
A Generalized
Deadlock-Free

Process Calculus

Eijiro Sumii
Naoki Kobayashi

University of Tokyo

Merit and Demerit of
Concurrent Languages

Compared with sequential languages...
z Merit: more expressive power

y Inherently concurrent application (e.g. GUI)
y Parallel/distributed computation

Merit and Demerit of
Concurrent Languages

Compared with sequential languages...
z Merit: more expressive power

y Inherently concurrent application (e.g. GUI)
y Parallel/distributed computation

z Demerit: more complicated behavior
y Non-determinism (possibility of various results)
y Deadlock (failure of due communication)

Merit and Demerit of
Concurrent Languages

Compared with sequential languages...
z Merit: more expressive power

y Inherently concurrent application (e.g. GUI)
y Parallel/distributed computation

z Demerit: more complicated behavior
y Non-determinism (possibility of various results)
y Deadlock (failure of due communication)

è Errors & inefficiencies

Example of Complication (1/2)

In ML:
f : int->int├ f(3) : int

è eventually returns a unique result
(unless ‘infinite loop’ or ‘side effect’)

Example of Complication (1/2)

In CML:
f : int->int├ f(3) : int

è may return:
― different results in parallel (→ non-determinism)
 fun f(i) =

let
val c : int chan = channel()

in
(spawn(fn () => send(c, i + 1));
spawn(fn () => send(c, i + 2));
recv(c))

end

Example of Complication (1/2)

In CML:
f : int->int├ f(3) : int

è may return:
― different results in parallel (→ non-determinism)
― no result at all (→ deadlock)
 fun f(i) =

let
val c : int chan = channel()

in
recv(c)

end

Example of Complication (2/2)

Mutex channel m : unit chan
z correct use:

― receive once, send once
recv(m); CriticalSection; send(m, ())

Example of Complication (2/2)

Mutex channel m : unit chan
z correct use:

― receive once, send once

z incorrect use:
― receive once, send never (→ deadlock)
recv(m); CS; ()
― receive once, send twice (→ non-determinism)
recv(m); CS; send(m, ()); send(m, ());

Example of Complication (2/2)

Mutex channel m, n : unit chan
z correct use:

― receive once, send once

z incorrect use:
― receive once, send never (→ deadlock)
― receive once, send twice (→ non-determinism)
― use in various order (→ deadlock)
spawn(fn () => recv(m); recv(n); …);
spawn(fn () => recv(n); recv(m); …)

Possible Approaches

z Provide higher-level constructs
e.g.:

― parallel functions
― binary semaphores
― concurrent objects

Possible Approaches

z Provide higher-level constructs
e.g.:

― parallel functions
― binary semaphores
― concurrent objects

8 “chaos” outside them
8 complicated syntax & semantics

Possible Approaches

z Provide higher-level constructs
8 “chaos” outside them
8 complicated syntax & semantics

z Enrich channel types:
control communication

with a static type system

Possible Approaches

z Provide higher-level constructs
8 “chaos” outside them
8 complicated syntax & semantics

z Enrich channel types:
control communication

with a static type system
⇑

Our approach

Outline

z Introduction
z Basic Ideas
z The Type System
z Related Work
z Conclusion

Target Language

Asynchronous variant of Milner’s π-calculus
z new x in P (channel creation)
z x![y] (output)
z x?[y].P (input)
z P | Q (parallel execution)
z def x[y]=P in Q (process definition)
z if x then P else Q (conditional branch)

Target Language

Asynchronous variant of Milner’s π-calculus
z new x in P (channel creation)
z x![y] (output)
z x?[y].P (input)
z P | Q (parallel execution)
z def x[y]=P in Q (process definition)
z if x then P else Q (conditional branch)
― x?[y].P | x![z] → P{z/y}
― def x[y]=P in x![z]

→ def x[y]=P in P{z/y}

Outline

z Introduction
z Basic Ideas

y Usages & Usage Calculus
⇒ “In what way each channel may be used”

y Time Tags & Time Tag Ordering
⇒ “In what order those channels may be used”

z The Type System
z Related Work
z Conclusion

Usages (1/2): Input/Output

z U (usage) :=
y O (output)
y I . U (input + sequential execution)
y U | V (parallel execution)
y ∅ (none)

4 x:[]/(O|I)├
x![] | x?[]

8 x:[]/(O|I)├
x![] | x![] | x?[] | x?[]

Usages (1/2): Input/Output

z U (usage) :=
y O (output)
y I . U (input + sequential execution)
y U | V (parallel execution)
y ∅ (none)

4 y:[]/(O|O|I.I)├
y![] | y![] | y?[].y?[]

