A Bisimulation for Dynamic Sealing

Ejjiro Sumif
Benjamin C. Pierce
University of Pennsylvania

IVodularity by Abstraction, Abstraction by Typing

Modularity is crucial for managing large systems
Abstraction is the primary method of achieving modularity
Type abstraction is a common way of enforcing abstraction in programming languages

- Almost as old [Liskov 73] as structured programming [Dijkstra 68]

A Classic Example: Complex Numbers

interface Complex
abstype t
make_complex : real \times real $\rightarrow t$
get_re : t \rightarrow real
get_im : t \rightarrow real
multiply : $\mathrm{t} \times \mathrm{t} \rightarrow \mathrm{t}$
end

Cartesian Implementation

module CartesianComplex implements Complex abstype $\mathrm{t}=$ real \times real make_complex $(x, y)=(x, y)$ get_re(x, y) $=x$ get _ip $(x, y)=y$ multiply $\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=$

$$
\left(\mathrm{x}_{1} \times \mathrm{x}_{2}-\mathrm{y}_{1} \times \mathrm{y}_{2}, \mathrm{x}_{1} \times \mathrm{y}_{2}+\mathrm{y}_{1} \times \mathrm{x}_{2}\right)
$$

end

Polar Implementation

module PolarComplex implements Complex
abstype t $=$ real \times real
make_complex $(x, y)=$
$(\operatorname{sqrt}(x \times x+y \times y), \operatorname{atan} 2(y, x))$
get_re $(r, \theta)=r \times \cos (\theta)$
get_im $(r, \theta)=r \times \sin (\theta)$
multiply $\left(\left(r_{1}, \theta_{1}\right),\left(r_{2}, \theta_{2}\right)\right)=\left(r_{1} \times r_{2}, \theta_{1}+\theta_{2}\right)$
end

Abstraction as Equivalence

Abstraction is indeed achieved iff the two implementations are contextually equivalent (i.e., cannot be distinguished by their users)
CartesianComplex = PolarComplex : Complex \mathbb{I}
For any C : Complex \rightarrow unit, C[CartesianComplex] terminates iff C[PolarComplex] does

- Can be proved via logical relations
- In this talk, only convergence/divergence is observed (not timina nower consumntion etc)

Problem

Type abstraction doesn't work in today's open untyped program environments

- Abstraction is lost if data is written into a file or sent over the network, where not all programs are statically typed
- You cannot "type-check the Internet" Pseudo-example:
send(PolarComplex.make_complex(1.0, 2.0)) | CartesianComplex.get_re(receive())

A Solution

Use a more dynamic method of information hiding: sealing (\approx perfect encryption)

- As old as type abstraction [Morris 73]
- Interest renewed [Pierce-Sumii 2000, Leffer-Peskine-Sewell 2003, Rossberg 2003, etc.]

Abstraction by Sealing

A fresh, secret seal (or key) is generated for each abstract type
Abstract data is sealed (or "encrypted") when going out of a module, and unsealed (or "decrypted") when coming back

Illegal access causes failure of unsealing (which prevents failure of abstraction)

- No need to type-check the Internet

CartesianComplex with Sealing

module CartesianComplex make_complex $(x, y)=\{(x, y)\}_{k}$ get_re(c) $=$ let $\{(x, y)\}_{k}=c$ in x get_im(c) $=$ let $\{(x, y)\}_{k}=c$ in y multiply $\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)=$
let $\left\{\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\right\}_{\mathrm{k}}=\mathrm{C}_{1}$ in
let $\left\{\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right\}_{\mathrm{k}}=\mathrm{c}_{2}$ in
$\left\{\left(\mathrm{x}_{1} \times \mathrm{x}_{2}-\mathrm{y}_{1} \times \mathrm{y}_{2}, \mathrm{x}_{1} \times \mathrm{y}_{2}+\mathrm{y}_{1} \times \mathrm{x}_{2}\right)\right\}_{\mathrm{k}}$
end

PolarComplex with Sealing

module PolarComplex make_complex $(x, y)=$ $\{(\operatorname{sqrt}(x \times x+y \times y), \operatorname{atan} 2(y, x))\}_{k^{\prime}}$ get_re(c) $=$ let $\{(r, \theta)\}_{\mathrm{k}^{\prime}}=\mathrm{c}$ in $\mathrm{r} \times \cos (\theta)$ get_im $(c)=$ let $\{(r, \theta)\}_{k^{\prime}}=c$ in $r \times \sin (\theta)$ multiply $\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)=$

$$
\begin{aligned}
& \text { let }\left\{\left(r_{1}, \theta_{1}\right)\right\}_{k^{\prime}}=c_{1} \text { in } \\
& \text { let }\left\{\left(r_{2}, \theta_{2}\right)\right\}_{k^{\prime}}=c_{2} \text { in } \\
& \left\{\left(r_{1} \times r_{2}, \theta_{1}+\theta_{2}\right)\right\}_{k^{\prime}}
\end{aligned}
$$

end

Question

Is this use of sealing correct? That is, does it indeed achieve abstraction?

