
Relating Cryptography and
Polymorphism

Eijiro Sumii
Joint Work with Benjamin Pierce
University of Pennsylvania

Main Result

♦ Adaptation of relational parametricity
from polymorphic λ-calculus to
cryptographic λ-calculus
├ e ∼ e' : τ ⇒ e ≈ e'

– useful for reasoning about programs using
encryption
• E.g., (in)correctness proof of security protocols

Outline

♦ Background
♦ Parametricity for Type Abstraction
♦ Cryptographic λ-Calculus
♦ Parametricity for Encryption
♦ Current Status and Future Work

Two Approaches to
Information Hiding
♦ Type abstraction

– conceals the types of data
• existential types, universal types, modules,

packages, etc.

♦ Encryption
– obfuscates the values of data

Example

♦ Using type abstraction:
pack int, 〈3, λx. x mod 2〉

as ∃α.α×(α→int)
♦ Using encryption:

new k in 〈{3}k, λ{x}k. x mod 2〉

new k in …
generate a fresh key k

{v}k
a value v encrypted by the key k

Secrecy as Non-Interference
as Contextual Equivalence
♦ Relational parametricity [Reynolds 83]

(or representation independence
[Mitchell 86]):

pack int, 〈3, λx. x mod 2〉
as ∃α.α×(α→int)

≈ pack int, 〈1, λx. x mod 2〉
as ∃α.α×(α→int)

♦ This work:
new k in 〈{3}k, λ{x}k. x mod 2〉
≈ new k in 〈{1}k, λ{x}k. x mod 2〉

Outline

♦ Background
♦ Parametricity for Type Abstraction
♦ Cryptographic λ-Calculus
♦ Parametricity for Encryption
♦ Current Status and Future Work

Principle of Parametricity:
"Related" Values are Equivalent

ϕ├ e ∼ e' : τ for some ϕ
⇓

? f e? =? f e'? for any f : τ → bool

♦ ∼ is defined by induction on τ
♦ ϕ defines the case of abstract types,

mapping each free type variable
to a relation between values of its
concrete types

Definition of the Logical
Relation (1/2)
♦ Values of a base type (e.g. int) are

related iff they are equal
♦ Functions are related iff they map

related arguments to related results
♦ Pairs are related iff their elements are

respectively related

Definition of the Logical
Relation (2/2)
♦ Packages are related iff their

implementations can be related
ϕ├ pack τ,v as ∃α.σ ∼

pack τ',v' as ∃α.σ : ∃α.σ ⇔
ϕ, α a r├ v[τ/α] ∼ v'[τ'/α] : σ

for some r ⊆ τ × τ'

♦ Values of an abstract type α are related
iff they are related by ϕ(α)
ϕ├ v ∼ v' : α ⇔ (v,v') ∈ ϕ(α)

Example

α a {(3,1)}├
〈3, λx. x mod 2〉 ∼ 〈1, λx. x mod 2〉
: α × (α → int)

⇓
├ pack int, 〈3, λx. x mod 2〉

as ∃α.α×(α→int)
∼ pack int, 〈1, λx. x mod 2〉
as ∃α.α×(α→int) : ∃α.α×(α→int)

Outline

♦ Background
♦ Parametricity for Type Abstraction
♦ Cryptographic λ-Calculus
♦ Parametricity for Encryption
♦ Current Status and Future Work

Cryptographic λ-Calculus:
Syntax and Semantics
Simply-typed call-by-value λ-calculus +

shared-key cryptographic primitives
♦ e ::= … | k | {e1}e2 | let {x}e1 =

e2 in e3 else e4
♦ τ ::= … | key | bits(τ)

let {x}k = {v}k' in e else e'
→ e[v/x] if k = k', e' otherwise

Cryptographic λ-Calculus:
Typing Rules

Γ├ k : key

Γ├ e1 : τ Γ├ e2 : key
————————————

Γ├ {e1}e2 : bits(τ)

Γ├ e1 : key Γ├ e2 : bits(τ')
Γ, x : τ'├ e3 : τ Γ├ e4 : τ

———————————————
Γ├ let {x}e1 = e2 in e3 else e4 : τ

Outline

♦ Background
♦ Parametricity for Type Abstraction
♦ Cryptographic λ-Calculus
♦ Parametricity for Encryption
♦ Current Status and Future Work

Parametricity Adapted

ϕ├ e ∼ e' : τ for some ϕ
⇓

? f e? =? f e'? for any f : τ → bool
s.t. dom(ϕ) ∩ keys(f) = ∅

♦ ∼ is defined by induction on τ, meaning
that e and e' are equivalent and don't leak
the secret keys

♦ ϕ defines the case of bits(τ), mapping
each secret key to a relation between
values encrypted by the key

Definition of the Logical
Relation
♦ Keys are related iff they are equal

and non-secret
ϕ├ k ∼ k : key ⇔ k ∉ dom(ϕ)

♦ Values encrypted by a secret key k are
related iff they are related by ϕ(k)
ϕ├ {v}k ∼ {v'}k : bits(τ) ⇔

(v,v')∈ϕ(k) if k ∈ dom(ϕ)
ϕ├ v ∼ v' : τ if k ∉ dom(ϕ)

Example

k a {(3,1)}├ {3}k ∼ {1}k : bits(int)
k a {(3,1)}├ λ{x}k. x mod 2

∼ λ{x}k. x mod 2 : bits(int) → int
⇓

k a {(3,1)}├ 〈{3}k, λ{x}k. x mod 2〉 ∼
〈{1}k, λ{x}k. x mod 2〉
: bits(int) × (bits(int) → int)

N.B.
λ{x}k. e ≡ λz. let {x}k = z in e else ⊥

Outline

♦ Background
♦ Parametricity for Type Abstraction
♦ Cryptographic λ-Calculus
♦ Parametricity for Encryption
♦ Current Status and Future Work

Current Status

♦ Treatment of fresh key generation,
adapting [Stark 97]

♦ (In)correctness proof of a few security
protocols, using the following encoding
• principal = function from messages to

messages (with its own continuation)
• configuration = record of principals and

non-secret keys
• network and scheduler = "right" context
• attacker = arbitrary context

Fresh Key Generation (1/2)

♦ Syntax
e ::= … | new x in e

♦ Semantics
e ⇓ (S)v

read as: "the expression e evaluates to the
value v, generating the set S of fresh keys";
note that (S) is a binder

Fresh Key Generation (2/2)

♦ Logical relation
ϕ├ e ∼ e' : τ ⇔

e ⇓ ({k1,…,kn} ⊕ S) v1,
e' ⇓ ({k1,…,kn} ⊕ S') v2, and
ϕ, k1 a r1, …, kn a rn├ v1 ∼ v2 : τ
for some k1, …, kn, r1, …, rn, S and S'

For example,
├ new k in 〈{3}k, λ{x}k. x mod 2〉 ∼

new k in 〈{1}k, λ{x}k. x mod 2〉
: bits(int) × (bits(int) → int)

Future Work

♦ Recursive functions/types
cf. [Birkedal & Harper 97], [Crary & Harper],

etc.

♦ Concurrency and distribution
cf. spi-calculus [Abadi & Gordon 97],

evaluation semantics for CCS [Pitts 96],
typed equivalence in polymorphic
π-calculus [Pierce & Sangiorgi 97],
parametricity in linear polymorphic
λ-calculus [Pitts 2000], etc.