8 y:[]/(O|O|I.I)├
y![] | y![] | y?[] | y?[]

Usages (2/2):
Obligation and Capability

z U (usage) :=
y Oa (output)
y Ia . U (input + sequential execution)
y …

z a (attributes) :=
y (none)
y o (obligation: “must be performed”)
y c (capability: “can be performed successfully”)
y co (both)

Usages (2/2):
Obligation and Capability

x:[int]/Oo
“must send an integer value to x”

4 x:[int]/Oo├ x![3]
8 x:[int]/Oo├ 0

Usages (2/2):
Obligation and Capability

y:[int]/Ic
“can receive an integer value from y

successfully”
4 y:[int]/Ic├ y?[v].0

⇑
eventually reduces to 0

(by communication with an external process)

4 y:[int]/Ic├ 0

Usages (2/2):
Obligation and Capability

What to Ensure:
z An obligation must be fulfilled eventually
z A capability can be used successfully

⇑
Otherwise “deadlock”

Reliability of Usages &
the Usage Calculus

8 new x:[int]/Ic in x?[v].P

Reliability of Usages &
the Usage Calculus

8 new x:[int]/Ic in x?[v].P

“For every I/O with capability,
a corresponding O/I with obligation”

4 new x:[int]/(Ic|Oo)
in (x?[v].P | x![3])

Reliability of Usages &
the Usage Calculus

“For every I/O with capability,
a corresponding O/I with obligation”

8 new x:[]/(Oo|Ic|Ic)
in (x![] | x?[].P | x?[].Q)

→ new x:[]/Ic in x?[].Q

Reliability of Usages &
the Usage Calculus

“For every I/O with capability,
a corresponding O/I with obligation”

8 new x:[]/(Oo|Ic|Ic)
in (x![] | x?[].P | x?[].Q)

→ new x:[]/Ic in x?[].Q

Oo|Ic|Ic → Ic

Outline

z Introduction
z Basic Ideas

y Usages & Usage Calculus
⇒ “In what way each channel may be used”

y Time Tags & Time Tag Ordering
⇒ “In what order those channels may be used”

z The Type System
z Related Work
z Conclusion

Dependency between
Obligation and Capability

4 x:[int]/Oo├
x![3]

8 y:[]/I, x:[int]/Oo├
y?[].x![3]

4 y:[]/Ic, x:[int]/Oo├
y?[].x![3]

Dependency between
Obligation and Capability

t<s
“a capability with t may be used
before an obligation with s is fulfilled”

4 y:[]/Ict, x:[int]/Oos; t<s├
y?[].x![3]

8 y:[]/Ict, x:[int]/Oos; ∅├
y?[].x![3]

8 y:[]/Ict, x:[int]/Oos; s<t├
y?[].x![3]

Preventing & Detecting
Cycles in the Dependency

Γ = c:[]/(Oos|Ics), d:[]/(Oot|Ict)

4 Γ; s<t├ c?[].d![] | ...
8 Γ; s<t├ d?[].c![] | ...

Preventing & Detecting
Cycles in the Dependency

Γ = c:[]/(Oos|Ics), d:[]/(Oot|Ict)

4 Γ; s<t├ c?[].d![] | ...
8 Γ; s<t├ d?[].c![] | ...

4 Γ; t<s├ d?[].c![] | ...
8 Γ; t<s├ c?[].d![] | ...

Preventing & Detecting
Cycles in the Dependency

Γ = c:[]/(Oos|Ics), d:[]/(Oot|Ict)

8 Γ; s<t├ c?[].d![] | d?[].c![]
8 Γ; t<s├ c?[].d![] | d?[].c![]

Γ; s<t,t<s├ c?[].d![] | d?[].c![]

Outline

z Introduction
z Basic Ideas
z The Type System

y Type Judgment & Typing Rules
y Correctness & Expressiveness
y Type Checking

z Related Work
z Conclusion

Type Judgment

Γ; p├ P
y Γ : type environment

(mapping from variables to types)
y p : time tag ordering

(binary relation on time tags)

P uses communication channels according to:
― the usage specified by Γ
― the order specified by p

Example of Typing Rules

T-Out (simplified):

τ includes obligations ⇒ a includes capability
s < time tags on obligations included in τ

Γ includes no obligation
───────────────────

Γ + x:[τ]/Oa
s + y:τ; <├ x![y]

Example of Typing

ret:[int]/Oou; ∅├
def fib[i:int,r:[int]/Oos] =

if i<2
then r![1]
else

new c:[int]/(Oot|Oot|Ict.Ict)
in (fib![i-1,c] | fib![i-2,c]

| c?[j].c?[k].r![j+k])
in fib![10,ret]

