A Bisimulation for Dynamic

!'_ Sealing

Eijiro Sumii
Benjamin C. Pierce
University of Pennsylvania

viodaularity by ADStraction,
Abstraction by Typing

= Modularity is crucial for managing large
systems

= Abstraction is the primary method of
achieving modularity

= Type abstraction is a common way of
enforcing abstraction in programming
languages

= Almost as old [Liskov 73] as structured programming
[Dijkstra 68]

A ClaSSIC EXample:
Complex Numbers

Interface Complex
abstype t
make complex : real " real ® t
get re . t® real
get Im:t® real
multiply : t~ t® t
end

Cartesian Implementation

module CartesianComplex implements Complex
abstype t = real = real
make complex(x, y) = (X, y)
get re(X, y) =X
get_Im(X, y) =y
multiply((X3, Y1), (X2s ¥2)) =
(X" Xo- Y1 Yo Xp 0 Yoty Xp)
end

Polar Implementation

module PolarComplex implements Complex

abstype t = real * real

make _complex(x, y) =

(sqrt(x ~ x +y "~ y), atan2(y, X))

get re(r,q) =r cos(q)

get im(r, q) =r sin(g)

rQUItipl)’((rl’), (s 0)) = (rp 1y, 0y +0y)
en

Abstraction as Equivalence

= Abstraction is indeed achieved iff the two
Implementations are contextually
equivalent (i.e., cannot be distinguished by
their users)
CartesianComplex © PolarComplex : Complex

I

For any C : Complex ® unit, C[CartesianComplex]
terminates iff C[PolarComplex] does
=« Can be proved via logical relations

= In this talk, only convergence/divergence Is
obhecerved (not timina bpower con<itimntion etec)\

Problem

= Type abstraction doesn't work in today's open
untyped program environments
« Abstraction is lost if data is written into a file or
sent over the network, where not all programs

are statically typed
= YOu cannot "type-check the Internet"

Pseudo-example:

send(PolarComplex.make_complex(1.0, 2.0)) |
CartesianComplex.get_re(receive())

A Solution

= Use a more dynamic method of information
hiding: sealing (» perfect encryption)

= As old as type abstraction [Morris 73]

= Interest renewed [Pierce-Sumii 2000, Leifer-Peskine-Sewell
2003, Rossberg 2003, etc.]

Abstraction by Sealing

= A fresh, secret seal (or key) Is generated for
each abstract type

= Abstract data Is sealed (or "encrypted")
when going out of a module, and unsealed
(or "decrypted") when coming back

lllegal access causes failure of unsealing
(which prevents failure of abstraction)

= No need to type-check the Internet

CartesianComplex with Sealing

module CartesianComplex
make_complex(x, y) = {(X, ¥) }.
get_re(c) = let {(X, y)}, = cin X
get_iIm(c) = let{(X, y)}, =ciny
multiply(c,, c,) =

et {(Xy, Y =€y In

et {(Xz, Y2); =, In

X1 Xo- Y1 Yo Xp o Yot Y1 Xk
end

& PolarComplex with Sealing

module PolarComplex
make_complex(x, y) =
{(sart(x ~ x +y " y), atan2(y, X))},
get re(c) = let {(r, Q). = cinr cos(q)
get_ im(c) = let {(r,)}, = cinr” sin(q)
multiply(c,, c,) =
et {(ry, gy = €y 1N
et {1, do)Je = €, 1N
{(ry " 1 Op + Q) e
end

Question

= IS this use of sealing correct? That is, does it
Indeed achieve abstraction?

Sub-questions:

=« How to state the abstraction property?

= Standard definition of contextual equivalence needs to
be generalized (taking "knowledge of the environment
about seals" into account)

= How to prove it?

= Logical relations rely on types and cannot be applied In
untyped setting

Main Results of This Work

= Definition of | ___,, untyped call-by-value | -
calculus extended with sealing

= Generalization of contextual equivalence for

seal

= Development of a sound and complete
nisimulation proof technique for |
Examples:

= Data abstraction (complex numbers)

= Protocol encoding (Needham-Schroeder-Lowe)

seal

A Freguently Asked Question

= What are different from bisimulations for the

spi-calculus? [Abadi-Gordon 98, Boreale-Nicola-Pugliese
99, Borgstroem-Nestmann 02, etc.]

« (Higher-order) functions

« Hard to encode into spi-calculus without losing
abstraction (against untyped environment, in particular)

= Non-trivial generalization of contextual
equivalence

= Simpler definition of bisimulation

= No complications like "frame", "theory", "analysis" or
"synthesis"

Outline

= Introduction
« Abstraction by typing
= Abstraction by sealing

= Syntax and semantics of |
= Contextual equivalence in |
= Bisimulation for |

= Related work and conclusions

seal

& Outline

= Introduction
= Abstraction by typing
= Abstraction by sealing

= Syntax and semantics of |
= Contextual equivalence in |
= Bisimulation for |

= Related work and conclusions

seal

Syntax of |

seal

Standard untyped call-by-value | -calculus
extended with primitives for sealing

= Seal: k1 K (countably infinite set of seals)
= Fresh seal generation: nx. e
= Sealing: {e,}.,
= Unsealing: let {x}., = e, In e, else g,
slet {x} = {v} Ineselsee, ® [v/x]e,
wlet {x} ={v}i.Ineyelsee, ® ¢, (Ifkt Kk

Semantics of |

seal

= Big-step evaluation
&gne 3 anv
where s and t are seal sets before and after
the evaluation

O Eg

ki s &E {K}i[k/x]e B &fiv

ENEY
asnnx. e R &nv

Outline

= Introduction
= Abstraction by typing
= Abstraction by sealing

= Syntax and semantics of |
= Contextual equivalence in |
= Bisimulation for |
= Related work

= Conclusions

seal

seal

contextual equivalence:

& Problem

= Standard definition doesn't suffice, e.g.,
| c. let {(X, y)}, =cinxelse”
O

|l c. let {(r, q)} = C inr’ cos(q) else A
= The answer depends on knowledge of the
context:

= If it knows any {(x, y)}, and {(r, g)}. such that
X1 r cos(qg), then no.

