
A Higher-Order
Distributed Calculus
with Name Creation

Adrien Piérard
Eijiro Sumii

Tohoku University
Sendai, Japan

Executive Summary

(In)equivalence theory
of process calculus

with passivation
and name creation

• An extreme form of distribution

• Different from name restriction

• Tricky!

Passivation
[Schmitt-Stefani]

Process a[P]
(process P running at location a)

can output P to channel a
at any time and become 0

Passivation can express:

• Migration

a[P] | a(X).b[X] → 0 | b[P]

• Duplication

a[P] | a(X).(b[X]|c[X])
→ 0 | (b[P]|c[P])

• Failure

a[P] | a(X).0 → 0 | 0

Name Creation
[Stark-Pitts]

s ⊦ νa.P → s,a' ⊦ [a'/a]P
for fresh a'

• where s ⊦ Q means
"process Q with name set s"

• s ⊦ is omitted when unimportant

P ::= 0 inaction
a(X).P input
a̅〈P〉.Q output
P|Q parallel
a[P] located
νa.P name creation
!P replication
X spawn

Syntax of Processes

Operational Semantics by
Labeled Transition System

General form: s ⊦ P
𝜶
 t ⊦ Q

"P makes action α and becomes Q"

α ::= a(R) input
 a̅〈R〉 output
 τ internal (often omitted)

• s ⊦ νa.P s,a' ⊦ [a'/a]P if a'∉s
(name creation)

• a̅〈R〉.P
a ̅〈R〉

 P a(X).P
a(R)

 [R/X]P

• P1|P2 P1'|P2'

if Pi
a ̅〈R〉

 Pi' and P3-i
a(R)

 P3-i' (i=1,2)

• a[P]
𝛼
 a[P'] if P

𝛼
 P'

• a[P]
a ̅〈P〉

 0
(passivation)

Equivalence of Processes

Environmental bisimialrity:
[Sumii et al.]

P ~E Q

"P and Q are bisimilar
under environment E

(knowledge of the context)"

Environmental Bisimilarity

Largest ~ s.t. P ~E Q implies:

• If P can output M and become P',
then Q can output N and become Q'
with P' ~E∪{(M,N)} Q'

• For any (M,N) composed from E,
if P can input M and become P',
then Q can input N and become Q'
with P' ~E Q'

(cont.)

• For any (M,N) composed from E,
P|a[M] ~E Q|a[N]
– i.e. M = C[M1,...,Mn] and N = C[N1,...,Nn]

for a context C and (M1,N1),...,(Mn,Nn) ∊ E

• Q ~E-1 P

Environmental Bisimilarity

• Can be proved by coinduction

• Sound and complete w.r.t.
standard equivalence
(reduction-closed
barbed equivalence)

Bisimilar Examples:
Distributed FoldL and FoldR

νfl. fl ̅〈l,0,k〉 | a1[L] | ... | an[L] ~∅

νfr. fr ̅〈l,0,k〉 | a1[R] | ... | an[R]

L = !fl(l,i,k). if null(l) then k̅〈i〉 else
 νk'. fl ̅〈cdr(l),i+car(l),k'〉. k'(x). k ̅〈x〉

R = !fr(l,i,k). if null(l) then k̅〈i〉 else
 νk'. fr ̅〈cdr(l),i,k'〉. k'(x). k ̅〈car(l)+x〉

Far from trivial due to passivation

Non-Bisimilar Examples

• "Tail-recursive" version of FoldL
is not bisimilar to the original!

–Because the former is "less faulty"

• Distributed O(log(n)) and O(n)
power functions are not bisimilar

–Ditto

More Non-Bisimilar Examples

• n[νa.νb.P] ≁∅ n[νb.νa.P]
for P = a̅.b ̅.a̅.v ̅ | a.b.b.w̅

– Because n may be passivated
(and duplicated) between
the two name creations

• n[a.(a̅|a.w̅)] ≁∅ n[a.b.(a̅.b ̅|a.b.w̅)]

– Because n may be passivated
between the two communications

n[νa.νb.P] ≁∅ n[νb.νa.P]
for P = a̅.b̅.a̅.v ̅ | a.b.b.w ̅

• n[νa.νb.P] → n[νb.P]
By duplication: n1[νb.P]|n2[νb.P]
↠ n1[a ̅.b̅1.a ̅.v̅ | a.b1.b1.w̅]|n2[a ̅.b̅2.a̅.v̅ | a.b2.b2.w̅]
↠ n1[v̅ | b1.w ̅]|n2[a ̅.b̅2.a ̅.v̅ | b2.b2.w ̅] ↛

• n[νb.νa.P] ↠ n[P]
By duplication: n1[P]|n2[P]
= n1[a ̅.b̅.a ̅.v̅ | a.b.b.w ̅]|n2[a ̅.b̅.a̅.v̅ | a.b.b.w ̅]
↠ n1[v̅ | b.w̅]|n2[a ̅.b̅.a ̅.v̅ | b.b.w̅]
↠ n1[v̅ | w ̅]|n2[a ̅.b̅.a ̅.v̅ | b.w ̅]

n[a.(a̅|a.w ̅)] ≁∅
n[a.b.(a̅.b̅|a.b.w ̅)]

• n[a.b.(a ̅.b̅|a.b.w̅)] ↠ n[a ̅.b̅|a.b.w̅]
By duplication: n1[a ̅.b̅|a.b.w ̅]|n2[a̅.b̅|a.b.w ̅]
↠ n1[b̅|a.b.w ̅]|n2[a̅.b̅|b.w ̅]
By failures: n1[b̅|a.b.w̅] or n2[a ̅.b̅|b.w̅]

• n[a.(a ̅|a.w ̅)] → n[a ̅|a.w ̅]
By duplication: n1[a ̅|a.w̅]|n2[a ̅|a.w̅]
↠ n1[a.w ̅]|n2[a ̅|w ̅]
By failures: n1[a.w ̅] or n2[a ̅|w ̅]

Conclusion

Bisimilarity of processes with
passivation and name creation

is tricky (but interesting)

Other equivalences equate previous examples:

• Simulation equivalence (deadlock insensitive)

• Testing equivalence (linear-time; harder proof)