Sub-questions:

- How to state the abstraction property?
- Standard definition of contextual equivalence needs to be generalized (taking "knowledge of the environment about seals" into account)
- How to prove it?
- Logical relations rely on types and cannot be applied in untyped setting

Main Results of This Work

Definition of $\lambda_{\text {seal }}$, untyped call-by-value λ calculus extended with sealing
Generalization of contextual equivalence for $\lambda_{\text {seal }}$
Development of a sound and complete bisimulation proof technique for $\lambda_{\text {seal }}$ Examples:

- Data abstraction (complex numbers)
- Protocol encoding (Needham-Schroeder-Lowe)

A Frequently Asked Question

What are different from bisimulations for the spi-calculus? [Abadi-Gordon 98, Boreale-Nicola-Pugliese 99, Borgstroem-Nestmann 02, etc.]

- (Higher-order) functions
- Hard to encode into spi-calculus without losing abstraction (against untyped environment, in particular)
- Non-trivial generalization of contextual equivalence
- Simpler definition of bisimulation
- No complications like "frame", "theory", "analysis" or "synthesis"

Outline

Introduction

- Abstraction by typing
- Abstraction by sealing

Syntax and semantics of $\lambda_{\text {seal }}$
Contextual equivalence in $\lambda_{\text {seal }}$
Bisimulation for $\lambda_{\text {seal }}$
Related work and conclusions

Outline

Syntax and semantics of $\lambda_{\text {seal }}$ Contextual equivalence in $\lambda_{\text {seal }}$ Bisimulation for $\lambda_{\text {seal }}$ Related work and conclusions

Syntax of $\lambda_{\text {seal }}$

Standard untyped call-by-value λ-calculus extended with primitives for sealing
Seal: $k \in K$ (countably infinite set of seals)
Fresh seal generation: vx. e
Sealing: $\left\{\mathrm{e}_{1}\right\}_{\mathrm{e} 2}$
Unsealing: let $\{x\}_{e 1}=e_{2}$ in e_{3} else e_{4}

- let $\{x\}_{k}=\{v\}_{k}$ in e_{3} else $e_{4} \rightarrow[v / x] e_{3}$
- let $\{x\}_{k}=\{v\}_{k^{\prime}}$ in e_{3} else $e_{4} \rightarrow e_{4}$ (if $k \neq k^{\prime}$

Semantics of $\lambda_{\text {seal }}$

Big-step evaluation

$$
\langle s\rangle e \Downarrow\langle t\rangle v
$$

where s and t are seal sets before and after the evaluation

- Eng.

$$
\frac{k \notin s \quad}{\langle s \cup\{k\}\rangle[k / x] e \Downarrow\langle t\rangle v}(\mathrm{~s}\rangle v x . \mathrm{e} \Downarrow\langle\mathrm{t}\rangle v \mathrm{E} \text { New) }
$$

Outline

- Abstraction by typing
- Abstraction by sealing

Syntax and semantics of $\lambda_{\text {seal }}$
Contextual equivalence in $\lambda_{\text {seal }}$
Bisimulation for $\lambda_{\text {seal }}$
Related work
Conclusions

contextual Equivalence: Problem

Standard definition doesn't suffice, e.g.,

$$
\begin{gathered}
\lambda c . \text { let }\{(\mathrm{x}, \mathrm{y})\}_{\mathrm{k}}=\mathrm{c} \text { in } \mathrm{x} \text { else } \perp \\
\bar{\equiv}_{?} \mathrm{c} . \text { let }\{(\mathrm{r}, \theta)\}_{\mathrm{k}^{\prime}}=\mathrm{c} \text { in } \mathrm{r} \times \cos (\theta) \text { else } \perp
\end{gathered}
$$

The answer depends on knowledge of the context:

- If it knows any $\{(\mathrm{x}, \mathrm{y})\}_{\mathrm{k}}$ and $\{(\mathrm{r}, \theta)\}_{\mathrm{k}^{\prime}}$ such that $x \neq r \times \cos (\theta)$, then no.
- If it knows no such values, then yes.

