
A Bisimulation for Dynamic
Sealing

Eijiro Sumii
Benjamin C. Pierce

University of Pennsylvania

Modularity by Abstraction,
Abstraction by Typing

n Modularity is crucial for managing large
systems

n Abstraction is the primary method of
achieving modularity

n Type abstraction is a common way of
enforcing abstraction in programming
languages
n Almost as old [Liskov 73] as structured programming

[Dijkstra 68]

A Classic Example:
Complex Numbers

interface Complex
abstype t
make_complex : real × real → t
get_re : t → real
get_im : t → real
multiply : t × t → t

end

Cartesian Implementation

module CartesianComplex implements Complex
abstype t = real × real
make_complex(x, y) = (x, y)
get_re(x, y) = x
get_im(x, y) = y
multiply((x1, y1), (x2, y2)) =

(x1 × x2 − y1 × y2, x1 × y2 + y1 × x2)
end

Polar Implementation

module PolarComplex implements Complex
abstype t = real × real
make_complex(x, y) =

(sqrt(x × x + y × y), atan2(y, x))
get_re(r, θ) = r × cos(θ)
get_im(r, θ) = r × sin(θ)
multiply((r1, θ1), (r2, θ2)) = (r1 × r2, θ1 + θ2)

end

Abstraction as Equivalence

n Abstraction is indeed achieved iff the two
implementations are contextually
equivalent (i.e., cannot be distinguished by
their users)

n Can be proved via logical relations
n In this talk, only convergence/divergence is

observed (not timing, power consumption, etc.)

CartesianComplex ≡ PolarComplex : Complex
c

For any C : Complex → unit, C[CartesianComplex]
terminates iff C[PolarComplex] does

Problem

n Type abstraction doesn't work in today's open,
untyped program environments
n Abstraction is lost if data is written into a file or

sent over the network, where not all programs
are statically typed
n You cannot "type-check the Internet"

Pseudo-example:

send(PolarComplex.make_complex(1.0, 2.0)) |
CartesianComplex.get_re(receive())

A Solution

n Use a more dynamic method of information
hiding: sealing (≈ perfect encryption)
n As old as type abstraction [Morris 73]

n Interest renewed [Pierce-Sumii 2000, Leifer-Peskine-Sewell
2003, Rossberg 2003, etc.]

Abstraction by Sealing

n A fresh, secret seal (or key) is generated for
each abstract type

n Abstract data is sealed (or "encrypted")
when going out of a module, and unsealed
(or "decrypted") when coming back

n No need to type-check the Internet

Illegal access causes failure of unsealing
(which prevents failure of abstraction)

CartesianComplex with Sealing

module CartesianComplex
make_complex(x, y) = {(x, y)}k
get_re(c) = let {(x, y)}k = c in x
get_im(c) = let {(x, y)}k = c in y
multiply(c1, c2) =

let {(x1, y1)}k = c1 in
let {(x2, y2)}k = c2 in
{(x1 × x2 − y1 × y2, x1 × y2 + y1 × x2)}k

end

PolarComplex with Sealing

module PolarComplex
make_complex(x, y) =

{(sqrt(x × x + y × y), atan2(y, x))}k'
get_re(c) = let {(r, θ)}k' = c in r × cos(θ)
get_im(c) = let {(r, θ)}k' = c in r × sin(θ)
multiply(c1, c2) =

let {(r1, θ1)}k' = c1 in
let {(r2, θ2)}k' = c2 in
{(r1 × r2, θ1 + θ2)}k'

end

Question

n Is this use of sealing correct? That is, does it
indeed achieve abstraction?

