction is 0 or equals to the size of the array).
This is because, without the array of size 0, special han-
dling is required to access the first and the last element of
the variable-length arrays. The arrays of size 0 do not affect
the type soundness because they are never accessed and the
equality check of the memory types absorbs them.

The typing rule TUPLE SPLIT and TUPLE CONCAT
are almost the same as SPLIT and CONCAT, but they type-
check the split and concatenation of tuples.

4. MEMORY MANAGEMENT WITH TALK
In this section, we show simple memory management code

which is written in TALK. Although its algorithm is simple
and naive, we believe that it is sufficient to show the flexi-
bility and expressiveness of TALK.

4.1 Representation of the free memory
Fig. 14 represents the type of the free memory. It is a

list of variable-length arrays. Each element of the list is a
variable-length array and a tuple which has two elements.
The size of the array is stored in the second element of the
tuple. The first element of the tuple is a pointer to the next
element of the list. The one argument for the recursive type
represents the address of the tuple itself. Therefore, the in-
teger constraint inside the existential type (line 2) indicates
that the tuple and the variable-length array are adjacent. In
addition, the memory type inside the existential type (line
3) indicates that there surely exists a memory region which
satisfies the memory type. Strictly speaking, the definition
of the list in Fig. 14 represents an infinite list because the
definition does not include any list terminator. Therefore,
it might be unrealistic because the free memory is finite. To
define finite lists, the type system of TALK supports variant
types (or union types), but we do not explain them in this
paper for clarity.

4.2 Implementation of malloc
Fig. 15 is a simple implementation of malloc. For clarity,

the syntax of instructions are slightly extended. In addition,
the apply instruction and the argument for the pack, unpack
and roll instructions are omitted for clarity.

The label type of malloc indicates that the function takes
a free memory (FreeMem(αfree) at line 2) as an argument
and returns an array of the specified size (αsize) at line 3).
The type of the allocated array is specified at line 61. Please
note that the return type of the function is abbreviated as
ret t .

The function first checks whether the array of first element
of the given free memory list satisfies the requested size (line
11). If so, the function jumps to malloc success. Other-
wise, it tries the next element in the free memory list. First,
it stores the current element of the list and the return ad-
dress on the stack (line 13 and 14). Then, it calls itself recur-
sively (from line 16 to 21). After the return from the recur-
sive call (the instructions of the label malloc cont), it con-
catenates the saved element with the returned free memory

∆; C ` Γ(r) : σf σf ≡ ∀∆′. |C′| [Σ′] (Γ′)
θ ≡ [c1, . . . , cn/∆′′] C′′ ≡ C′θ Σ′′ ≡ Σ′θ Γ′′ ≡ Γ′θ

σ′f ≡ ∀∆′\∆′′. |C′′| [Σ′′] (Γ′′) ∆; Γ{r 7→ σ′f}; C; Σ ` I

∆;Γ; C; Σ ` apply r [c1, . . . , cn/∆′′] ; I
(apply)

τ ≡ µη [∆′] .τ ′ (c1, . . . , cn)
∆; C ` Σ = Σ′ ⊗ {i 7→ τ ′ [µη [∆′] .τ ′/η] [c1, . . . , cn/∆′]}

∆;Γ; C; Σ′ ⊗ {i 7→ τ} ` I

∆;Γ; C; Σ ` rollτ i; I
(roll)

∆; C ` Σ = Σ′ ⊗ {i 7→ µη [∆′] .τ ′ (c1, . . . , cn)}
∆;Γ; C; Σ′ ⊗ {i 7→ τ ′ [µη [∆′] .τ ′/η] [c1, . . . , cn/∆′]} ` I

∆;Γ; C; Σ ` unroll i; I
(unroll)

θ ≡ [c1, . . . , cn/∆′] ∆; C ` Σ = Σ′′ ⊗ {i 7→ τθ} ⊗ Σ′θ
∆; C |= C′θ ∆;Γ; C; Σ′′ ⊗ {i 7→ ∃∆′. |C′| [Σ′] τ} ` I

∆;Γ; C; Σ ` pack[c1,...,cn|Σ′[c1,...,cn/∆′]]as∃∆′.|C′|[Σ′]τ i; I

(pack)