= If It knows no such values, then yes.

contextual equivalence:
Solution

= A binary relation R over values is abstractive if:

For any (v, V'), ..., (v,, V') T R,
for any seal-free term e,
[Vq,...,V/X{,...,. X]e terminates Iff
V', VX, % |e does.

= Contextual equivalence ° is the set of all such R's

« Intuition: R represents environment's knowledge
= For simplicity, we consider closed values only

= Strictly speaking, each R1 © is annotated with seal
sets s and s'

contextual equivalence:
Examples

» {1, D}y, {(@, p/D)}),
(Ic.let{(x,y)}y =cin xelse *,
| c. let {(r, q)} =cinr” cos(q) else M)} 1 ©

» {({(Q@, p/H}. {(L1, D},

(Ic.let{(X,y)}y =cin xelse *,
| c. let {(r,)} =cinr’” cos(q) else ")} 1 ©

 {{(@, p/H}. {(1, DT ©
s {(lc.let{(X,¥Y)}y =cinxelse”,
| c. let {(r, q)} =cinr” cos(q) else M)} 1 ©

e {({(L, D)}y £(C2, p/a)}), (k, K)}T ©

Outline

= Introduction
= Abstraction by typing
= Abstraction by sealing

= Syntax and semantics of |
= Contextual equivalence In |
= Bisimulation for |
= Related work

= Conclusions

seal

seal

Bisimulation: Motivation

= In general, contextual equivalence is hard to
prove directly P proof technique necessary

= Logical relations are not applicable
since our setting Is untyped

=« We consider bisimulation
(cf. applicative bisimulation [Abramsky 90])

Bisimulation: Definition (1/3)

Intuition: each condition on a bisimulation excludes
pairs of values distinguishable by the environment

A bisimulation X is a set of binary relations over values
such that, for every R | X,

= For each (v, V') I R, v and v' are values of the same
kind (i.e., both are constants, functions, tuples,
seals, or sealed values)

s Foreach (c,c) 1 R, we havec=-¢

= For each ((vq, ..., Vv,), (V';, ..., V.)) T R,
we have n =n'and R E {(v, v')} 1 X for each i

Bisimulation: Definition (2/3)

= For each (k,, k') T Rand (k,, k) T R,
we have k; =k, U k'; =k,
« Rationale: The context can test (only) the equality of

two seals, via sealing under one seal and unsealing
under the other seal

= For each ({v},, {V'},) I R, we have either:
« (k, KYT Rand RE {(v, v)}1 X, or else
= (k, k)1 Rand (k", k) I R for any k"
« Rationale: Either the context knows both seals and can

unseal both sealed values, or it knows none of the
seals.

Bisimulation: Definition (3/3)

For each (I x. e, | x. €)1 R,

1.

N o Ok

Take any fresh (k,, k'), ..., (k. k',,) and
let S =RE {(k, k'), .., (Kpy K1)}

. Take any (uy, U'y), ..., (U, U') T S
and any seal-free term d with free variables x,, ...

Let v = [Uy,...,u./Xq,..., X]d

Apply | x.etovand | x. e'to V'

Then, both converge or both diverge

If they converge, let the results be w and w'
Then, S E {(w, w)} 1T X

, X

n

Bisimulation: Example

The following set (of binary relations over values)
IS a bisimulation:

{{(CartesianComplex, PolarComplex),

(CartesianComplex.make complex,
PolarComplex.make complex),
(CartesianComplex.get_re, PolarComplex.get re),
(CartesianComplex.get_im, PolarComplex.get im),
(CartesianComplex.multiply, PolarComplex.multiply)} E

{(x, ¥) | x:real} E

1 Yhe A a)f) [x=rcosqUy=rsinqg } E

{(_I_(l’ kll)’ et (kng kn?} I

kI {ky, ...,k }Uk 1l {k'y,..., K. }}

Bisimulation: Properties

Lemmas:

1. Contextual equivalence is a bisimulation
=« Proof: By checking the conditions of bisimulation
2. Bisimilar values put in any seal-free context are

observationally equivalent and such forms are
preserved by evaluation

« Proof: By induction on the derivation of evaluation

Theorem [soundness & completeness]:
Bisimilarity (the largest bisimulation)
coincides with contextual equivalence

ANotner example:
Encoding Security Protocols

= Shows the power of |

ldeas:
= Encryption is encoded as sealing

= Protocol is encoded as a tuple of public keys and
principals

= Senders are encoded as the values being sent

= Recelvers are encoded as functions

= Contexts play the role of attackers, network and
scheduler by applying receivers to senders

eal @Nd Its bisimulation

Related Work

= Bisimulations for the spi-calculus

= Logical relations for encryption [Sumii-Pierce 2001]
»« Cannot be used in untyped settings

=« Even In typed settings, do not scale well for richer
languages with recursive functions/types etc.

= Applicative bisimulation [Abramsky 90]
= Soundness proof Is very hard [Howe 96]

= Our soundness proof is much easier thanks to
variations in arguments of functions

Conclusions

= Summary: We defined | ., and developed a
sound and complete proof technigue for
"type abstraction without types"

s Future work:

= Full abstraction for general, type-directed
translation of type abstraction [Pierce-Sumii 00]

= Similar bisimulations for other forms of
iInformation hiding (such as information
flow/access control and type abstraction)

