Encoding security protocols in the cryptographic λ -calculus

Eijiro Sumii Joint work with Benjamin Pierce University of Pennsylvania

An obvious fact

Security is important

- Cryptography is a major way to achieve security
- Therefore, cryptography is important

A less obvious fact

- There are nice cryptosystems like RSA, 3DES, etc.
- ...but how to <u>use</u> them is often nontrivial

Example: Needham-Schroeder public-key protocol [NS78]

- Assumption: all encryption keys and the network are public
- Purpose: principals A and B authenticate each other, and exchange two secret nonces
 - $A \rightarrow B: \{ A, Na \}_{Kb}$
 - $B \rightarrow A$: { Na, Nb }_{Ka}
 - $A \rightarrow B: \{ Nb \}_{Kb}$

An attack on the protocol [Lowe 95]

If some B is malicious (say, E), it can impersonate A and fool another B $A \rightarrow E: \{ A, Na \}_{Ke}$ $E(A) \rightarrow B: \{A, Na\}_{Kb}$ $B \rightarrow E(A): \{ Na, Nb \}_{Ka}$ N.B. $E \rightarrow A: \{ Na, Nb \}_{Ka}$ means $A \rightarrow E: \{ Nb \}_{Ke}$ forgery or interception $E(A) \rightarrow B: \{ Nb \}_{Kb}$ of a message

A fix [Lowe 95]

 $A \rightarrow B: \{ A, Na \}_{Kb}$ $B \rightarrow A: \{ Na, Nb, B \}_{Ka}$ $A \rightarrow B: \{ Nb \}_{Kb}$

How does it prevent the attack

 $A \rightarrow E: \{A, Na\}_{Ke}$ $E(A) \rightarrow B: \{A, Na\}_{Kb}$ $\underline{B} \rightarrow \underline{E}(\underline{A}): \{ Na, Nb, B \}_{Ka}$ $E \rightarrow A$: { Na, Nb, B }_{ka} (* Here, A asserts E = B, which is false *) $A \rightarrow E: \{ Nb \}_{Ke}$ $E(A) \rightarrow B: \{ Nb \}_{Kb}$

So what?

We want a way to specify and verify security protocols

- But informal notation is too ambiguous (It is often unclear how each principal reacts to various messages)
- So we need a formal model

I-calculus + cryptographic primitives

Why λ -calculus? (not π -calculus, for example)

- It's simple and high-level
- It's standard and well-studied
 - For instance, logical relations help to prove various properties, such as contextual equivalence (cf. [Mitchell 96, Chapter 8])
 - Equivalences in process calculi are hard to prove! (e.g. [Abadi & Gordon 96])
- It's actually (almost) expressive enough to model various protocols and attacks

The cryptographic λ -calculus

Simply-typed call-by-value λ -calculus + shared-key cryptographic primitives

- $e ::= ... | k | new x in e | {e1}_{e2}$ | λ{x}_{e1} . e2
- τ ::= ... | key | bits(τ)
 - $(\lambda \{x\}_k. e) \{v\}_k \rightarrow e[v/x]$

Subsumes public-key cryptography

 $k^{+} \equiv \lambda z. \{z\}_{k} \qquad k^{-} \equiv \lambda \{z\}_{k}. z$

Encoding protocols

- configuration = record (or tuple) of principals and public keys
- principal = function from messages to messages with a continuation (of the principal itself)
- sound network and scheduler = context applying "right" principals to right messages in a right order
 malicious attacker = arbitrary context

new Ka in new Kb in new Ke in { A = ..., B = ..., Ka⁺ = $\lambda z. \{z\}_{ka'}$, Kb⁺ = $\lambda z. \{z\}_{kb'}$, Ke = Ke }

new Ka in new Kb in new Ke in { A = new Na in send { "A", Na }_{Kb} to B in ..., B = ..., Ka⁺ = $\lambda z. \{z\}_{ka'}$, Kb⁺ = $\lambda z. \{z\}_{kb'}$, Ke = Ke }

new Ka in new Kb in new Ke in { A = new Na in send { "A", Na }_{Kb} to B in ..., B = receive { "A", Na }_{Kb} in new Nb in send { Na, Nb }_{Ka} to A in ..., Ka⁺ = $\lambda z. \{z\}_{ka'}$, Kb⁺ = $\lambda z. \{z\}_{kb'}$, Ke = Ke }

new Ka in new Kb in new Ke in $\{ A = new Na in \}$ send { "A", Na $_{Kb}$ to B in receive { Na', Nb $_{Ka}$ in assert Na = Na' in send { Nb $}_{Kb}$ to B in ..., $B = \text{receive} \{ "A", Na \}_{Kb} \text{ in }$ new Nb in send { Na, Nb $_{Ka}$ to A in ..., $Ka^{+} = \lambda z. \{z\}_{ka}, Kb^{+} = \lambda z. \{z\}_{kb}, Ke = Ke \}$