∆; C ` Σ = Σ′′ ⊗ {i 7→ ∃∆′. |C′| [Σ′] τ} θ ≡ [∆′′/∆′]
∆∆′′; Γ; C ∧ C′θ; Σ′′ ⊗ {i 7→ τθ} ⊗ Σ′θ ` I

∆;Γ; C; Σ ` unpack i with ∆′′; I
(unpack)

∆; C ` Σ = Σ′ ⊗ {i1 7→ τ [j1]} ∆; C |= 0 ≤ i2 ≤ j1
k1 ≡ i1 + sizeof (τ) ∗ i2 k2 ≡ j1 − i2

∆;Γ; C; Σ′ ⊗ {i1 7→ τ [i2]} ⊗ {k1 7→ τ [k2]} ` I

∆;Γ; C; Σ ` split i1, i2; I
(split)

∆; C ` Σ = Σ′ ⊗ {i1 7→ τ [i2]} ⊗ {j1 7→ τ [j2]}
∆; C |= j1 = i1 + sizeof (τ) ∗ i2

∆;Γ; C; Σ′ ⊗ {i1 7→ τ [i2 + j2]} ` I

∆;Γ; C; Σ ` concat i1, j1, j2; I
(concat)

∆; C ` Σ = Σ′ ⊗ {i1 7→ 〈σ1, . . . , σn〉}
∆; C |= 0 < n2 < n

∆;Γ; C; Σ′ ⊗ {i1 7→ 〈σ1, . . . , σn2〉}
⊗{i1 + n2 7→ 〈σn2+1, . . . , σn〉} ` I

∆;Γ; C; Σ ` tuple split i1, n2; I
(tuple split)

∆; C ` Σ = Σ′ ⊗ {i1 7→ 〈σ1, . . . , σn〉} ⊗ {i2 7→ 〈σ′1, . . . , σ′m〉}
∆; C |= i2 = i1 + n

∆;Γ; C; Σ′ ⊗ {i1 7→ 〈σ1, . . . , σn, σ′1, . . . , σ
′
m〉} ` I

∆;Γ; C; Σ ` tuple concat i1, i2; I
(tuple concat)

Figure 13: Typing rules (coerce instructions)

1 FreeMem ≡
2 µη [αself] .∃αnext , αsize , αmem . |αmem = αself + 2|
3 [{αmem 7→ ∃β. 〈β〉 [αsize]} ⊗ {αnext 7→ η (αnext)}]
4 〈αnext , αsize〉

Figure 14: Type of the free memory (list of variable-
length arrays)

1 ∀αsize , αfree , αstk , γ, ε. | · |
2 [{αfree 7→ FreeMem(αfree)} ⊗ {αstk 7→ γ} ⊗ ε]

3 (r1 : αsize , r2 : αfree , r3 : ret t , r4 : αstk)

4 malloc:

5 unroll αfree

6 unpack αfree

7 ld [r2 + 1], r5

8 # try the first element

9 movi malloc_success, r10

10 apply r10

11 ble r1, r5, r10

12 # not enough, try next

13 push r2, [r4] # save local vars.

14 push r3, [r4]

15 # recursive call

16 ld [r2], r2

17 movi malloc_cont, r3

18 apply r3

19 movi malloc, r10

20 apply r10

21 jmp r10

22 ∀αsize , αtag , αstk , αjunk , αmem , α′size , α, αfree , γ, ε.

23 |αmem = αtag + 2|
24 [{αtag 7→ 〈αjunk , α′size〉} ⊗ {αmem 7→ ∃β. 〈β〉 [α′size]}⊗
25 {α 7→ ∃β. 〈β〉 [αsize]} ⊗ {αfree 7→ FreeMem(αfree)}
26 {αstk − 2 7→ ret t :: αtag :: γ} ⊗ ε]

27 (r1 : α, r2 : αfree , r4 : αstk − 2)

28 malloc_cont:

29 pop [r4], r3 # restore local vars.

30 pop [r4], r5

31 # link the previous element

32 # to the returned free memory list

33 st r2, [r5]

34 mov r5, r2

35 pack αtag

36 roll αtag

37 apply r3 [α, αtag/α, αfree]

38 jmp r3

39 ∀αsize , αtag , αstk , αfree , αmem , α′size , γ, ε.