contextual Equivalence: Solution

A binary relation R over values is abstractive if:
For any $\left(v_{1}, v_{1}^{\prime}\right), \ldots,\left(v_{n}, v_{n}^{\prime}\right) \in R$, for any seal-free term e, $\left[\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}} / \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$ e terminates iff $\left[\mathrm{V}_{1}^{\prime}, \ldots, \mathrm{V}_{\mathrm{n}}^{\prime} / \mathrm{X}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$] does.
Contextual equivalence \equiv is the set of all such R's

- Intuition: R represents environment's knowledge
- For simplicity, we consider closed values only
- Strictly speaking, each $R \in \equiv$ is annotated with seal sets s and s^{\prime}

contextual Equivalence:

Examples

$\left\{\left(\{(1,1)\}_{k^{\prime}}\{(\sqrt{ } 2, \pi / 4)\}_{k^{\prime}}\right)\right.$,
($\lambda \mathrm{c}$. let $\{(\mathrm{x}, \mathrm{y})\}_{\mathrm{k}}=\mathrm{c}$ in x else \perp,
λc. let $\{(r, \theta)\}_{k^{\prime}}=c$ in $r \times \cos (\theta)$ else $\left.\left.\perp\right)\right\} \in \equiv$
$\left\{\left(\{(\sqrt{ } 2, \pi / 4)\}_{k^{\prime}},\{(1,1)\}_{k^{\prime}}\right)\right.$,
($\lambda \mathrm{c}$. let $\{(\mathrm{x}, \mathrm{y})\}_{\mathrm{k}}=\mathrm{c}$ in x else \perp,
λc. let $\{(\mathrm{r}, \theta)\}_{\mathrm{k}^{\prime}}=\mathrm{c}$ in $\mathrm{r} \times \cos (\theta)$ else $\left.\left.\perp\right)\right\} \notin \equiv$
$\left\{\left(\{(\sqrt{ } 2, \pi / 4)\}_{k^{\prime}}\{(1,1)\}_{k^{\prime}}\right)\right\} \in \equiv$
$\left\{\left(\lambda c\right.\right.$. let $\{(\mathrm{x}, \mathrm{y})\}_{\mathrm{k}}=\mathrm{c}$ in x else \perp,
λc. let $\{(r, \theta)\}_{k^{\prime}}=c$ in $r \times \cos (\theta)$ else $\left.\left.\perp\right)\right\} \in \equiv$
$\left\{\left(\{(1,1)\}_{k^{\prime}}\{(\sqrt{ } 2, \pi / 4)\}_{k^{\prime}}\right),\left(k, k^{\prime}\right)\right\} \notin \equiv$

Outline

Introduction

- Abstraction by typing
- Abstraction by sealing

Syntax and semantics of $\lambda_{\text {seal }}$
Contextual equivalence in $\lambda_{\text {seal }}$
Bisimulation for $\lambda_{\text {seal }}$
Related work
Conclusions

Bisimulation: Motivation

In general, contextual equivalence is hard to prove directly \Rightarrow proof technique necessary

- Logical relations are not applicable since our setting is untyped
- We consider bisimulation
(cf. applicative bisimulation [Abramsky 90])

Bisimulation: Definition (1/3)

Intuition: each condition on a bisimulation excludes pairs of values distinguishable by the environment

A bisimulation X is a set of binary relations over values such that, for every $R \in X$,
For each $\left(v, v^{\prime}\right) \in R, v$ and v^{\prime} are values of the same kind (i.e., both are constants, functions, tuples, seals, or sealed values)
For each (c, c^{\prime}) $\in R$, we have $c=c^{\prime}$
For each $\left(\left(v_{1}, \ldots, v_{n}\right),\left(v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right)\right) \in R$, we have $n=n^{\prime}$ and $R \cup\left\{\left(v_{i}, v_{i}^{\prime}\right)\right\} \in X$ for each i

Bisimulation: Definition (2/3)

For each $\left(k_{1}, k_{1}^{\prime}\right) \in R$ and $\left(k_{2}, k_{2}^{\prime}\right) \in R$, we have $k_{1}=k_{2} \Leftrightarrow k_{1}^{\prime}=k_{2}^{\prime}$

- Rationale: The context can test (only) the equality of two seals, via sealing under one seal and unsealing under the other seal
For each $\left(\{v\}_{k^{\prime}},\left\{v^{\prime}\right\}_{k^{\prime}}\right) \in R$, we have either:
- $\left(k, k^{\prime}\right) \in R$ and $R \cup\left\{\left(v, v^{\prime}\right)\right\} \in X$, or else
- ($\left.k, k^{\prime \prime}\right) \notin R$ and ($\left.k^{\prime \prime}, k^{\prime}\right) \notin R$ for any $k^{\prime \prime}$
- Rationale: Either the context knows both seals and can unseal both sealed values, or it knows none of the seals.

