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An obvious fact

n Security is important
n Cryptography is a major way to achieve 

security
n Therefore, cryptography is important



A less obvious fact

n There are nice cryptosystems like RSA, 
3DES, etc.

n ...but how to use them is often non-
trivial



Example: Needham-Schroeder 
public-key protocol [NS78]

n Assumption: all encryption keys and the 
network are public

n Purpose: principals A and B 
authenticate each other, and exchange 
two secret nonces

A → B: { A, Na }Kb

B → A: { Na, Nb }Ka

A → B: { Nb }Kb



An attack on the protocol 
[Lowe 95]

n If some B is malicious (say, E), it can 
impersonate A and fool another B
A → E: { A, Na }Ke

E(A) → B: { A, Na }Kb

B → E(A): { Na, Nb }Ka

E → A: { Na, Nb }Ka

A → E: { Nb }Ke

E(A) → B: { Nb }Kb

N.B.
( ) means
forgery or
interception
of a message



A fix [Lowe 95]

A → B: { A, Na }Kb

B → A: { Na, Nb, B }Ka

A → B: { Nb }Kb



How does it prevent the attack?

A → E: { A, Na }Ke

E(A) → B: { A, Na }Kb

B → E(A): { Na, Nb, B }Ka

E → A: { Na, Nb, B }Ka

(* Here, A asserts E = B, which is false *)
A → E: { Nb }Ke

E(A) → B: { Nb }Kb



So what?

n We want a way to specify and verify 
security protocols

n But informal notation is too ambiguous
(It is often unclear how each principal reacts 

to various messages)

n So we need a formal model
⇓

λ-calculus + cryptographic primitives



Why λ-calculus?
(not π-calculus, for example)

n It's simple and high-level
n It's standard and well-studied

n For instance, logical relations help to prove 
various properties, such as contextual 
equivalence (cf. [Mitchell 96, Chapter 8])
n Equivalences in process calculi are hard to 

prove! (e.g. [Abadi & Gordon 96])

n It's actually (almost) expressive enough 
to model various protocols and attacks



The cryptographic λ-calculus

Simply-typed call-by-value λ-calculus + 
shared-key cryptographic primitives

n e  ::=  … |  k  |  new x in e  |  {e1}e2
|  λ{x}e1. e2

n τ ::=  … |  key  |  bits(τ)
(λ{x}k. e) {v}k → e[v/x]

Subsumes public-key cryptography
k+ ≡ λz.{z}k k− ≡ λ{z}k.z



Encoding protocols

n configuration = record (or tuple) of 
principals and public keys

n principal = function from messages to 
messages with a continuation (of the 
principal itself)

n sound network and scheduler = context 
applying "right" principals to right 
messages in a right order

n malicious attacker = arbitrary context



Encoding Needham-Schroeder
new Ka in new Kb in new Ke in

{ A = …,
B = …,
Ka+ = λz.{z}ka, Kb+ = λz.{z}kb, Ke = Ke }



Encoding Needham-Schroeder
new Ka in new Kb in new Ke in

{ A = new Na in
send { "A", Na }Kb to B in …,

B = …,
Ka+ = λz.{z}ka, Kb+ = λz.{z}kb, Ke = Ke }



Encoding Needham-Schroeder
new Ka in new Kb in new Ke in

{ A = new Na in
send { "A", Na }Kb to B in …,

B = receive { "A", Na }Kb in
new Nb in
send { Na, Nb }Ka to A in …,

Ka+ = λz.{z}ka, Kb+ = λz.{z}kb, Ke = Ke }



Encoding Needham-Schroeder
new Ka in new Kb in new Ke in

{ A = new Na in
send { "A", Na }Kb to B in
receive { Na', Nb }Ka in
assert Na = Na' in
send { Nb }Kb to B in …,

B = receive { "A", Na }Kb in
new Nb in
send { Na, Nb }Ka to A in …,

Ka+ = λz.{z}ka, Kb+ = λz.{z}kb, Ke = Ke }



Encoding Needham-Schroeder
new Ka in new Kb in new Ke in

{ A = new Na in
("B", { "A", Na }Kb,
λ{ Na', Nb }Ka.
if Na' ≠ Na then ⊥ else
("B", { Nb }Kb, …)),