40 |αsize ≤ α′size ∧ αmem = αtag + 2|
41 [{αtag 7→ 〈αfree , α

′
size〉} ⊗ {αmem 7→ ∃β. 〈β〉 [α′size]}⊗

42 {αfree 7→ FreeMem(αfree)} ⊗ {αstk 7→ γ} ⊗ ε]

43 (r1 : αsize , r2 : αtag , r3 : ret t , r4 : αstk)

44 malloc_success:

45 # allocate memory by split

46 # from the end of the array

47 split αmem , (α′size − αsize)

48 # rewrite the tag

49 ld [r2 + 1], r5

50 sub r1, r5, r6

51 st r6, [r2 + 1]

52 # set the address of

53 # the allocated memory to r1

54 mov r2, r5

55 add 2, r5, r5

56 add r6, r5, r1

57 pack αtag

58 roll αtag

59 apply r3[αmem + α′size − αsize , αtag/α, αfree]

60 jmp r3

61 ret t ≡ ∀α, αfree . | · |[{α 7→ ∃β. 〈β〉 [αsize]}⊗
62 {αfree 7→ FreeMem(αfree)} ⊗ {αstk 7→ γ} ⊗ ε]

63 (r1 : α, r2 : αfree , r4 : αstk)

Figure 15: Simple malloc implementation in TALK

list (line 33) and returns it as a new free memory list (from
line 34 to 38) through the register r2. Of course, the array
allocated by the recursive call is also returned through the
register r1. Here the stack type {αstk−2 7→ ret t :: αtag :: γ}
in the memory type (line 26) represents a stack whose top
element has the type ret t and the next element has type
αtag and the rest is unknown (γ).

The code of malloc success first splits the array of the
first element of the given free memory list into the array of
the requested size and the rest (line 47). The split instruc-
tion passes the type check of TALK because the type checker
knows that the length of the array is greater (or equal) than
the requested size from the label type of malloc success

(line 40). Then, it rewrites the information about the un-
used array and its size in the second element (from line 43-
45) and returns the allocated array (from line 54 to 60).

4.3 Implementation of free
Fig. 16 is a simple implementation of free. First, the code

converts the first two elements of the array to be freed into
a tuple (from line 9 to 13). Then, the code concatenates the
tuple to the given free memory list along with the rest of the
array (from line 15 to 19). The label type of free indicates
that the freed array cannot be used any more because the
array is deleted from the memory type after the function
return (line 5).

1 ∀αmem , αfree , αsize , ε. |αsize > 2|
2 [{αmem 7→ ∃β. 〈β〉 [αsize]}⊗
3 {αfree 7→ FreeMem(αfree)} ⊗ ε]

4 (r1 : αmem , r2 : αfree , r4 : αsize ,

5 r3 : ∀α.| · |[{α 7→ FreeMem(α)} ⊗ ε](r1 : α))

6 free:

7 # create a tag from

8 # the memory to be freed

9 split αmem , 2
10 split αmem , 1
11 unpack αmem

12 unpack αmem + 1
13 tuple concat αmem , αmem + 1

14 # initialize the tag

15 sub 2, r4, r4

16 st r4, [r1 + 1]

17 # link the tag to

18 # the free memory list

19 st r2, [r1]

20 pack αmem

21 roll αmem

22 apply r3[αmem/α]

23 jmp r3

Figure 16: Simple free implementation in TALK

5. IMPLEMENTATION
We implemented a TALK assembler and a TALK type

checker for the IA-32 [10] architecture. The TALK assem-
bler takes TALK code and emits binary executables anno-
tated with the TALK type information. The format of the
binary executables are usual ELF format. Therefore, they
can be executed without any special runtime support. The

TALK type checker takes the binary executables and type-
checks them. Because the type system of TALK includes
integer constraints, the type checker must be able to solve
the constraints. To this end, we utilized the algorithm of
the Omega test [16].

Using the TALK assembler, we implemented a prototype
OS kernel in TALK1. The kernel provides a memory man-
agement facility, a multi-thread management facility and a
very basic device control facility. For booting the kernel,
the GNU GRUB boot loader [8] is used. In addition, some
peculiar boot procedures (e.g., segment preparation) of IA-
32 are not typed. Except for them, the kernel is completely
written in TALK. The size of the kernel is about 1700 lines
of TALK code. It takes about 0.9 seconds to type-check the
whole kernel on the Pentium 4 (3GHz) machine.

The TALK assembler, the TALK type checker and the
prototype OS kernel are available from our web site [23].