Bisimulation: Definition (3/3)

For each ($\left.\lambda \mathrm{x} . \mathrm{e}, \lambda \mathrm{x} . \mathrm{e}^{\prime}\right) \in \mathrm{R}$,

1. Take any fresh $\left(k_{1}, k_{1}^{\prime}\right), \ldots,\left(k_{m}, k_{m}^{\prime}\right)$ and let $S=R \cup\left\{\left(k_{1}, k_{1}^{\prime}\right), \ldots,\left(k_{m}, k_{m}^{\prime}\right)\right\}$
2. Take any $\left(u_{1}, u_{1}^{\prime}\right), \ldots,\left(u_{n}, u_{n}^{\prime}\right) \in S$ and any seal-free term d with free variables $\mathrm{X}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$
3. Let $v=\left[u_{1}, \ldots, u_{n} / x_{1}, \ldots, x_{n}\right] d$ and $v^{\prime}=\left[u^{\prime}{ }_{1}, \ldots, u_{n}^{\prime} / x_{1}, \ldots, x_{n}\right] d$
4. Apply λx. e to v and λx. e^{\prime} to v^{\prime}
5. Then, both converge or both diverge
6. If they converge, let the results be w and w^{\prime}
7. Then, $S \cup\left\{\left(w, w^{\prime}\right)\right\} \in X$

Bisimulation: Example

The following set (of binary relations over values) is a bisimulation:
\{\{(CartesianComplex, PolarComplex),
(CartesianComplex.make_complex,
PolarComplex.make_complex),
(CartesianComplex.get_re, PolarComplex.get_re), (CartesianComplex.get_im, PolarComplex.get_im), (CartesianComplex.multiply, PolarComplex.multiply) $\} \cup$ $\{(x, x) \mid x: r e a l\} \cup$
$\left\{\left(\{(x, y)\}_{k},\{(r, \theta)\}_{k^{\prime}}\right) \mid x=r \cos \theta \wedge y=r \sin \theta\right\} \cup$ $\left\{\left(\mathrm{k}_{1}, \mathrm{k}_{1}{ }^{\prime}\right), \ldots,\left(\mathrm{k}_{\mathrm{n}}, \mathrm{k}_{\mathrm{n}}{ }^{\prime}\right)\right\}$ |
$\left.k \notin\left\{k_{1}, \ldots, k_{n}\right\} \wedge k^{\prime} \notin\left\{k_{1}^{\prime}, \ldots, k_{n}^{\prime}\right\}\right\}$

Bisimulation: Properties

Lemmas:

1. Contextual equivalence is a bisimulation - Proof: By checking the conditions of bisimulation
2. Bisimilar values put in any seal-free context are observationally equivalent and such forms are preserved by evaluation

- Proof: By induction on the derivation of evaluation

Theorem [soundness \& completeness]: Bisimilarity (the largest bisimulation) coincides with contextual equivalence

Anotner Example: Encoding Security Protocols

Shows the power of $\lambda_{\text {seal }}$ and its bisimulation deas:

- Encryption is encoded as sealing
- Protocol is encoded as a tuple of public keys and principals
- Senders are encoded as the values being sent
- Receivers are encoded as functions
- Contexts play the role of attackers, network and scheduler by applying receivers to senders

Related Work

Bisimulations for the spi-calculus
Logical relations for encryption [Sumii-Pierce 2001]

- Cannot be used in untyped settings
- Even in typed settings, do not scale well for richer languages with recursive functions/types etc.
Applicative bisimulation [Abramsky 90]
- Soundness proof is very hard [Howe 96]
- Our soundness proof is much easier thanks to variations in arguments of functions

Conclusions

Summary: We defined $\lambda_{\text {seal }}$ and developed a sound and complete proof technique for "type abstraction without types"
Future work:

- Full abstraction for general, type-directed translation of type abstraction [Pierce-Sumii 00]
- Similar bisimulations for other forms of information hiding (such as information flow/access control and type abstraction)