Sub-questions:
n How to state the abstraction property?

n Standard definition of contextual equivalence needs to
be generalized (taking "knowledge of the environment
about seals" into account)

n How to prove it?
n Logical relations rely on types and cannot be applied in

untyped setting

Main Results of This Work

n Definition of λseal, untyped call-by-value λ-
calculus extended with sealing

n Generalization of contextual equivalence for
λseal

n Development of a sound and complete
bisimulation proof technique for λseal

Examples:
n Data abstraction (complex numbers)
n Protocol encoding (Needham-Schroeder-Lowe)

A Frequently Asked Question

n What are different from bisimulations for the
spi-calculus? [Abadi-Gordon 98, Boreale-Nicola-Pugliese
99, Borgstroem-Nestmann 02, etc.]

n (Higher-order) functions
n Hard to encode into spi-calculus without losing

abstraction (against untyped environment, in particular)

n Non-trivial generalization of contextual
equivalence

n Simpler definition of bisimulation
n No complications like "frame", "theory", "analysis" or

"synthesis"

Outline

n Introduction
n Abstraction by typing
n Abstraction by sealing

n Syntax and semantics of λseal

n Contextual equivalence in λseal

n Bisimulation for λseal

n Related work and conclusions

Outline

n Introduction
n Abstraction by typing
n Abstraction by sealing

n Syntax and semantics of λseal

n Contextual equivalence in λseal

n Bisimulation for λseal

n Related work and conclusions

Syntax of λseal

Standard untyped call-by-value λ-calculus
extended with primitives for sealing

n Seal: k ∈ K (countably infinite set of seals)
n Fresh seal generation: νx. e
n Sealing: {e1}e2

n Unsealing: let {x}e1 = e2 in e3 else e4

n let {x}k = {v}k in e3 else e4 → [v/x]e3

n let {x}k = {v}k' in e3 else e4 → e4 (if k ≠ k')

Semantics of λseal

n Big-step evaluation
〈s〉 e ⇓ 〈t〉 v

where s and t are seal sets before and after
the evaluation
n E.g.

k ∉ s 〈s ∪ {k}〉 [k/x]e ⇓ 〈t〉 v
(E-New) ——————————————— (E-New)

〈s〉 νx. e ⇓ 〈t〉 v

Outline

n Introduction
n Abstraction by typing
n Abstraction by sealing

n Syntax and semantics of λseal

n Contextual equivalence in λseal

n Bisimulation for λseal

n Related work
n Conclusions

Contextual Equivalence:
Problem

n Standard definition doesn't suffice, e.g.,
λc. let {(x, y)}k = c in x else ⊥

≡?
λc. let {(r, θ)}k' = c in r × cos(θ) else ⊥

n The answer depends on knowledge of the
context:
n If it knows any {(x, y)}k and {(r, θ)}k' such that

x ≠ r × cos(θ), then no.
n If it knows no such values, then yes.

Contextual Equivalence:
Solution

n A binary relation R over values is abstractive if:

n Contextual equivalence ≡ is the set of all such R's
n Intuition: R represents environment's knowledge

n For simplicity, we consider closed values only
n Strictly speaking, each R ∈ ≡ is annotated with seal

sets s and s'

For any (v1, v'1), ..., (vn, v'n) ∈ R,
for any seal-free term e,
[v1,...,vn/x1,...,xn]e terminates iff
[v'1,...,v'n/x1,...,xn]e does.

Contextual Equivalence:
Examples

n {({(1, 1)}k, {(√2, π/4)}k'),
{(λc. let {(x, y)}k = c in x else ⊥,
{(λc. let {(r, θ)}k' = c in r × cos(θ) else ⊥)} ∈ ≡

n {({(√2, π/4)}k, {(1, 1)}k'),
{(λc. let {(x, y)}k = c in x else ⊥,
{(λc. let {(r, θ)}k' = c in r × cos(θ) else ⊥)} ∉ ≡

n {({(√2, π/4)}k, {(1, 1)}k')} ∈ ≡
n {(λc. let {(x, y)}k = c in x else ⊥,

{(λc. let {(r, θ)}k' = c in r × cos(θ) else ⊥)} ∈ ≡
n {({(1, 1)}k, {(√2, π/4)}k'), (k, k')} ∉ ≡

Outline

n Introduction
n Abstraction by typing
n Abstraction by sealing

n Syntax and semantics of λseal

n Contextual equivalence in λseal

n Bisimulation for λseal

n Related work
n Conclusions

Bisimulation: Motivation

n In general, contextual equivalence is hard to
prove directly ⇒ proof technique necessary
n Logical relations are not applicable

since our setting is untyped
n We consider bisimulation

(cf. applicative bisimulation [Abramsky 90])