6. RELATED WORK
Linear type systems [24] ensure that a memory region is

accessed only once. That is, they can prevent pointers from
aliasing. Therefore, the memory region can be reused safely.
There exist TALs based on the linear types [2, 1]. One
big problem of the linear types is that the expressiveness of
linearly-typed languages is largely limited because no aliases
are allowed.

Alias type systems [20, 25] do not prevent pointers from
aliasing, but track the information about aliases for reusing
memory regions safely. Thus, the alias type systems are
more expressive than the linear type systems. However, it
is impossible to implement practical memory management
in the original alias type system because it does not support
variable-length arrays. As described in Sec. 3, our TALK is
based on the alias types and extended to support variable-
length arrays and integer constraints. Thus, we are able to
implement practical memory management in TALK.

Hawblitzel et al. [9] extends the alias type system for im-
plementing flexible memory management. The similarity
between our approach and theirs is that both introduce inte-
ger constraints to the alias types. The important difference
is that, in their type system, variable-length arrays are re-
alized as a combination of fixed-length tuples and recursive
types. However, there are two problems in their approach.
One problem is that elements of an array cannot be accessed
in O(1) order because the array type must be unrolled (O(n)
time at worst) in advance. The other problem is that it re-
quires runtime type checks for managing arrays. To solve
these problems, they extended their type system intricately
for detecting useless runtime type-checks as precisely as pos-
sible. For example, they defined ‘split’ of arrays as a func-
tion, and showed that the function is not needed at runtime,
with their complex typing rules. On the other hand, there
are no such problems in our type system because it directly
supports the variable-length arrays as language primitives.
Thus, our type system is simpler than theirs and yet pow-
erful enough to implement memory management code.

DTAL [26] is a typed assembly language extended with the
dependent type. As our type system, DTAL also introduced
integer constraints to its type system. However, DTAL is not
flexible enough to implement memory management because
memory reusing is impossible. The goal of DTAL is to type-

1‘K’ of TALK stands for ‘Kernel’

check array bound-checking.
In region-based memory management [21, 22, 7], heap val-

ues are allocated in one of memory regions. When a memory
region is deallocated, all the heap values in the region are
deallocated. The region-based memory management does
not allow programmers to directly manage memory. Calcu-
lus of Capability [3] extends the region-based memory man-
agement and allows programmers to explicitly allocate and
deallocate memory regions, but memory regions cannot be
reused explicitly and the heap values allocated in memory
regions cannot be managed directly.

Shape analysis [5, 6, 19] is an analysis which estimates the
shape (e.g., tree, DAG or cyclic graph) of the data structure
that is accessible from pointers. Although the shape analysis
is developed in the research area of compiler optimization,
it can be used for detecting pointer aliases because it deter-
mines whether two pointers point to the same data struc-
ture. However, the approach of the shape analysis cannot be
applied directly to memory management because it is a con-
servative analysis. In addition, the analysis can tell whether
a data structure can be deallocated safely, but programmers
cannot reuse the data structure explicitly.

As for verifying the correctness of existing memory man-
agement programs, Marti et al. [12] proved the correctness of
the heap manager of the Topsy operating system [18] using
separation logic [17].

7. CONCLUSION
We designed and implemented a new strictly and stati-

cally typed assembly language (TALK) which is powerful
enough to implement practical memory management (e.g.,
malloc/free). The type system of our TALK supports variable-
length arrays as language primitives. Therefore, our TALK
is able to efficiently handle free memory of systems whose
size is not known until runtime. In addition, The type sys-
tem of our TALK keep track of aliases of pointers explicitly.
Therefore, programmers are able to reuse memory regions
safely because the type system allows them to change the
types of the regions. We implemented the assembler and the
type checker of our TALK for IA-32. We also implemented
a prototype OS kernel for the IA-32 architecture in TALK.
The kernel provides memory management facilities and a
multi-thread management facilities.

8. REFERENCES
[1] D. Aspinall and A. Compagnoni. Heap bounded

assembly language. Automated Reasoning, 31:261–302,
2003.

[2] J. Cheney and G. Morrisett. A linearly typed
assembly language. Technical report, Department of
Computer Science, Cornell University, 2003.

[3] Karl Crary, David Walker, and Greg Morrisett. Typed
memory management in a calculus of capabilities. In
The 26th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 262–275,
1999.