B = λ{ "A", Na }Kb.
new Nb in
("A", { Na, Nb }Ka, …),

Ka+ = λz.{z}ka, Kb+ = λz.{z}kb, Ke = Ke }

send m to X in c
⇒ ("X", m, c)

receive m in c
⇒ λm. c



Encoding Needham-Schroeder
new Ka in new Kb in new Ke in

{ A = λn. let Kn = lookup n in
new Na in
(n, { "A", Na }Kn,
λ{ Na', Nn }Ka.
if Na' ≠ Na then ⊥ else
(n, { Nn }Kn, …)),

B = λ{ "A", Na }Kb.
new Nb in
("A", { Na, Nb }Ka, …),

Ka+ = λz.{z}ka, Kb+ = λz.{z}kb, Ke = Ke }



Encoding the network and 
scheduler

"A context applying right principals to 
right messages in a right order"

Net[r] =
let (_, m1, cA) = #A(r) "B" in
let (_, m2, cB) = #B(r) m1 in
let (_, m3, cA') = cA m2 in …



Encoding the attacker

Attack[r] =
let Ke = #Ke(r) in
let Kb+ = #Kb+(r) in
let (_, { _, Na }Ke, cA) = #A(r) "E" in
let (_, m, cB) = #B(r) Kb+(A, Na) in

(* m becomes { Na, Nb }Ka *)
let (_, { Nb }Ke, cA') = cA m in …

(* use Nb to trick B *)



Another example:
ffgg protocol

n An artificial protocol with a "necessarily 
parallel" attack

A → B : A
B → A : N1, N2

A → B : A, { N1, N2, M }Kb as {N1, X, Y}Kb

B → A : N1, X, { X, Y, N1 }Kb



A "parallel" attack to the 
protocol
A → B : A

(A) → B' : A
B → (A) : N1, N2

B' → (A) : N1', N2'
(B) → A : N1, N1'
A → B : { N1, N1', M }Kb

B → (A) : N1, N1', { N1', M, N1 }Kb

(A) → B' : { N1', M, N1 }Kb

B' → (A) : N1', M, { M, N1, N1' }Kb

n B and B' are two
concurrent processes
for the same principal

n ( ) means forgery or
interception of a
message by the
attacker



Encoding ffgg
new Kb in

{ A = ("B", "A",
λ(N1, N2).
("B", { N1, N2, M }Kb, …)),

B = λn. new N1 in new N2 in
(n, (N1, N2),
λ{ N1', X, Y }Kb.
if N1' ≠ N1 then ⊥ else
(n, (N1, X, { X, Y, N1 }Kb), …))   }



Encoding the attacker

Attack[r] =
let (_, (N1, N2), cB) = #B(r) "A" in
let (_, (N1', N2'), cB') = #B(r) "A" in
let (_, mA, _) = #A(r) (N1, N1') in

(* mA becomes { N1, N1', M }Kb *)
let (_, (_, _, mB), _) = cB mA in

(* mB becomes { N1', M, N1 }Kb *)
let (_, (_, M, _), _) = cB' mB in …

(* use M for whatever *)



Secrecy ≈ non-interference ≈
contextual equivalence
Let NS[i] be:

new … in
{ A = …

receive { x }Nn in
x mod 2,

B = …
send { i }Nb to A in
(),

… }
Then, the secrecy of i can be expressed as, say, 

NS[1] ≈ NS[3]



Using logical relation to prove 
contextual equivalence

├ e ∼ e' : τ ⇒ e ≈ e' : τ
"Logical relation implies
contextual equivalence"

n Defined by induction on τ, and 
(hopefully) easier to prove

n Whole topic of another talk!



A drawback

n There is no "state" of principals
n Some attacks might be bogus

(i.e., impossible in reality)
⇒ Consider linear λ-calculus?


