A Higher-Order Distributed Calculus with Name Creation

Adrien Piérard <u>Eijiro Sumii</u>

Tohoku University Sendai, Japan

Executive Summary

(In)equivalence theory of process calculus with <u>passivation</u> and <u>name creation</u>

- An extreme form of distribution
- Different from name restriction
- Tricky!

Passivation [Schmitt-Stefani]

Process a[P] (process P running at location a) can output P to channel a <u>at any time</u> and become 0

Passivation can express:

- Migration
- $a[P] \mid a(X).b[X] \rightarrow 0 \mid b[P]$
- Duplication
 - a[P] | a(X).(b[X]|c[X]) → 0 | (b[P]|c[P])
- Failure
 - $a[P] \mid a(X).0 \rightarrow 0 \mid 0$

Name Creation [Stark-Pitts]

s ⊢ va.P → s,a' ⊢ [a'/a]P for fresh a'

- where s F Q means
 "process Q with name set s"
- s F is omitted when unimportant

Syntax of Processes

- P ::=
 - a(X).P ā(P).Q **PQ a**[**P**] va.P **!**P

X

inaction input output parallel located name creation replication spawn

Operational Semantics by Labeled Transition System

- General form: $\mathbf{S} \vdash \mathbf{P} \xrightarrow{\alpha} \mathbf{t} \vdash \mathbf{Q}$
 - "P makes action α and becomes Q"
 - α ::= a(R) input
 ā(R) output
 τ internal (often omitted)

• $s \vdash va.P \rightarrow s,a' \vdash [a'/a]P$ if $a' \notin s$ (name creation) • $\overline{a}(R)$. $P \xrightarrow{\overline{a}(R)} P$ a(X). $P \xrightarrow{a(R)} [R/X]P$ • $P_1 | P_2 \rightarrow P_1' | P_2'$ if $P_i \xrightarrow{\overline{a(R)}} P_i'$ and $P_{3-i} \xrightarrow{a(R)} P_{3-i}'$ (i=1,2) • a[P] $\stackrel{\alpha}{\rightarrow}$ a[P'] if P $\stackrel{\alpha}{\rightarrow}$ P' • a[P] $\xrightarrow{\overline{a}(P)} \mathbf{0}$ (passivation)

Equivalence of Processes

Environmental bisimialrity:

[Sumii et al.]

P ~_E Q "P and Q are bisimilar under <u>environment</u> E (knowledge of the context)"

Environmental Bisimilarity

- Largest ~ s.t. $P \sim_E Q$ implies:
- If P can output M and become P', then Q can output N and become Q' with P' ~_{EU{(M,N)} Q'
- For any (M,N) <u>composed from</u> E, if P can input M and become P', then Q can input N and become Q' with P' ~_F Q'

(cont.)

- For any (M,N) <u>composed from E</u>, P[a[M] ~_E Q[a[N]
 - i.e. M = C[M₁,...,M_n] and N = C[N₁,...,N_n] for a context C and (M₁,N₁),...,(M_n,N_n) ∈ E
- Q ~_{E⁻¹} P

Environmental Bisimilarity

- Can be proved by <u>coinduction</u>
- Sound and complete w.r.t. standard equivalence (reduction-closed barbed equivalence)

Bisimilar Examples: Distributed FoldL and FoldR

vfl. fl(l,0,k) | $a_1[L]$ | ... | $a_n[L] \sim_{\emptyset}$ vfr. fr(l,0,k) | $a_1[R]$ | ... | $a_n[R]$

- L = !fl(l,i,k). if null(l) then k(i) else vk'. fl(cdr(l),i+car(l),k'). k'(x). k(x)
- R = !fr(l,i,k). if null(l) then k(i) else vk'. fr(cdr(l),i,k'). k'(x). k(car(l)+x)

Far from trivial due to passivation

Non-Bisimilar Examples

- "Tail-recursive" version of FoldL
 - is <u>not</u> bisimilar to the original!
 - -Because the former is "less faulty"
- Distributed O(log(n)) and O(n) power functions are <u>not</u> bisimilar
 - -Ditto

More Non-Bisimilar Examples

- n[va.vb.P] ≁_Ø n[vb.va.P]
 for P = ā.b.ā.v | a.b.b.w
 - Because n may be passivated (and duplicated) <u>between</u> the two name creations
- n[va.(ā|a.w)] ≁_∅ n[va.vb.(ā.b|a.b.w)]
 - Because n may be passivated
 <u>between</u> the two communications

$n[va.vb.P] \not\sim_{\phi} n[vb.va.P]$ for P = $\overline{a}.\overline{b}.\overline{a}.\overline{v}$ | $a.b.b.\overline{w}$

• $n[va.vb.P] \rightarrow n[vb.P]$ By duplication: n₁[vb.P]|n₂[vb.P] \rightarrow n₁[\overline{a} . \overline{b}_1 . \overline{a} . \overline{v} | a. b_1 . b_1 . \overline{w}] | n₂[\overline{a} . \overline{b}_2 . \overline{a} . \overline{v} | a. b_2 . b_2 . \overline{w}] \rightarrow $n_1[v | b_1.w] | n_2[a.b_2.a.v | b_2.b_2.w] <math>\rightarrow$ n[vb.va.P] → n[P] By duplication: n₁[P] n₂[P] = $n_1[\overline{a}.\overline{b}.\overline{a}.\overline{v} | a.b.b.\overline{w}] | n_2[\overline{a}.\overline{b}.\overline{a}.\overline{v} | a.b.b.\overline{w}]$ \rightarrow n₁[\overline{v} | b. \overline{w}] | n₂[\overline{a} . \overline{b} . \overline{a} . \overline{v} | b.b. \overline{w}] \rightarrow n₁[v | w] | n₂[a.b.a.v | b.w]

 $n[va.(\overline{a}|a.\overline{w})] \not\sim_{\phi}$ $n[va.vb.(\overline{a}.\overline{b}|a.b.\overline{w})]$

- n[va.vb.(ā.b̄|a.b.w̄)] → n[ā.b̄|a.b.w̄]
 By duplication: n₁[ā.b̄|a.b.w̄]|n₂[ā.b̄|a.b.w̄]
 → n₁[b̄|a.b.w̄]|n₂[ā.b̄|b.w̄]
 By failures: n₁[b̄|a.b.w̄] or n₂[ā.b̄|b.w̄]
- n[va.(ā|a.w)] → n[ā|a.w]
 By duplication: n₁[ā|a.w]|n₂[ā|a.w]
 → n₁[a.w]|n₂[ā|w]
 By failures: n₁[a.w] or n₂[ā|w]

Conclusion

Bisimilarity of processes with passivation and name creation is tricky (but interesting)

Other equivalences equate previous examples:

- Simulation equivalence (deadlock insensitive)
- Testing equivalence (linear-time; harder proof)