[4] C#. http://msdn.microsoft.com/net/ecma.

[5] A. Deutsch. Interprocedural may-alias analysis for
pointers: beyond k-limiting. In Proceedings of the
ACM SIGPLAN 1994 conference on Programming
language design and implementation, pages 230–241,
1994.

[6] R. Ghiya and L. J. Hendren. Is it a tree, a dag, or a
cyclic graph? a shape analysis for heap-directed
pointers in c. In Proceedings of the 23rd ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 1–15, 1996.

[7] D. Grossman, G. Morrisett, T. Jim, M. Hicks,
Y. Wang, and J. Cheney. Region-based memory
management in cyclone. In Proceedings of the ACM
SIGPLAN 2002 Conference on Programming language
design and implementation, pages 282–293, 2002.

[8] GNU GRUB. http://www.gnu.org/software/grub/.

[9] C. Hawblitzel, E. Wei, H. Huang, E. Krupski, and
L. Wittie. Low-level linear memory management. In
SPACE 2004, 2004.

[10] IA-32 Intel Architecture. http://developer.intel.com.

[11] Java. http://java.sun.com.

[12] N. Marti, R. Affedlt, and A. Yonezawa. Verification of
the heap manager of an operating system using
separation logic. In SPACE 2006, Jan. 2006.

[13] G. Morrisett, K. Crary, N. Glew, D. Grossman,
R. Samuels, F. Smith, D. Walker, S. Weirich, and
S. Zdancewic. TALx86: A realistic typed assembly
language. In the 1999 ACM SIGPLAN Workshop on
Compiler Support for System Software, 1999.

[14] G. Morrisett, D. Walker, K. Crary, and N. Glew. From
system F to typed assembly language. ACM
Transactions on Programming Languages and
Systems, 21(3):528–569, 1999.

[15] Objective Caml. http://caml.inria.fr.

[16] W. Pugh. The omega test: a fast and practical integer
programming algorithm for dependence analysis. In
Supercomputing, pages 4–13, 1991.

[17] J. C. Reynolds. Separation logic: A logic for shared
mutable data structures. In LICS ’02: Proceedings of
the 17th Annual IEEE Symposium on Logic in
Computer Science, pages 55–74, 2002.

[18] L. Ruf, C. Jeker, B. Lutz, and B. Plattner. Topsy v3:
A nodeos for network processors. In ANTA 2003, 2003.

[19] M. Sagiv, T. Reps, and R. Wilhelm. Solving
shape-analysis problems in languages with destructive
updating. ACM Transactions on Programming
Languages and Systems, 20(1):1–50, 1998.

[20] F. Smith, D. Walker, and G. Morrisett. Alias types. In
Proceedings of the 9th European Symposium on
Programming Languages and Systems, pages 366–381.
Springer-Verlag, 2000.

[21] M. Tofte and J. P. Talpin. Implementation of the
typed call-by-value λ-calculus using a stack of regions.
In Proceedings of the 21st ACM SIGPLAN-SIGACT
symposium on Principles of programming languages,
pages 188–201, 1994.

[22] M. Tofte and J. P. Talpin. Region-based memory
management. Information and Computation,
132(2):109–176, 1997.

[23] TOS project.
http://web.yl.is.s.u-tokyo.ac.jp/˜tosh/tos/.

[24] D. Turner, P. Wadler, and C. Mossion. Once upon a
type. In ACM International Conference on Functional
Programming and Computer Architecture, 1995.

[25] D. Walker and G. Morrisett. Alias types for recursive
data structures. In Types in Compilation, 2000.

[26] H. Xi and R. Harper. A dependently typed assembly
language. In ICFP, 2001.

[27] Hongwei Xi and Frank Pfenning. Dependent types in
practical programming. In the 26th ACM SIGPLAN
Symposium on Principles of Programming Languages,
pages 214–227, January 1999.

APPENDIX
A. TYPING DERIVATION OF MALLOC

The typing derivation of the code in Fig. 15 is as follows.
First, the type of the initial memory is

{αfree 7→ FreeMem(αfree)} ⊗ {αstk 7→ γ} ⊗ ε.