Bisimulation: Definition (1/3)

A bisimulation X is a set of binary relations over values
such that, for every R ∈ X,

n For each (v, v') ∈ R, v and v' are values of the same
kind (i.e., both are constants, functions, tuples,
seals, or sealed values)

n For each (c, c') ∈ R, we have c = c'
n For each ((v1, ..., vn), (v'1, ..., v'n')) ∈ R,

we have n = n' and R ∪ {(vi, v'i)} ∈ X for each i

Intuition: each condition on a bisimulation excludes
pairs of values distinguishable by the environment

Bisimulation: Definition (2/3)

n For each (k1, k'1) ∈ R and (k2, k'2) ∈ R,
we have k1 = k2 ⇔ k'1 = k'2

n Rationale: The context can test (only) the equality of
two seals, via sealing under one seal and unsealing
under the other seal

n For each ({v}k, {v'}k') ∈ R, we have either:
n (k, k') ∈ R and R ∪ {(v, v')} ∈ X, or else
n (k, k'') ∉ R and (k'', k') ∉ R for any k''

n Rationale: Either the context knows both seals and can
unseal both sealed values, or it knows none of the
seals.

Bisimulation: Definition (3/3)
n For each (λx. e, λx. e') ∈ R,

1. Take any fresh (k1, k'1), ..., (km, k'm) and
let S = R ∪ {(k1, k'1), ..., (km, k'm)}

2. Take any (u1, u'1), ..., (un, u'n) ∈ S
and any seal-free term d with free variables x1, ..., xn

3. Let v = [u1,...,un/x1,...,xn]d
and v' = [u'1,...,u'n/x1,...,xn]d

4. Apply λx. e to v and λx. e' to v'
5. Then, both converge or both diverge
6. If they converge, let the results be w and w'
7. Then, S ∪ {(w, w')} ∈ X

Bisimulation: Example
The following set (of binary relations over values)

is a bisimulation:

{{(CartesianComplex, PolarComplex),
{{(CartesianComplex.make_complex,
{{(PolarComplex.make_complex),
{{(CartesianComplex.get_re, PolarComplex.get_re),
{{(CartesianComplex.get_im, PolarComplex.get_im),
{{(CartesianComplex.multiply, PolarComplex.multiply)} ∪
{{(x, x) | x : real} ∪
{{({(x, y)}k, {(r, θ)}k') | x = r cos θ ∧ y = r sin θ } ∪
{{(k1, k1'), ..., (kn, kn')} |
{k ∉ {k1, ..., kn} ∧ k' ∉ {k'1, ..., k'n}}

Bisimulation: Properties

Lemmas:
1. Contextual equivalence is a bisimulation

n Proof: By checking the conditions of bisimulation

2. Bisimilar values put in any seal-free context are
observationally equivalent and such forms are
preserved by evaluation
n Proof: By induction on the derivation of evaluation

Theorem [soundness & completeness]:
Bisimilarity (the largest bisimulation)
coincides with contextual equivalence

Another Example:
Encoding Security Protocols

n Shows the power of λseal and its bisimulation
Ideas:

n Encryption is encoded as sealing
n Protocol is encoded as a tuple of public keys and

principals
n Senders are encoded as the values being sent
n Receivers are encoded as functions
n Contexts play the role of attackers, network and

scheduler by applying receivers to senders

Related Work

n Bisimulations for the spi-calculus
n Logical relations for encryption [Sumii-Pierce 2001]

n Cannot be used in untyped settings
n Even in typed settings, do not scale well for richer

languages with recursive functions/types etc.

n Applicative bisimulation [Abramsky 90]

n Soundness proof is very hard [Howe 96]

n Our soundness proof is much easier thanks to
variations in arguments of functions

Conclusions

n Summary: We defined λseal and developed a
sound and complete proof technique for
"type abstraction without types"

n Future work:
n Full abstraction for general, type-directed

translation of type abstraction [Pierce-Sumii 00]

n Similar bisimulations for other forms of
information hiding (such as information
flow/access control and type abstraction)

