Encoding security protocols In

!'_ the cryptographic | -calculus

Eijiro Sumii
Joint work with Benjamin Pierce
University of Pennsylvania

An obvious fact

= Security IS important

= Cryptography Is a major way to achieve
security

= Therefore, cryptography is important

A less obvious fact

= There are nice cryptosystems like RSA,
3DES, etc.

= ...but how to use them is often non-
trivial

Example: Needham-Schroeder
public-key protocol [NS78]

= Assumption: all encryption keys and the
network are public

= Purpose: principals A and B
authenticate each other, and exchange
two secret nonces

A® B: { A Na},,
B® A: { Na, Nb },,
A® B: {Nb},

An attack on the protocol
[Lowe 95]

= If some B is malicious (say, E), it can
Impersonate A and fool another B

A® E: {A, Na}y
E(A) ® B: { A, Na },
B® E(A): { Na, Nb },,

N.B.
=@ A1 Na, Nb ke, () means
A® E:{Nb } forgery or
E(A) ® B: { Nb },, interception

nf 3 Mmeacean

A fix [Lowe 95]

A® B: {A, Na},,
B® A: {Na, Nb, B },,
A® B: {Nb },

How does it prevent the attack

A® E: { A Na}.
E(A) ® B: { A, Na },,
B® E(A): { Na, Nb, B },.
E® A: {Na, Nb, B },,
(* Here, A asserts E = B, which is false *)
A® E: {NDb }.
E(A) ® B: { Nb },,

So what?

= We want a way to specify and verify
security protocols

= But informal notation is too ambiguous

(It is often unclear how each principal reacts
to various messages)

x SO we need a formal model

3
| -calculus + cryptographic primitives

Why | -calculus?
(not p-calculus, for example)

= It's simple and high-level

s It's standard and well-studied

= For instance, logical relations help to prove
various properties, such as contextual
equivalence (cf. [Mitchell 96, Chapter 8])

= Equivalences in process calculi are hard to
prove! (e.g. [Abadi & Gordon 96])

= It's actually (almost) expressive enough
to model various protocols and attacks

The cryptographic | -calculus

Simply-typed call-by-value | -calculus +
shared-key cryptographic primitives
me = ... | K| newxine | {el}.,

I | {X}el' ez
st 1= ... | key | bits(t)
(1 {3 ©) {v}, ® e[v/x]
Subsumes public-key cryptography
k*°1z{z}, k °I1{z}. .z

Encoding protocols

= configuration = record (or tuple) of
principals and public keys

= principal = function from messages to
messages with a continuation (of the
principal itself)

= sound network and scheduler = context
applying "right" principals to right
messages in a right order

a Malicious attacker = arbitrarv context

Encoding Needham-Schroeder

new Ka in new Kb in new Ke In

B= ...,
Ka* =1 z.{z},,, Kb* = | z.{z},, Ke = Ke }

Encoding Needham-Schroeder

new Ka in new Kb in new Ke In
{ A= newNain
send { "A", Na },, to B in ...,
B= ..,
Ka* =1 z.{z},,, Kb* = | z.{z},, Ke = Ke }

Encoding Needham-Schroeder

new Ka in new Kb in new Ke In
{ A= newNain
send { "A", Na },, toBin ...,
B = receive { "A", Na }, In
new Nb In
send { Na, Nb },, to Alin ...,
Ka* =1 z.{z},,, Kb* = | z.{z},, Ke = Ke }

Encoding Needham-Schroeder

new Ka in new Kb in new Ke In
{ A= newNain

send { "A", Na }, to B In
receive { Na', Nb },. In
assert Na = Na' In
send { Nb },, toBin ...,

B = receive { "A", Na }, In
new Nb In
send { Na, Nb },,to Ain ...,

Ka* =1 z.{z},,, Kb* = | z.{z},, Ke = Ke }

Encoding Needham-Schroeder

new Ka in new Kb in new Ke In

1 A=

send mto X In C

new Na in p. (X.,m,c
("B", { "A"’ Na }Kb’ Ffeceive min C
| { Na', Nb },. b Im.c

If Na'l Na then " else
("B", { Nb }¢p, --2)),

| { "A", Na }..

new Nb In

("A", { Na, Nb }., ...),

Ka* =1 z.{z},,, Kb* = | z.{z},, Ke = Ke }

Encoding Needham-Schroeder

new Ka in new Kb in new Ke In
{ A= In.letKn =lookup nin

new Na In
(n1 { "A"1 Na }Kn1
| { Na', Nn }..
If Na'l Na then M else
(n’ { NN }Kn’))1

B= I{"A", Na },.
new Nb In
("A", { Na, Nb }.., ...),

Kat =747, Kht=1|7d7\,, Ke = Ke }

Encoding the network and
scheduler

"A context applying right principals to
right messages in a right order"
Net[r] =
let (_, my, c,) = #,(r) "B" In
let (_, m,, cg) = #z(r) m, In
let (_, m;, c,)) =c,m,In Y%

Encoding the attacker

Attack[r] =
let Ke = #,.(r) In
let Kb* = #,,.(r) In
let (_, { _, Na }., C)) = #,(r) "E" In
let (_, m, cg) = #5(r) Kb*(A, Na) In
(* m becomes { Na, Nb },., *)

let (, {Nb },,C,)=c,min ...
(* use Nb to trick B *)

Another example:
ffgg protocol

= An artificial protocol with a "necessarily
parallel" attack

A® B:A

B® A:N, N,

A® B:A {N,N,, M}, as{N;, X, Y}k,
B® A:N, X, {X, Y, N, }

A "parallel” attack to the
protocol

= B and B' are two
concurrent processes
(A)® B": A for the same princips
B® (A) Ny, N, = () means forgery or
B'® (A): N/, N, interception of a
(B) ® A: Ny Ny message by the
A® B:{Ny,N' M}, attacker
B® (A) : Ny, Ny { N, My Ng b
(A) ® B { Ny, M, N; }xp
B'® (A) : N, M, { M, Ny, N;" Jyp

A® B:A

Encoding ffgg

new Kb In
{ A=

B =

(8", A,
(N, Ny)

("B"1 { Nl’ NZ’ \Y }Kb’))1

| n. new Ny In new N, In
(n, (N1, Ny),

[{NL', X, Y B

If N,'t N, then”? else

(n1 (N]_, X1 { X’ Y1 Nl }Kb)1 .-

)

¥

Encoding the attacker

Attack[r] =

let (_, (N;, N,), cg) = #5(r) "A" In
let (_, (N, N,"), cg') = #5(r) "A" In
let (L, my, _) = #,(r) (Ng, N;) In

(* m, becomes { N;, N,', M },, *)
let (, (., _,mg),) =cgm,in

(* mg; becomes { N,', M, N, }, *)
let(, (LM,),)=c¢cg'mgin ...

(* use M for whatever *)

Secrecy » non-interference »
contextual equivalence

Let NSJi] be:
new ¥ in
A
receive { X }y, IN
X mod 2,
B= v
send {1 }, tO An
0,
YVa }

Then, the secrecy of | can be expressed as, say,
NiICI11 . NICID1

Using logical relation to prove
contextual equivalence

Fe~e':t P e»e':t
"Logical relation implies
contextual equivalence"

= Defined by induction on t, and
(hopefully) easier to prove

= Whole topic of another talk!

A drawback

= There is no "state" of principals

= Some attacks might be bogus
(I.e., Impossible In reality)

P Consider linear | -calculus?