Next, after the unroll and unpack instructions (line 5 and
6), the memory type becomes

{αfree 7→ 〈αnext , α
′
size〉} ⊗ {αmem 7→ ∃β. 〈β〉 [α′size]}⊗

{αnext 7→ FreeMem(αnext)} ⊗ {αstk 7→ γ} ⊗ ε,

where αmem = αfree + 2. Here the argument for the unpack

instruction is with αnext , α
′
size , αmem . Then, after the ld

instruction at line 7, the type of the register r5 is α′size .
Thus, the ble instruction at line 11 checks whether αsize ≤
α′size or not. Then, the argument for the apply instruction
at line 10 is

[αsize , αfree , αstk , αnext , αmem , α′size , γ, ε/
αsize , αtag , αstk , αfree , αmem , α′size , γ, ε].

Accordingly, the type of the register r10 becomes

∀.|αsize ≤ α′size ∧ αmem = αfree + 2|
[{αfree 7→ 〈αnext , α

′
size〉} ⊗ {αmem 7→ ∃β. 〈β〉 [α′size]}⊗

{αnext 7→ FreeMem(αnext)} ⊗ {αstk 7→ γ} ⊗ ε]
(r1 : αsize , r2 : αfree , r3 : ret t , r4 : αstk).

Here the memory type, the registers type and the integer
constraints satisfy the precondition specified by the above
label type, because the ble instruction adds a new integer
constraint (αsize ≤ α′size). Thus, the ble instruction at line
11 is type checked successfully.

Next, after the two push instructions (line 12 and 13), the
memory type becomes

{αnext 7→ FreeMem(αnext)}⊗
{αstk − 2 7→ ret t :: αfree :: γ} ⊗ ε′,

where

ε′ ≡ {αfree 7→
˙
αnext , α

′
size

¸} ⊗ {αmem 7→ ∃β. 〈β〉 [α′size]} ⊗ ε.

In addition, the type of the register r4 becomes αstk − 2.
Then, after the ld instruction at line 16, the type of the
register r2 becomes αnext . Here the argument for the apply

instruction at line 18 is

[αsize , αfree , αstk , αnext , αmem , α′size , γ, ε/
αsize , αtag , αstk , αjunk , αmem , α′size , γ, ε].

Then, the type of the register r3 becomes

∀α, α′free .|αmem = αfree + 2|
[{α 7→ ∃β. 〈β〉 [αsize]} ⊗ {α′free 7→ FreeMem(α′free)}⊗
{αstk − 2 7→ ret t :: αfree :: γ} ⊗ ε′]

(r1 : α, r2 : α′free , r4 : αstk − 2).

(Here the bound integer variable αfree is renamed to α′free .)
In addition, the argument for the apply instruction at line

20 is

[αsize , αnext , (αstk − 2), (ret t :: αfree :: γ), ε′/
αsize , αfree , αstk , γ, ε].

Then, the type of the register r10 becomes

∀.| · |
[{αnext 7→ FreeMem(αnext)}⊗
{αstk − 2 7→ ret t :: αfree :: γ} ⊗ ε′]

(r1 : αsize , r2 : αnext , r3 : ret t ′, r4 : αstk − 2),

where

ret t ′ ≡ ∀α, α′free .| · |
[{α 7→ ∃β. 〈β〉 [αsize]} ⊗ {α′free 7→ FreeMem(α′free)}⊗
{αstk − 2 7→ ret t :: αfree :: γ} ⊗ ε′]

(r1 : α, r2 : α′free , r4 : αstk − 2).

Now, the jmp instruction at line 21 is type checked because
the current memory and registers type satisfies the precon-
dition specified in the label type of the register r10. Please
note that the integer constraint (αmem = αfree +2) specified
in the label type of the register r3 is satisfied by the current
integer constraints. Thus, the type system ignores the con-
straint when checking the equality of the label types of the
register r3 and ret t’.

Next, the typing derivation of the instructions of the la-
bel malloc cont is as follows. First, the type of the initial
memory is

{αtag 7→ 〈αjunk , α′size〉} ⊗ {αmem 7→ ∃β. 〈β〉 [α′size]}⊗
{α 7→ ∃β. 〈β〉 [αsize]} ⊗ {αfree 7→ FreeMem(αfree)}⊗
{αstk − 2 7→ ret t :: αtag :: γ} ⊗ ε,

where αmem = αtag +2. Next, after the two pop instructions
(line 29 and 30), the memory type becomes

{αtag 7→ 〈αjunk , α′size〉} ⊗ {αmem 7→ ∃β. 〈β〉 [α′size]}⊗
{α 7→ ∃β. 〈β〉 [αsize]} ⊗ {αfree 7→ FreeMem(αfree)}⊗
{αstk 7→ γ} ⊗ ε.