send m to X in c new Ka in new Kb in new Ke in \Rightarrow ("X", m, c $\{ A = new Na in \}$ receive m in c ("B", { "A", Na }_{Kb}, $\Rightarrow \lambda m. c$ λ { Na', Nb }_{ka}. if Na' \neq Na then \perp else ("B", { Nb }_{Kb}, ...)), $B = \lambda \{ "A", Na \}_{Kb}$ new Nb in ("A", { Na, Nb }_{Ka}, ...), $Ka^+ = \lambda z.\{z\}_{ka}, Kb^+ = \lambda z.\{z\}_{kb}, Ke = Ke\}$

new Ka in new Kb in new Ke in { $A = \lambda n$. let Kn = lookup n in new Na in (n, { "A", Na }_{Kn}, λ { Na', Nn }_{Ka}. if Na' \neq Na then \perp else $(n, \{ Nn \}_{Kn}, ...)),$ $B = \lambda \{ "A", Na \}_{Kb}.$ new Nb in ("A", { Na, Nb }_{Ka}, ...), $Ka^+ = \lambda z \{z\}_{ka}, Kb^+ = \lambda z \{z\}_{kb}, Ke = Ke \}$

Encoding the network and scheduler

"A context applying right principals to right messages in a right order" Net[r] = let $(_, m_1, c_A) = \#_A(r)$ "B" in let $(_, m_2, c_B) = \#_B(r) m_1$ in let $(_, m_3, c_A') = c_A m_2$ in ...

Encoding the attacker

Attack[r] = let Ke = $\#_{K_{P}}(r)$ in let Kb⁺ = $\#_{Kb+}(r)$ in let (_, { _, Na }_{Ke', C_A}) = $\#_A(r)$ "E" in let $(_, m, c_B) = \#_B(r) Kb^+(A, Na) in$ (* m becomes { Na, Nb }_{ka} *) let (_, { Nb }_{Ke}, c_A') = c_A m in ... (* use Nb to trick B *)

Another example: ffgg protocol

- An artificial protocol with a "necessarily parallel" attack
- $A \rightarrow B : A$
- $B \rightarrow A : N_1, N_2$
- $A \rightarrow B : A, \{ N_1, N_2, M \}_{Kb} \text{ as } \{ N_1, X, Y \}_{Kb}$
- $\mathsf{B} \to \mathsf{A} : \mathsf{N}_1, \mathsf{X}, \{\mathsf{X}, \mathsf{Y}, \mathsf{N}_1\}_{\mathsf{Kb}}$

A "parallel" attack to the protocol

 $A \rightarrow B : A$ $(A) \rightarrow B' : A$ $B \rightarrow (A) : N_1, N_2$ $|B' \rightarrow (A) : N_1', N_2'$ $(B) \rightarrow A : N_1, N_1'$ $A \rightarrow B : \{ N_1, N_1', M \}_{Kb}$ $B \rightarrow (A) : N_1, N_1', \{ N_1', M, N_1 \}_{Kb}$ $(A) \rightarrow \overline{B'}$: { N₁', M, N₁ }_{Kb} $B' \rightarrow (A) : N_1', M, \overline{\{M, N_1, N_1'\}}_{Kb}$

- B and B' are two <u>concurrent</u> processes for the same principa
- () means forgery or interception of a message by the attacker

Encoding ffgg

new Kb in $\{ A = ("B", "A",$ $\lambda(N_1, N_2).$ $("B", \{ N_1, N_2, M \}_{Kb}, ...))_{I}$ $B = \lambda n$. new N_1 in new N_2 in $(n, (N_1, N_2))$ $\lambda \{ N_1', X, Y \}_{Kb}$ if $N_1' \neq N_1$ then \perp else $(n, (N_1, X, \{X, Y, N_1\}_{Kb}), ...))$

Encoding the attacker

Attack[r] = let $((N_1, N_2), C_B) = \#_B(r)$ "A" in let $((N_1', N_2'), C_R') = \#_R(r)$ "A" in let $(_, m_{A}, _) = \#_A(r) (N_1, N_1')$ in $(* m_A becomes \{ N_1, N_1', M \}_{Kb} *)$ let (_, (_, _, m_B), _) = $c_B m_A$ in $(* m_{B} becomes \{ N_{1}', M, N_{1} \}_{Kb} *)$ let $(\underline{\ }, \underline{\ }, \underline{\ }, \underline{\ }), \underline{\ }) = c_B' m_B in \dots$ (* use M for whatever *)

Secrecy ≈ non-interference ≈ contextual equivalence

```
Let NS[i] be:
   new ... in
   \{ A = \dots \}
               receive \{x\}_{Nn} in
               x mod 2,
       B = ...
               send { i }<sub>Nb</sub> to A in
                \left(\right),
```

Then, the secrecy of i can be expressed as, say, $MS[1] \sim MS[3]$ Using logical relation to prove contextual equivalence

 $e \sim e' : \tau \implies e \approx e' : \tau$ "Logical relation implies contextual equivalence"

Defined by induction on τ, and (hopefully) easier to prove
Whole topic of another talk!

A drawback

 There is no "state" of principals
 Some attacks might be bogus (i.e., impossible in reality)
 ⇒ Consider linear λ-calculus?