Example of Typing

ret:[int]/Oou; ∅├
def fib[i:int,r:[int]/Oos] =

if i<2
then r![1]
else

new c:[int]/(Oot|Oot|Ict.Ict)
in (fib![i-1,c] | fib![i-2,c]

| c?[j].c?[k].r![j+k])
in fib![10,ret]

Example of Typing

ret:[int]/Oou; ∅├
def fib[i:int,r:[int]/Oos] =

if i<2
then r![1]
else

new c:[int]/(Oot|Oot|Ict.Ict)
in (fib![i-1,c] | fib![i-2,c]

| c?[j].c?[k].r![j+k])
in fib![10,ret]

Example of Typing

ret:[int]/Oou; ∅├
def fib[i:int,r:[int]/Oos] =

if i<2
then r![1]
else

new c:[int]/(Oot|Oot|Ict.Ict)
in (fib![i-1,c] | fib![i-2,c]

| c?[j].c?[k].r![j+k])
in fib![10,ret]

Outline

z Introduction
z Basic Ideas
z The Type System

y Type Judgment & Typing Rules
y Correctness & Expressiveness
y Type Checking

z Related Work
z Conclusion

Correctness of the Type System

No immediate deadlock:
Well-typed processes are not in deadlock

Correctness of the Type System

No immediate deadlock:
Well-typed processes are not in deadlock

+
Subject reduction:

Well-typedness is preserved by reduction

Correctness of the Type System

No immediate deadlock:
Well-typed processes are not in deadlock

+
Subject reduction:

Well-typedness is preserved by reduction
⇓

Deadlock-freedom:
Well-typed processes never fall into deadlock

throughout reduction

Correctness of the Type System

Deadlock-freedom:
(the case of an output obligation)

z Γ + x:[τ]/Oo
t; p├ P

z Every usage in Γ + x:[τ]/Oo
t is reliable

z p+ is a strict partial order
è P will eventually perform output on x

(unless ‘infinite loop’)

Expressiveness of the Calculus

Expressive enough to encode:
y Parallel functions
y Typical concurrent objects
y Various semaphores

Expressiveness of the Calculus

Expressive enough to encode:
y Parallel functions
y Typical Concurrent Objects
y Various Semaphores

Too conservative to express:
y Case-by-case dependency

c:[]/(Ico
s|Oco

s), d:[]/(Ico
t|Oco

t);
s<t,t<s├
c![] | d![] |

if … then c?[].….d?[].… else d?[].….c?[].…

Outline

z Introduction
z Basic Ideas
z The Type System

y Type Judgment & Typing Rules
y Correctness & Expressiveness
y Type Checking

z Related Work
z Conclusion

Issues in Type Checking

z Usages of channels:
must be explicitly specified by programmers

z Reliability of usages:
can be automatically checked
(by a co-inductive method)

z Time tag ordering:
can be automatically inferred
(by generation & satisfaction of constraints)

Outline

z Introduction
z Basic Ideas
z The Type System
z Related Work
z Conclusion

Related Work (1/4)

[Kobayashi 97]
Partially deadlock-free typed process calculus

z In what way each channel may be used
y Linear Channels (used just once for communication)
y Mutex Channels (used like binary semaphores)
y Replicated Input Channels (used for process definition)

z In what order those channels may be used
― Time tags and their ordering

Related Work (2/4)

[Pierce & Sangiorgi 93]
I/O Types:
In what direction a channel may be used
(for input, for output, or for both)

c:↑[int] ⇔ c:[int]/!O

[Kobayashi & Pierce & Turner 96]
Linear Types:
How many times a channel may be used
(once or unlimitedly)

c:b1[int] ⇔ c:[int]/(Oco|Ico)

Related Work (3/4)

[Yoshida 96]
Graph Types:
In what order processes perform

input/output on channels
― Only ‘capability + obligation’;

cannot express ‘capability without obligation’
and ‘obligation without capability’

Related Work (4/4)

[Boudol 97]
Hennessy-Milner logic with recursion:
On what channels processes are ready

to receive values
― Deadlock-freedom only for output;

cannot guarantee deadlock-freedom for input

Outline

z Introduction
z Basic Ideas
z The Type System
z Related Work
z Conclusion

Conclusion (1/2): Summary

Static type system that prevents deadlock:
z Usages & Usage Calculus

“In what way each channel is used”
+

z Time Tags & Time Tag Ordering
“In what order those channels are used”

Conclusion (2/2): Future Work

z Develop a (partial) type inference algorithm
z Apply to practical concurrent languages
z Utilize for compile-time optimization

Prototype type checker available at:
http://www.is.s.u-tokyo.ac.jp

/~sumii/pub/

