Relating Cryptography and
2% Polymorphism

_ Eijiro Sumii
_ Joint Work with Benjamin Pierce

Unlver5|ty of Pennsylvania

@ | Main Result

" Adaptation of relational parametricity
from polymorphic | -calculus to
cryptographic | -calculus

L e~e':t b exe
— useful for reasoning about programs using
encryption

e E.g., (In)correctness proof of security protocols

B Background

.~ Parametricity for Type Abstraction
" Cryptographic | -Calculus

" Parametricity for Encryption

" Current Status and Future Work

=~ wo Approaches to
£ Information Hiding

~ " Type abstraction

_ —conceals the types of data

e existential types, universal types, modules,
packages, etc.

" Encryption
— obfuscates the values of data

@ Example

" Using type abstraction:

pack int, &3, | X. x mod 2
as a.a (a® int)

& - Using encryption:

new k in &3}, | {x},. x mod 2

new Kk in ...
generate a fresh key k

{vh
a value v encrypted by the key k

Secrecy as Non-Interference
i as Contextual Equivalence
" Relational parametricity [Reynolds 83]

(or representation independence
[Mitchell 86]):

pack int, a3, | Xx. x mod 2n
as a.a (a®int)

» pack int, al, | x. x mod 2
as a.a (a® int)

“ This work:

new k in a3}, | {x},. x mod 2
» new kK in a1}, | {x},. x mod 2n

B Background

| * Parametricity for Type Abstraction
" Cryptographic | -Calculus

" Parametricity for Encryption

" Current Status and Future Work

= Principle of Parametricity:
" "Related" Values are Equivalen
= j F e~e:t for some]
R
2?7 fe? =? fe'? foranyf:t ® bool

" ~Is defined by induction ont

"] defines the case of abstract types,
mapping each free type variable
to a relation between values of its
concrete types

= | Definition of the Logical

Relation (1/2)
" Values of a base type (e.g. int) are
related iff they are equal

" Functions are related Iff they map
related arguments to related results

* Pairs are related Iff their elements are
respectively related

= | Definition of the Logical
{ Relation (2/2)
=~ Packages are related iff their

Implementations can be related

] F packt,vas a.s ~
pack t'v'as a.s: a.s U

j,ar| v[t/a]l ~v[t/a] : s
forsomer | t~ t'

" Values of an abstract type a are related
Iff they are related by | (a)

jFv~=v:a 0O (vwW)I1 j(a)

Example
| BNy

&, | x. x mod 2i~ 4al, | x. x mod 2n
a’ (a® int)
3

|— pack int, &, | x. x mod 2
a.a (a® int)
~pack Int, al, | X. Xx mod 2in
as a.a (a®int): a.a (a®int)

B Background

.~ Parametricity for Type Abstraction
" Cryptographic | -Calculus

" Parametricity for Encryption

" Current Status and Future Work

= Cryptographic | -Calculus:
y 4 Syntax and Semantics

. Simply-typed call-by-value | -calculus +
-~ shared-key cryptographic primitives

te = |k | {el}, | let {x}, =
e2 In e3 else e4

“t = .. | key | bits(t)

let {x}, = {V}. In e else €'
® e|v/x] If k=K', e' otherwise

= Cryptographic | -Calculus:
£ Typing Rules

Gl k: key

Gl el:t G| e2:key
Gl {el}., : bits(t)

Gl el:key G} e2: bits(t')
Gx:t'Fe3:t G} ed:t

Gl let {x},, =e2ine3else e4 :t

B Background

.~ Parametricity for Type Abstraction
" Cryptographic | -Calculus

" Parametricity for Encryption

" Current Status and Future Work

Parametricity Adapted

j F e~e':t for some]
£

? fe? =? fe'? foranyf:t ® bool
s.t. dom(j) C keys(f) = A

" ~Is defined by induction on t, meaning
that e and e' are equivalent and don't leak
the secret keys

] defines the case of bits(t), mapping
each secret key to a relation between
values encrypted by the key

— Definition of the Logical
» 4! Relation
| Keys are related iff they are equal
and non-secret
. jFk~k:key U kT dom(j)
= Values encrypted by a secret key k are
related iff they are related by j (k)

i b Avh~ v s bitst) O
(v j (k) ifkT dom(j)
j Fv~=v:tifkl dom()

®8 Example

- k> {(B, D)} {3}, ~ {1}, : bits(int)
f k> {B.1}} | {x}. xmod 2
o ~1{x}..xmod 2 : bits(int) ® int
R
k= {(B,1)}} &3}, | {x},. x mod 2fi~
A1}, | {X}.. x mod 2
- bits(int) ~ (bits(int) ® int)

N.B.
| {X}.€ ° lz. let{x}y =zineelse”

B Background

.~ Parametricity for Type Abstraction
" Cryptographic | -Calculus

" Parametricity for Encryption

" Current Status and Future Work

Current Status

- Treatment of fresh key generation,
adapting [Stark 97]

" (In)correctness proof of a few security
protocols, using the following encoding

e principal = function from messages to
messages (with its own continuation)

e configuration = record of principals and
non-secret keys

e network and scheduler = "right" context
e attacker = arbitrary context

§) Fresh Key Generation (1/2)

- Syntax
e ;= ... | newxine
"~ Semantics

e 3 (Sv
read as: "the expression e evaluates to the

value v, generating the set S of fresh keys"
note that (S) Is a binder

Fresh Key Generation (2/2)

= " Logical relation

. jle~e:t U
e B ({Ky..k} A S) vy,
e' B ({ky,....,k.} A S") v,, and
[ST A O SR VAR VAR
for some ki, ..., kK, Iy, ..., I;, Sand S

For example,

L new k in &3}, | {x},. x mod 2fi~
new k in &1}, | {x},. x mod 2
. bits(int) © (bits(int) ® Int)

" Future Work

" Recursive functions/types

cf. [Birkedal & Harper 97], [Crary & Harper],
etc.

. = " Concurrency and distribution

cf. spi-calculus [Abadi & Gordon 97],
evaluation semantics for CCS [Pitts 96],
typed equivalence in polymorphic

n-calculus [Pierce & Sangiorgi 97],

parametricity in linear polymorphic

-calculus [Pitts 2000], etc.

