

Relating Cryptography and Polymorphism

Eijiro Sumii Joint Work with Benjamin Pierce University of Pennsylvania

Main Result

 Adaptation of *relational parametricity* from polymorphic λ-calculus to *cryptographic l*-*calculus*

 $e \sim e' : \tau \implies e \approx e'$

 useful for reasoning about programs using encryption

• E.g., (in)correctness proof of security protocols

- Background
- Parametricity for Type Abstraction
- Cryptographic λ-Calculus
- Parametricity for Encryption
- Current Status and Future Work

Two Approaches to Information Hiding Type abstraction - conceals the types of data • existential types, universal types, modules, packages, etc. Encryption

- obfuscates the values of data

 Using type abstraction: pack int, $\langle 3, \lambda x. x \mod 2 \rangle$ <u>as α . $\alpha \times (\alpha \rightarrow int)$ </u> Using encryption: new k in $\langle \{3\}_k, \lambda\{x\}_k, x \mod 2 \rangle$ new k in ... generate a fresh key k $\{V\}_k$

a value v encrypted by the key k

Secrecy as Non-Interference as Contextual Equivalence Relational parametricity [Reynolds 83] (or representation independence [Mitchell 86]): pack int, $\langle 3, \lambda x. x \mod 2 \rangle$ as $\alpha.\alpha \times (\alpha \rightarrow int)$

 $\approx \text{ pack int, } \langle 1, \lambda x. x \mod 2 \rangle$ as $\alpha . \alpha \times (\alpha \rightarrow \text{int})$

This work:

new k in $\langle \{3\}_k, \lambda\{x\}_k$. x mod 2 $\rangle \approx$ new k in $\langle \{1\}_k, \lambda\{x\}_k$. x mod 2 \rangle

- Background
- Parametricity for Type Abstraction
- Cryptographic λ-Calculus
- Parametricity for Encryption
- Current Status and Future Work

Principle of Parametricity: "Related" Values are Equivalen $\varphi \quad e \sim e' : \tau$ for some φ \downarrow ? fe? =? fe'? for any f : $\tau \rightarrow$ bool

 \blacklozenge ~ is defined by induction on τ

 φ defines the case of abstract types, mapping each free type variable to a relation between values of its concrete types

Definition of the Logical Relation (1/2)

- Values of a base type (e.g. int) are related iff they are equal
- Functions are related iff they map related arguments to related results
- Pairs are related iff their elements are respectively related

Definition of the Logical Relation (2/2) Packages are related iff their implementations can be related ϕ pack τ , v as α . $\sigma \sim$ pack τ', v' as $\alpha.\sigma$: $\alpha.\sigma \Leftrightarrow$ $\phi, \alpha \mapsto r \quad v[\tau/\alpha] \sim v'[\tau'/\alpha] : \sigma$ for some $r \subset \tau \times \tau'$ • Values of an abstract type α are related

iff they are related by $\varphi(\alpha)$ $\varphi \quad \vee \sim \vee' : \alpha \iff (\vee, \vee') \in \varphi(\alpha)$

Example

$\alpha \mapsto \{(3,1)\}$ $\langle 3, \lambda x. x \mod 2 \rangle \sim \langle 1, \lambda x. x \mod 2 \rangle$: $\alpha \times (\alpha \rightarrow \text{int})$ pack int, $\langle 3, \lambda x. x \mod 2 \rangle$ as $\alpha.\alpha \times (\alpha \rightarrow int)$ ~ pack int, $\langle 1, \lambda x. x \mod 2 \rangle$

as $\alpha.\alpha \times (\alpha \rightarrow int)$: $\alpha.\alpha \times (\alpha \rightarrow int)$

Background
 Parametricity for Type Abstraction
 Cryptographic λ-Calculus
 Parametricity for Encryption
 Current Status and Future Work

Cryptographic λ -Calculus: Syntax and Semantics Simply-typed call-by-value λ -calculus + shared-key cryptographic primitives • e ::= ... | k | {e1}_{e2} | let {x}_{e1} = e2 in e3 else e4 $\bullet \tau ::= ... | key | bits(\tau)$

