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What is a Logical Relation?

A relation ?v ∼ w : τ between values v 
and w in a typed λ-calculus, defined 
according to their type τ

E.g.,
? i ∼ j : int  ⇔ i = j
?f ∼ g : σ → τ ⇔
?eval(f v) ∼ eval(g w) : τ for any  ? v ∼ w : σ
? (v1, v2) ∼ (w1, w2) : τ1 × τ2 ⇔
? v1 ∼ w1 : τ1 and  ? v2 ∼ w2 : τ2



What is it Useful for?

To show various forms of equivalence 
between programs

Correctness of optimization
? popt ∼ punopt : τ

Secrecy as non-interference
? pv ∼ pw : τ for  v ≠ w

Correspondence between CPS and direct 
style
? pCPS ∼ pDS : τ

etc.



The "Fundamental Property" of 
Logical Relations

Theorem:
?v ∼ v : τ for any  ?v : τ

Corollary:
?v1 ∼ v2 : τ ⇒ eval(f v1) = eval(f v2) 
for any ?f : τ → bool

I.e., logical relations imply　
observational equivalence



This Talk

Logical relations for wider range of 
programming constructs

Perfect encryption [Sumii-Pierce 01]
Cf. Type abstraction [Reynolds 83]

Higher-order references [ongoing work]
First-class channels [ongoing work]

Everything is syntactic and operational



Perfect Encryption

M ::= ... (standard λ-terms)
| k (key)
| new k in M (key generation)
| {M}N (encryption)
| let {x}M1 = M2 in N1 else N2

(decryption)
Useful for reasoning about 
information hiding by encryption (as 
in security protocols)



Example of Equivalence by 
Perfect Encryption

new k in
({3}k, λc. let {i}k = c in (i mod 2) else -1)

≅
new k in

({5}k, λc. let {i}k = c in (i mod 2) else -1)

Cf. equivalence by type abstraction
pack int, (3, λi. i mod 2) as ∃α. α × (α → int)

≅
pack int, (5, λi. i mod 2) as ∃α. α × (α → int)



Logical Relation for Perfect 
Encryption [Sumii-Pierce 01]

Introduce relation environment ϕ to 
associate each key k with a relation 
ϕ(k) between values encrypted by k

ϕ ? {v}k ∼ {w}k' : bits  ⇔
k = k'  and  (v, w) ∈ ϕ(k)

ϕ ?new k in M ∼ new k in N : τ ⇔
ϕ, k a r ?M ∼ N : τ for some r



Cf. Logical Relation for Type 
Abstraction [Reynolds 83]

Associate each abstract type α with a 
relation ϕ(α) between values 
implementing α

ϕ ?v ∼ w : α ⇔ (v, w) ∈ ϕ(α)
ϕ ?pack ρ, v as ∃α. τ

∼ pack σ, w as ∃α. τ : ∃α. τ ⇔
ϕ, α a r ?v ∼ w : τ
for some relation r ⊆ ρ × σ



Extended Logical Relation: 
Motivating Example

new k1 in new k2 in
({k2}k1, λc. let {k2'}k1 = c in {3}k2' else ...)

≅
new k1 in new k2 in

({k2}k1, λc. let {k2'}k1 = c in {5}k2' else ...)

What to take as ϕ(k1)?
k2 is yet to be generated!



Extended Logical Relation: Our 
Solution

Parameterize ϕ with respect to a 
relation environment ψ in the future

ϕ ? {v}k ∼ {w}k' : bits  ⇔
k = k'  and  (v, w) ∈ ϕϕ(k)

E.g., take
ϕψ(k1) = { (k2, k2) | ψψ(k2) = {(3, 5)} }

in the motivating example



References

M ::= ... (standard λ-terms)
| l (location)
| let l = ref M in N

(cell allocation)
| M := N (update)
| !M (dereference)



Example of Equivalence by 
References

let l = ref 0 in (λx. !l, λy. l := !l + 2)
≅

let l = ref 0 in (λx. !l × 2, λy. l := !l + 1)



Logical Relation for First-Order 
References

Associate each location l with a 
relation ϕ(l) between values stored in 
l

ϕ ? let l = ref v in M
∼ let l = ref w in N : τ ⇔
ϕ, l a r ?M ∼ N : τ for some r ∋(v, w)

ϕ ? (l := v) ∼ (l' := w) : unit ⇔
l = l'  and  (v, w) ∈ ϕ(l)



Logical Relation for Higher-
Order References

What about "references to references"?
— The same as "keys encrypting keys"!

(I don't have so interesting examples, 
though)



Channels

M ::= ... (standard λ-terms)
| c (channel)
| new c in M (channel creation)
| send M to N (output)
| recv x from M in N

(input)

cf. π-calculus [Milner 89]



Example of Equivalence by 
Channels

new c in
(send 3 to c, recv i from c in (i mod 2))

≅
new c in

(send 5 to c, recv i from c in (i mod 2))



Logical Relation for Second-
Class Channels

Associate each channel c with a relation ϕ(c) 
between values communicated through c

ϕ ?new c in M ∼ new c in N : τ ⇔
ϕ, c a r ?M ∼ N : τ for some r

ϕ ? send v to c ∼ send w to c' : unit  ⇔
c = c'  and  (v, w) ∈ ϕ(c)

ϕ ? recv x from c in M
∼ recv x from c' in N : τ ⇔
c = c'  and  ϕ ? [v/x]M ∼ [w/x]N : τ
for any (v, w) ∈ ϕ(c)



Logical Relation for First-Class 
Channels

What about "channels passing channels"?
— Again, the same as keys encrypting 

keys

More interesting (than references to 
references) because first-class 
channels are essential in π-calculus



A Use of First-Class Channels: 
Client-Server System

new succserv in
(recv (m, c) from succserv in
(send (m + 1) to c,
(new d in
( (send (2, d) to succserv,
( (recv n from d in ...))



Or, Equivalently...

new idserv in
(recv (m, c) from idserv in
(send m to c,
(new d in
( (send (3, d) to idserv,
( (recv n from d in ...))

To show the equivalence, take
ϕψ(idserv) =

{ ((2, c), (3, c)) | ψψ(c) = {(3, 3)} }



Conclusion (1/2): Summary

We have seen logical relations for
Perfect encryption
Cf. type abstraction

Higher-order references
First-class channels

All of these are based on the same idea: 
associating each generative name n 
with a relation ϕ(n) between values 
involved in n



Conclusion (2/2): Future Work

More applications (other than 
security protocols)
Soundness proofs (except for logical 
relations for encryption)
Completeness results
Comparison with other methods (such 
as bisimulation)
Suggestions and discussions welcome!


