A Higher-Order Distributed Calculus with Name Creation

Adrien Piérard Ejijro Sumii

Tohoku University Sendai, Japan

Executive Summary

(In)equivalence theory

 of process calculus with passivation and name creation- An extreme form of distribution
- Different from name restriction
- Tricky!

Passivation [Schmitt-Stefani]

Process a[P]

(process P running at location a) can output P to channel a at any time and become 0

Passivation can express:

- Migration
$\mathrm{a}[\mathrm{P}]|\mathrm{a}(\mathrm{X}) \cdot \mathrm{b}[\mathrm{X}] \rightarrow \mathrm{O}| \mathrm{b}[\mathrm{P}]$
- Duplication

$$
\begin{aligned}
& \mathrm{a}[\mathrm{P}] \mid \mathrm{a}(\mathrm{X}) \cdot(\mathrm{b}[\mathrm{X}] \mid \mathrm{c}[\mathrm{X}]) \\
& \rightarrow 0 \|(\mathrm{b}[\mathrm{P}] \mid \mathrm{c}[\mathrm{P}])
\end{aligned}
$$

- Failure

$$
a[P]|a(X) .0 \rightarrow 0| 0
$$

Name Creation [Stark-Pitts]

sトva.P \rightarrow s,a' $\vdash\left[a^{\prime} / a\right] P$ for fresh a'

- where s $\stackrel{Q}{ }$ means "process Q with name set s"
- s ㄱ is omitted when unimportant

Syntax of Processes

P

$$
\begin{aligned}
::= & 0 \\
& a(X) \cdot P \\
& \bar{a}\langle P\rangle \cdot Q \\
& P \mid Q \\
& a[P] \\
& \text { va.P } \\
& !P \\
& X
\end{aligned}
$$

spawn

Operational Semantics by Labeled Transition System

α
General form: s $\vdash P \rightarrow t \vdash \mathbf{Q}$ "P makes action α and becomes Q"

$$
\begin{aligned}
\alpha::= & a(R) \\
& \text { input } \\
& \bar{a}\langle R\rangle \\
& \text { output } \\
& \tau \quad \text { internal (often omitted) }
\end{aligned}
$$

- s \vdash va. $P \rightarrow s, a^{\prime} \vdash[a ' / a] P$ if $a^{\prime} \notin s$ (name creation)
- $\bar{a}\langle R\rangle \cdot P \xrightarrow{\bar{a}\langle R\rangle} P \quad a(X) \cdot P \xrightarrow{a(R)}[R / X] P$
- $P_{1}\left|P_{2} \rightarrow P_{1}{ }^{\prime}\right| P_{2}{ }^{\prime}$
if $P_{i} \xrightarrow{\bar{a}\langle R\rangle} P_{i}^{\prime}$ and $P_{3-i} \xrightarrow{a(R)} P_{3-i}{ }^{\prime} \quad(i=1,2)$
- $\mathrm{a}[\mathrm{P}] \xrightarrow{\alpha} \mathrm{a}\left[\mathrm{P}^{\prime}\right]$ if $\mathrm{P} \xrightarrow{\alpha} \mathrm{P}^{\prime}$
- $a[P] \xrightarrow{\bar{a}\langle P\rangle} 0$
(passivation)

Equivalence of Processes

Environmental bisimialrity:

[Sumii et al.]

$$
\begin{gathered}
\mathrm{P} \sim_{\mathrm{E}} \mathrm{Q} \\
\text { " } \mathrm{P} \text { and } \mathrm{Q} \text { are bisimilar } \\
\text { under environment } \mathrm{E} \\
\text { (knowledge of the context)" }
\end{gathered}
$$

Environmental Bisimilarity

Largest ~ s.t. P \sim_{E} Q implies: - If P can output M and become P^{\prime}, then Q can output N and become Q^{\prime} with $P^{\prime} \sim_{E \cup\{(M, N)\}} Q^{\prime}$

- For any (M, N) composed from E , if P can input M and become P^{\prime}, then Q can input N and become Q^{\prime} with $P^{\prime} \sim_{E} Q^{\prime}$

(cont.)

- For any (M, N) composed from E ,
$\mathrm{P}\left|\mathrm{a}[\mathrm{M}] \sim_{\mathrm{E}} \mathrm{Q}\right| \mathrm{a}[\mathrm{N}]$
- i.e. $M=C\left[M_{1}, \ldots, M_{n}\right]$ and $N=C\left[N_{1}, \ldots, N_{n}\right]$ for a context C and $\left(M_{1}, N_{1}\right), \ldots,\left(M_{n}, N_{n}\right) \in E$
- $\mathbf{Q} \sim_{\mathrm{E}^{-1}} \mathbf{P}$

Environmental Bisimilarity

- Can be proved by coinduction
- Sound and complete w.r.t. standard equivalence
(reduction-closed barbed equivalence)

Bisimilar Examples:

Distributed FoldL and FoldR

vfl. $\mathrm{fl}\langle\mathrm{I}, \mathrm{O}, \mathrm{k}\rangle\left|\mathrm{a}_{1}[\mathrm{~L}]\right| \ldots \mid \mathrm{a}_{\mathrm{n}}[\mathrm{L}] \sim_{\varnothing}$
vfr. $\mathrm{fr}\langle 1,0, k\rangle\left|a_{1}[R]\right| \ldots \mid a_{n}[R]$
$L=!f(1, i, k)$. if null(I) then $\bar{K}\langle i\rangle$ else
vk'. $\mathrm{FI}\left\langle\mathrm{cdr}(\mathrm{I}), \mathrm{i}+\mathrm{car}(\mathrm{I}), \mathrm{k}^{\prime}\right\rangle . \mathrm{k}^{\prime}(\mathrm{x}) . \mathrm{k}\langle\mathrm{x}\rangle$
$R=!f r(l, i, k)$ if null(I) then $k\langle i\rangle$ else
vk'. fr $\left\langle\mathrm{cdr}(\mathrm{l}), \mathrm{i}, \mathrm{k}^{\prime}\right\rangle . \mathrm{k}^{\prime}(\mathrm{x}) . \mathrm{k}\langle\mathrm{car}(\mathrm{l})+\mathrm{x}\rangle$

Non-Bisimilar Examples

- "Tail-recursive" version of FoldL is not bisimilar to the original! -Because the former is "less faulty"
- Distributed O(log(n)) and O(n) power functions are not bisimilar -Ditto

More Non-Bisimilar Examples

- n[va.vb.P] \varkappa_{\varnothing} n[vb.va.P] for $P=\bar{a} . \bar{b} . \bar{a} . \bar{v} \mid$ a.b.b. $\overline{\mathbf{w}}$
- Because n may be passivated (and duplicated) between the two name creations
- n[va.(a|a. $\overline{\mathrm{w}})] \varkappa_{\emptyset} \mathrm{n}[$ va.vb.(a.b|a.b. $\left.\overline{\mathrm{w}})\right]$
- Because n may be passivated between the two communications

$\mathrm{n}\left[\right.$ va.vb.P] $\varkappa_{\emptyset} \mathrm{n}[v b . v a . P]$
 for $P=\bar{a} . \bar{b} . \bar{a} . \bar{v} \mid$ a.b.b. \bar{w}

- n[va.vb.P] \rightarrow n[vb.P]

By duplication: $n_{1}[v b . P] \mid n_{2}[v b . P]$
$\rightarrow n_{1}\left[\bar{a}^{\prime} \cdot \bar{b}_{1} \cdot \bar{a} \cdot \bar{v} \mid a \cdot b_{1} \cdot b_{1} \cdot \bar{w}\right] \mid n_{2}\left[a \cdot b_{2} \cdot \bar{a} \cdot \bar{v} \mid a \cdot b_{2} \cdot b_{2} \cdot \bar{w}\right]$
$\rightarrow n_{1}\left[\mathbf{v} \mid b_{1} \cdot \bar{w}\right] \mid n_{2}\left[a \cdot \bar{b}_{2} \cdot \bar{a} \cdot \bar{v} \mid b_{2} \cdot b_{2} \cdot \bar{w}\right] \nrightarrow$

- n[vb.va.P] $\rightarrow \mathrm{n}[\mathrm{P}]$

By duplication: $n_{1}[P] \mid n_{2}[P]$
$=n_{1}[\bar{a} \cdot \bar{b} \cdot \bar{a} \cdot \bar{v} \mid$ a.b.b. $\bar{w}] \mid n_{2}[$ a. $\bar{b} \cdot \bar{a} \cdot \bar{v} \mid$ a.b.b. $\bar{w}]$
$\rightarrow n_{1}[\mathbf{v} \mid b \cdot \bar{w}] \mid n_{2}[a \cdot \bar{b} \cdot \bar{a} \cdot \bar{v} \mid$ b.b. $\bar{w}]$
$\rightarrow n_{1}[\mathbf{v} \mid \bar{w}] \mid n_{2}[a \cdot \bar{b} \cdot \bar{a} \cdot \bar{v} \mid b \cdot \bar{w}]$

$n[$ va. $(\bar{a} \mid a . \bar{w})] x_{\varnothing}$ n[va.vb.(a.b|a.b.w. $)$]

- n[va.vb.(a.b|a.b. $\overline{\mathbf{w}})] \rightarrow$ n[a.b|a.b. $\bar{w}]$ By duplication: $n_{1}[$ a. $\bar{b} \mid a \cdot b \cdot \bar{w}] \mid n_{2}[a \cdot \bar{b} \mid a \cdot b \cdot \bar{w}]$ $\rightarrow n_{1}[\bar{b} \mid a \cdot b \cdot \bar{w}] \mid n_{2}[a \cdot \bar{b} \mid b \cdot \bar{w}]$ By failures: $n_{1}[\bar{b} \mid a \cdot b \cdot \bar{w}]$ or $n_{2}[a \cdot \bar{b} \mid b \cdot \bar{w}]$
- n[va.(a|a. $\bar{w})] \rightarrow \mathrm{n}[\mathrm{a} \mid \mathrm{a} \cdot \overline{\mathrm{w}}]$

By duplication: $n_{1}[a \mid a \cdot \bar{w}] \mid n_{2}[a \mid a . \bar{w}]$
$\rightarrow n_{1}[a . \bar{w}] \mid n_{2}[\mathrm{a} \mid \bar{w}]$
By failures: $n_{1}[a \cdot \bar{w}]$ or $n_{2}[\mathrm{a} \mid \overline{\mathbf{w}}]$

Conclusion

Bisimilarity of processes with passivation and name creation is tricky (but interesting)

Other equivalences equate previous examples:

- Simulation equivalence (deadlock insensitive)
- Testing equivalence (linear-time; harder proof)

