Syntactic Logical Relations for
Perfect Encryption,
Higher-Order References and

- First-Class Channels

Eijiro Sumii
University of Tokyo

What Is a Logical Relation?:

|

¥ A relation ?v ~w ; t between values v
and w in a typed | -calculus, defined
according to their type t

E.g.,
F2i~jrint U i=j
+2f~g:s® t U
?eval(fv) ~evallgw) : t . forany ?v ~w: g
B2 (Vg Vp) ~ (W, Wp) 1ty 1, U
?v,~w, oty and ?v, ~w, l t,

What IS it Useful for’?

¥ To show various forms of equivalence
between programs
= Correctness of optimization

2Popt ~ Puriopt - L
= Secrecy as non-interference
?p, ~p, -t Ffor vi-w
= Correspondence between CPS and direct
style

?Peps ~ Pps 1

~t A~

The "Fundamental Property" of
(Loglcal Relations

Theorem:
?v~v:t forany ?v:t

Corollary:
Vi~V t P eval(f V) = eval(f V)
forany ?f -t ® bool

1.e., logical relations imply -
observational equivalence

This Talk

|

¥ Logical relations for wider range of
programming constructs

= Perfect encryption [Sumii-Pierce 0O1]
Cf. Type abstraction [Reynolds 83]
= Higher-order references [ongoing work]
-+ First-class channels [ongoing work]

Everything is syntactic and operational

Perfect Encryption

M= ... | (standard | -terms)
| K (key)
| newkinM (key generation)
| {M}, (encryption)
| let {X},,; = M, In.N; else N,
| (decryptlon)

¥ Useful for reasoning about
Information hiding by encryption (as
In security protocols)

Example of Equivalence by
(Perfect Encryption

new K In

({3}, I'c.let {i}, = cin (I mod 2) else -1)
@
new k in |

{5}, I c. let{i}, =cin (i mod 2) else 1)

Cf equivalence by type abstractlon

pack int, (3,1 i.i mod 2)as $a.a (a ® int)
@
nack int (5 i it mod 2)as$a a * (a ® int)

Logical Relation for Perfect
(Encryption [Sumii-Pierce 01]

Introduce relation environment | to -
associate each key k'with a relation
] (k) between values encrypted by k

i ?{v} ~ {w}. : bits U
k=k" and (v, w) T j (K).

j ?2newkinM~newkinN:t U
], Kb r?M~N=:t for somer

CT. Logical Relation for Type
(Abstraction |[Reynolds 83] -

Assoclate each abstract type a with a
relation | (a) between values
iImplementing a

i ?2v~w:a U (vw)l] (a)
j-’7packr v as $a. t |
~packs,was$a.t :$a.t U
j,aPr?2v-w:t
for some relationri r ~ s

Extended Logical Relation:
(I\/Iotivating Example
new Kk, ih new k, In .
({k}r I c.let{k, "}, = cIn {3}, else ...)
@.

new k; in new Kk, in- |
{Kolr, 1 €. let {K,'},, = c in {5},,. else-...)

What to take as | (k)?
K, Is yet to be generated!

Extended Logical Relation: Our
(Solution -

~ Parameterize | with respect to a .
relation environmenty in the future

[?{v}ke{w}k. : bits_O
k=k" and (v,w)1 j. (K

E.g., take
iy (k) ={(Ky Kp) 1'yy(Kp) =1(3,5)}}

IN the motivatina exambple

References

M= ... | (standard | -terms)
| 7 (location)
| let/7=ref Min N
| (cell allocation)
| M:=N (update)
-} 'M - (dereference)

Example of Equivalence by
(References

let/=refOIn(Ix. Y, ly. 7=/ +2)

@
let/=refOiIn(I x. Y- 2,ly. /=W +1)

Logical Relation for First-Order
(References

Assoclate each location /¢ with a
relation | (¢) between values stored In
€ , .

| ?let/=refvinM
~let/=refwinN:t U .
/> r?M~N:t forsomer (v,w)

i ?200=Vv) ~ (" :==w) :unit U
¢=7" and- (v, w) 1 j ()

Logical Relation for Higher-
(Order References

What about "references to references'”

— The same as "keys-encrypting keys"!

(1 don"t have so interesting examples,
though)

Channels _

M= ... | (standard | -terms)
| c (channel)
| newcinM (channel creation)
| send M to N (output) |
| recvxfromMinN
(input)

ct. p-calculus [Milner 89]

Example of Equivalence by
(Channels -

new c In

(send 3 to c, recv i from c in (iFmod 2))
. @
new c in

(send 5 toc, recvifromcin (i mod 2))

Logical Relation for Second-
(Class Channels

Associate each channel ¢ with a relation | (c)
between values communicated through c

j ?newcin M~newcinN:t U
j,c—r?M~N:t for somer

j ?send v toc~sendwtoc":unit U
c=c" and (v;w) 1 j(c)

] ?recvx fromcinM
~recv X fromc'in Nt U
c=c" and j ?[v/X]M ~ [w/X]N :t
for any (v, w) 1 j ()

Logical Relation for First-Class
(Channels -

What about "channels passing channels"?
— Again, the same as keys encrypting
Keys

More interesting (than references to:
references) because first-class
channels are essential in p-calculus

A Use of First-Class Channels:
(Client—Server System

new succserv In
(recv (m, c) from succserv In
send (m + 1) to c,
new d in
(send (2, d) to succseryv,
recvn fromdin..))

Or, Equivalently...

|

new idserv in
(recv. (m, c) from idserv in
send m to c,
new d in
(send (3, d) to idserv,
recvn fromdin..))
To show the equivalence take
y(ldserv) =

{((2,0), (3, 0)) Iy (c) ={(3, 3)}}

Conclusion (1/2): Summary

¥ We have seen logical relations for
= Perfect encryption
Ct. type abstraction
= Higher-order references
= First-class channels

AII of these are based on the same |dea:
associlating each generative nhame n
with-a relation j (n) between values
Involved In n

Conclusion (2/2): Future Work

¥ More applications (other than
security protocols)

¥ Soundness proofs (except for logical
relations for encryption)

. Completeness results

¥ Comparison with other methods (such
as bisimulation)

Suggestions and discussions welcome!

