Syntactic Logical Relations for Perfect Encryption, Higher-Order References and First-Class Channels

Eijiro Sumii University of Tokyo

What is a Logical Relation?

A relation ? v ~ w : τ between values v and w in a typed λ-calculus, defined according to their type τ

E.g., $\begin{array}{l}\bullet?i \sim j : int \Leftrightarrow i = j\\ \bullet?f \sim g : \sigma \rightarrow \tau \Leftrightarrow\\ ? eval(f v) \sim eval(g w) : \tau \text{ for any } ? v \sim w : c\\ \bullet?(v_1, v_2) \sim (w_1, w_2) : \tau_1 \times \tau_2 \Leftrightarrow\\ ? v_1 \sim w_1 : \tau_1 \text{ and } ? v_2 \sim w_2 : \tau_2\end{array}$

What is it Useful for?

To show various forms of equivalence between programs Correctness of optimization $? p_{opt} \sim p_{unopt} : \tau$ Secrecy as non-interference $p_v \sim p_w : \tau \text{ for } v \neq w$ Correspondence between CPS and direct style $? p_{CPS} \sim p_{DS} : \tau$

The "Fundamental Property" of Logical Relations

Theorem:

? $v \sim v : \tau$ for any ? $v : \tau$ Corollary: ? $v_1 \sim v_2 : \tau \implies eval(f v_1) = eval(f v_2)$ for any ? $f : \tau \rightarrow bool$

I.e., logical relations imply observational equivalence

This Talk

- Logical relations for wider range of programming constructs
 - Perfect encryption [Sumii-Pierce 01] Cf. Type abstraction [Reynolds 83]
 - Higher-order references [ongoing work]
 First-class channels [ongoing work]

Everything is syntactic and operational

Perfect Encryption

M

(standard λ -terms) ±5≟ ... (key) (key generation) new k in M (encryption) $\{M\}_{\mathbb{N}}$ let $\{x\}_{M1} = M_2$ in N_1 else N_2 (decryption) **#Useful for reasoning about**

information hiding by encryption (as in security protocols)

Example of Equivalence by Perfect Encryption

new k in ({3}_k, λc . let {i}_k = c in (i mod 2) else -1)

new k in $({5}_k, \lambda c. let {i}_k = c in (i mod 2) else -1)$

Cf. equivalence by type abstraction pack int, (3, λi . i mod 2) as $\exists \alpha$. $\alpha \times (\alpha \rightarrow int)$

pack int, (5, λ i, i mod 2) as $\exists \alpha$. $\alpha \times (\alpha \rightarrow int)$

Logical Relation for Perfect Encryption [Sumii-Pierce 01]

Introduce relation environment φ to associate each key k with a relation $\varphi(k)$ between values encrypted by k $\varphi ? \{v\}_k \sim \{w\}_{k'} : bits \Leftrightarrow$ k = k' and $(v, w) \in \phi(k)$. φ ? new k in M ~ new k in N : $\tau \Leftrightarrow$ $\varphi, k \mapsto r ? M \sim N : \tau$ for some r

Cf. Logical Relation for Type Abstraction [Reynolds 83]

Associate each abstract type α with a relation $\varphi(\alpha)$ between values implementing α ϕ ? $\vee \sim W$: $\alpha \Leftrightarrow (\vee, W) \in \phi(\alpha)$ φ ? pack ρ , v as $\exists \alpha$. τ ~ pack σ , w as $\exists \alpha$. τ : $\exists \alpha$. $\tau \Leftrightarrow$ $\phi, \alpha \mapsto r ? \vee \sim W : \tau$ for some relation $r \subseteq \rho \times \sigma$

Extended Logical Relation: Motivating Example

new k_1 in new k_2 in ({ k_2 }_{k1}, λ c. let { k_2 '}_{k1} = c in {3}_{k2'} else ...)

new k_1 in new k_2 in ({ k_2 }_{k1}, λ c. let { k_2 '}_{k1} = c in {5}_{k2'} else ...)

> What to take as $\varphi(k_1)$? k₂ is yet to be generated!

Extended Logical Relation: Our Solution

Parameterize φ with respect to a relation environment ψ in the future

 $\varphi : \{v\}_k \sim \{w\}_{k'} : bits \Leftrightarrow$ k = k' and (v, w) $\in \varphi_{\varphi}(k)$

E.g., take $\varphi_{\psi}(k_1) = \{ (k_2, k_2) \mid \psi_{\psi}(k_2) = \{ (3, 5) \} \}$ in the motivating example

References

M

Example of Equivalence by References

let ℓ = ref 0 in (λx . ! ℓ , λy . ℓ := ! ℓ + 2)

let ℓ = ref 0 in (λx . ! $\ell \times 2$, λy . ℓ := ! ℓ + 1)

Logical Relation for First-Order References

Associate each location ℓ with a relation $\varphi(\ell)$ between values stored in

$$\begin{split} \varphi ? \text{let } \ell &= \text{ref } v \text{ in } M \\ &\sim \text{let } \ell = \text{ref } w \text{ in } N : \tau \Leftrightarrow \\ \varphi, \ell &\mapsto r ? M \sim N : \tau \text{ for some } r \quad (v, w) \\ \varphi ? (\ell := v) \sim (\ell' := w) : \text{unit } \Leftrightarrow \\ \ell &= \ell' \text{ and } (v, w) \in \varphi(\ell) \end{split}$$

Logical Relation for Higher-Order References

What about "references to references"? — The same as "keys encrypting keys"! (I don't have so interesting examples, though)

Channels

::=

M

... (standard λ-terms) c (channel) new c in M (channel creation) send M to N (output) recv x from M in N (input)

cf. π -calculus [Milner 89]

Example of Equivalence by Channels

new c in (send 3 to c, recv i from c in (i mod 2))

new c in (send 5 to c, recv i from c in (i mod 2))

Logical Relation for Second-Class Channels

Associate each channel c with a relation $\varphi(c)$ between values communicated through c φ ? new c in M ~ new c in N : $\tau \Leftrightarrow$ φ , $c \mapsto r$? $M \sim N : \tau$ for some r φ ? send v to c ~ send w to c' : unit \Leftrightarrow C = C' and $(V, W) \in \phi(C)$ φ ? recv x from c in M ~ recv x from c' in N : $\tau \Leftrightarrow$ c = c' and $\phi ? [v/x]M ~ [w/x]N : \tau$ for any $(v, w) \in \phi(c)$

Logical Relation for First-Class Channels

What about "channels passing channels"? — Again, the same as keys encrypting keys

More interesting (than references to references) because first-class channels are essential in π -calculus

A Use of First-Class Channels: Client-Server System

new succserv in (recv (m, c) from succserv in send (m + 1) to c, new d in (send (2, d) to succserv, recv n from d in ...))

Or, Equivalently...

new idserv in (recv (m, c) from idserv in send m to c, new d in (send (3, d) to idserv, recv n from d in ...)) To show the equivalence, take $\varphi_{\psi}(\text{idserv}) =$ { ((2, c), (3, c)) | $\psi_{\psi}(c) = \{(3, 3)\}$ }

Conclusion (1/2): Summary

#We have seen logical relations for

Perfect encryption

Cf. type abstraction

Higher-order references

First-class channels

All of these are based on the same idea: associating each generative name n with a relation $\varphi(n)$ between values involved in n

Conclusion (2/2): Future Work

More applications (other than security protocols)
Soundness proofs (except for logical relations for encryption)

- #Completeness results
- Comparison with other methods (such as bisimulation)
 - Suggestions and discussions welcome!