In addition, the type of the register r4 becomes αstk , the
type of the register r3 becomes ret t , and the type of the
register r5 becomes αtag . Then, after the st instruction at
line 33, the memory type becomes

{αtag 7→ 〈αfree , α
′
size〉} ⊗ {αmem 7→ ∃β. 〈β〉 [α′size]}⊗

{α 7→ ∃β. 〈β〉 [αsize]} ⊗ {αfree 7→ FreeMem(αfree)}⊗
{αstk 7→ γ} ⊗ ε.

In addition, after the mov instruction at line 34, the type of
the register r2 becomes αtag . Next, after the pack instruc-
tion at line 35, the memory type becomes

{αtag 7→ τ} ⊗ {α 7→ ∃β. 〈β〉 [αsize]} ⊗ {αstk 7→ γ} ⊗ ε,

where

τ ≡ ∃αnext , αsize , αmem .|αmem = αtag + 2|
[{αmem 7→ ∃β. 〈β〉 [αsize]} ⊗ {αnext 7→ FreeMem(αnext)}]
〈αnext , αsize〉 .

Here the argument for the pack instruction is

[αfree , α
′
size , αmem |

{αmem 7→ ∃β. 〈β〉 [α′size]}⊗
{αfree 7→ FreeMem(αfree)}] as τ.

Next, after the roll instruction at line 36, the memory type
becomes

{αtag 7→ FreeMem(αtag)} ⊗ {α 7→ ∃β. 〈β〉 [αsize]}⊗
{αstk 7→ γ} ⊗ ε.

Then, after the apply instruction at line 37, the type of the
register r3 becomes

∀.| · |[{α 7→ ∃β. 〈β〉 [αsize]} ⊗ {αtag 7→ FreeMem(αtag)}⊗
{αstk 7→ γ} ⊗ ε]

(r1 : α, r2 : αtag , r4 : αstk).

Here the current memory and registers type satisfies the
precondition specified by the above label type. Thus, the
jmp instruction at line 38 is type checked successfully.

Last, the typing derivation of the instructions of the label
malloc success is as follows. First, the type of the initial
memory is

{αtag 7→ 〈αfree , α
′
size〉} ⊗ {αmem 7→ ∃β. 〈β〉 [α′size]}⊗

{αfree 7→ FreeMem(αfree)}⊗
{αstk 7→ γ} ⊗ ε,

where αsize ≤ α′size ∧ αmem = αtag + 2. Then, after the
split instruction at line 47, the memory type becomes

{αtag 7→ 〈αfree , α
′
size〉} ⊗ {αmem 7→ ∃β. 〈β〉 [α′size − αsize]}⊗

{αmem + α′size − αsize 7→ ∃β. 〈β〉 [αsize]}⊗
{αfree 7→ FreeMem(αfree)}⊗
{αstk 7→ γ} ⊗ ε.

Here the split instruction passes the type check because the
type checker knows that αsize ≤ α′size . Then, after the ld

and sub instruction at line 49 and 50, the type of the register
r6 becomes α′size − αsize . Next, after the st instruction at
line 51, the memory type becomes

{αtag 7→ 〈αfree , α
′
size − αsize〉}⊗

{αmem 7→ ∃β. 〈β〉 [α′size − αsize]}⊗
{αmem + α′size − αsize 7→ ∃β. 〈β〉 [αsize]}⊗
{αfree 7→ FreeMem(αfree)}⊗
{αstk 7→ γ} ⊗ ε.

Then, after the instructions from line 54 to 56, the type of
the register r1 becomes αtag + 2 + α′size − αsize . Next, after
the pack instruction at line 57, the memory type becomes

{αtag 7→ τ} ⊗ {αmem + α′size − αsize 7→ ∃β. 〈β〉 [αsize]}⊗
{αstk 7→ γ} ⊗ ε,

where

τ ≡ ∃αnext , αsize , αmem .|αmem = αtag + 2|
[{αmem 7→ ∃β. 〈β〉 [αsize]} ⊗ {αnext 7→ FreeMem(αnext)}]
〈αnext , αsize〉 .