> let $\{x\}_k = \{v\}_{k'}$ in e else e' $\rightarrow e[v/x]$ if k = k', e' otherwise

Background
Parametricity for Type Abstraction
Cryptographic λ-Calculus
Parametricity for Encryption
Current Status and Future Work

Parametricity Adapted

- $\varphi \quad e \sim e' : \tau \text{ for some } \varphi$ \downarrow
- ? fe? =? fe'? for any f : $\tau \rightarrow$ bool s.t. dom(ϕ) \cap keys(f) = \emptyset
- ~ is defined by induction on τ, meaning that e and e' are equivalent and <u>don't leak</u> <u>the secret keys</u>
- φ defines the case of bits(τ), mapping each secret key to a relation between values encrypted by the key

Definition of the Logical Relation

 Keys are related iff they are equal and non-secret

 $\phi \quad k \sim k : key \iff k \notin dom(\phi)$

 Values encrypted by a secret key k are related iff they are related by φ(k)

 $\phi \quad \{v\}_k \sim \{v'\}_k : bits(\tau) \Leftrightarrow \\ (v,v') \in \phi(k) \text{ if } k \in dom(\phi) \\ \phi \quad v \sim v' : \tau \text{ if } k \notin dom(\phi)$

 $k \mapsto \{(3,1)\} \quad \{3\}_k \sim \{1\}_k : \text{ bits(int)}$ $k \mapsto \{(3,1)\} \quad \lambda\{x\}_k \cdot x \mod 2$ $\sim \lambda\{x\}_k \cdot x \mod 2 : \text{ bits(int)} \rightarrow \text{ int}$ \bigcup

 $\begin{array}{ll} k \mapsto \{(3,1)\} & \langle \{3\}_k, \lambda \{x\}_k. \ x \ \text{mod} \ 2 \rangle \\ & \langle \{1\}_k, \lambda \{x\}_k. \ x \ \text{mod} \ 2 \rangle \\ & : \ \text{bits(int)} \times (\text{bits(int)} \rightarrow \text{int}) \end{array}$

N.B. $\lambda \{x\}_{k}$. $e \equiv \lambda z$. let $\{x\}_{k} = z$ in e else \bot

Background
Parametricity for Type Abstraction
Cryptographic λ-Calculus
Parametricity for Encryption
Current Status and Future Work

Current Status

- Treatment of fresh key generation, adapting [Stark 97]
- (In)correctness proof of a few security protocols, using the following encoding
 - principal = function from messages to messages (with its own continuation)
 - configuration = record of principals and non-secret keys
 - network and scheduler = "right" context
 - attacker = <u>arbitrary</u> context

Fresh Key Generation (1/2)

Syntax

e ::= ... | new x in e

Semantics

e ↓ (S)v

read as: "the expression e evaluates to the value v, generating the set S of fresh keys" note that (S) is a binder

Fresh Key Generation (2/2)

Logical relation

 $\begin{array}{ll} \phi & e \sim e': \tau \Leftrightarrow \\ e \ \Downarrow \ (\{k_1, \dots, k_n\} \oplus S) \ v_1, \\ e' \ \Downarrow \ (\{k_1, \dots, k_n\} \oplus S') \ v_2, \text{ and} \\ \phi, \ k_1 \mapsto r_1, \ \dots, \ k_n \mapsto r_n \quad v_1 \sim v_2 : \tau \\ \text{for some } k_1, \ \dots, \ k_n, \ r_1, \ \dots, \ r_n, \ S \text{ and } S' \end{array}$

For example,

new k in $\langle \{3\}_k, \lambda\{x\}_k$. x mod 2 \rangle ~ new k in $\langle \{1\}_k, \lambda\{x\}_k$. x mod 2 \rangle : bits(int) × (bits(int) \rightarrow int)

Future Work

 Recursive functions/types
 cf. [Birkedal & Harper 97], [Crary & Harper], etc.

 Concurrency and distribution
 cf. spi-calculus [Abadi & Gordon 97], evaluation semantics for CCS [Pitts 96], typed equivalence in polymorphic π-calculus [Pierce & Sangiorgi 97], parametricity in linear polymorphic λ-calculus [Pitts 2000], etc.