Here the argument for the pack instruction is

[αfree , α
′
size − αsize , αmem |

{αmem 7→ ∃β. 〈β〉 [α′size − αsize]}⊗
{αfree 7→ FreeMem(αfree)}] as τ.

Next, after the roll instruction, the memory type becomes

{αtag 7→ FreeMem(αtag)}⊗
{αmem + α′size − αsize 7→ ∃β. 〈β〉 [αsize]}⊗
{αstk 7→ γ} ⊗ ε.

Then, after the apply instruction at line 59, the type of the
register r3 becomes

∀.| · |[{αmem + α′size − αsize 7→ ∃β. 〈β〉 [αsize]}⊗
{αtag 7→ FreeMem(αtag)}⊗
{αstk 7→ γ} ⊗ ε]

(r1 : αmem + α′size − αsize , r2 : αtag , r4 : αstk).

Now, the current memory and registers type satisfies the
precondition specified in the above label type. Thus, the
jmp instruction at line 60 passes the type check. As for the
type of the register r1, please note that the type checker
knows that αmem = αtag + 2.

B. TYPING DERIVATION OF FREE
The typing derivation of the code in Fig. 16 is as follows.

First, the type of the initial memory is

{αmem 7→ ∃β. 〈β〉 [αsize]} ⊗ {αfree 7→ FreeMem(αfree)} ⊗ ε,

where αsize > 2. Next, after the two split instructions (line
9 and 10), the memory type becomes

{αmem 7→ ∃β. 〈β〉} ⊗ {αmem + 1 7→ ∃β. 〈β〉}⊗
{αmem + 2 7→ ∃β. 〈β〉 [αsize − 2]}⊗
{αfree 7→ FreeMem(αfree)} ⊗ ε.

Then, after the two unpack instructions (line 11 and 12),
the memory type becomes

{αmem 7→ 〈β1〉} ⊗ {αmem + 1 7→ 〈β2〉}⊗
{αmem + 2 7→ ∃β. 〈β〉 [αsize − 2]}⊗
{αfree 7→ FreeMem(αfree)} ⊗ ε,

Then, after the tuple concat instruction (line 13), the mem-
ory type becomes

{αmem 7→ 〈β1, β2〉} ⊗ {αmem + 2 7→ ∃β. 〈β〉 [αsize − 2]}⊗
{αfree 7→ FreeMem(αfree)} ⊗ ε.

Thus, a tuple of size 2 was created at the top of the memory
(array) to be freed.

Next, we initialize the created tuple. First, we store the
size of the array to be freed in the second element of the
tuple (line 15 and 16). Thus, the memory type becomes

{αmem 7→ 〈β1, αsize − 2〉} ⊗ {αmem + 2 7→ ∃β. 〈β〉 [αsize − 2]}⊗
{αfree 7→ FreeMem(αfree)} ⊗ ε.

Then, we link the tuple to the free memory list (line 19).
Now, the memory type becomes

{αmem 7→ 〈αfree , αsize − 2〉} ⊗ {αmem + 2 7→ ∃β. 〈β〉 [αsize − 2]}⊗
{αfree 7→ FreeMem(αfree)} ⊗ ε.

Then, after the pack instruction (line 20), the memory types
becomes {αmem 7→ τ} ⊗ ε, where

τ ≡ ∃αnext , αsize , α
′
mem .|α′mem = αmem + 2|

[{α′mem 7→ ∃β. 〈β〉 [αsize]} ⊗ {αnext 7→ FreeMem(αnext)}]
〈αnext , αsize〉 .

Here the hidden argument of the pack instruction is

[αfree , (αsize − 2), (αmem + 2)|
{αmem + 2 7→ ∃β. 〈β〉 [αsize − 2]}⊗
{αfree 7→ FreeMem(αfree)}] as τ.

Next, after the roll instruction (line 21), the memory type
becomes {αmem 7→ FreeMem(αmem)} ⊗ ε. The omitted ar-
gument of the roll instruction is FreeMem(αmem). Then,
after the apply instruction at line 22, the type of the register
r3 becomes

∀.| · |[{αmem 7→ FreeMem(αmem)} ⊗ ε](r1 : αmem).

Last, the jmp instruction passes the type check because the
precondition specified in the above label type is satisfied by
the current memory and registers type.

