
VMλ: A Functional Calculus for
Scientific Discovery

Eijiro Sumii
Hideo Bannai
University of Tokyo

Outline of the Talk

l Background
– Discovery science and functional programming

l Simple VMλ
l VMλabl

Discovery Science
[LNCS/LNAI 1532, 1721, 1967, 2226]

l A new area of computer science and artificial
intelligence

l Originates in a project in Japan
(http://www.i.kyushu-u.ac.jp/~arikawa/discovery/)

n Aims to carry out a unified study of computer-
aided knowledge discovery

n Based on formal logic, machine learning, data
mining, etc.

Knowledge as Functions

OutputInput

Function f

Function g

Function h

Knowledge discovery = finding a "good" function

Knowledge Discovery by
Functional Programming

l Fully automatic knowledge discovery is too
difficult

⇒ Human interaction is essential
l What kind of interface is good for manipulating

functions? (simple, expressive, fast, ...)
— Functional programming!

Example

l let data : (input × output) list =
[(175.4, 73.9); (167.6, 66.1); (180.8, 81.2); ...]

– List of pairs of two data (e.g., people's height and weight)

l let fitness :
(input → output) → (input × output) list → float = ...

– Tells how well a given function fits given data (according to
some statistical criterion)

l let affine_approx :
(input × output) list → (input → output) = ...

– Creates the affine function f(x) = ax + b that fits given data best

How it works...

let f = affine_approx data ;;
val f : input → output = <fun>
fitness data f ;;
- : float = 0.98

How it works...or does it?

let f = affine_approx data ;;
val f : input → output = <fun>
fitness data f ;;
- : float = 0.98

Not really helpful – what is the function f ???

Naive Solutions

l Show the source code
– Not very nice, because it can be too complex

l Pair the function with its representation
let f' = affine_approx' data ;;
val f' :
(float → float) × repr =
<fun>, AffineFun(1.03, -102.8)

– Works, but too troublesome to do by hand
l In particular because of a typing problem: functions with

different representations may need to have the same type

Our Solution: "Views"

view AffineFun(a, b) = fun x → a × x + b ;;
view AffineFun of float * float : float -> float
let v = affine_approx' data ;;
- : (float -> float) view =

<fun> as AffineFun(1.03, -102.8)
vmatch v with AffineFun(a, b) → (a, b) else … ;;
- : float * float = (1.03, -102.8)

Pair of a value and its representation
(of an extensible data type) that remembers
"how the value was created"

(≠ views for abstract types [Wadler 87])

VML: ML Extended with Views

l Originally proposed in [Bannai et al. 2001]

u Defined in English prose only :-(
⇓

n Had problematic syntax and semantics :-(:-(
n Never implemented successfully :-(:-(:-(

VMλ: λ-calculus extended with
views

l Simple VMλ: every view must take just one
argument

l VMλabl: views may take any number of
arguments in any order
n Implemented as an extension of OCaml/OLabl

Outline of the Talk

l Background
– Discovery science and functional programming

l Simple VMλ
l VMλabl

Syntax of Simple VMλ

M (term) ::= ... (standard λ-terms)
| view V{x} = M1 in M2 (view definition)
| V (view constructor)
| M1{M2} (view application)
| vmatch M1 with V{x} ⇒ M2 else M3

(view matching)
| valof M (view destruction)

Semantics of Simple VMλ (1/2)

v (value) ::= ... (standard λ-values)
| 〈ε; V{x} = M〉 (view constructor closure)
| V{v1} = v2 (view)

Semantics of Simple VMλ (2/2)

v (value) ::= ... (standard λ-values)
| 〈ε; V{x} = M〉 (view constructor closure)
| V{v1} = v2 (view)

Type System of Simple VMλ (1/2)

τ (type) ::= ... (standard λ-types)
| view{τ1}τ2 (view constructor type)
| view{ }τ (view type)

Type System of Simple VMλ (2/2)

τ (type) ::= ... (standard λ-types)
| view{τ1}τ2 (view constructor type)
| view{ }τ (view type)

Type Soundness

Outline of the Talk

l Background
– Discovery science and functional programming

l Simple VMλ
l VMλabl

Partial Application of Multiple-
Argument Views: The Problem

l Partial application of functions is a convenient
feature of higher-order functional languages

...but does not extend to views in a naive way

Example (the originally proposed approach):
view V{x, y, z} = ... in

let v' = fun x → fun z → V{x, 1 + 2, z} in
vmatch v' with V{_, y', _} → ...

(* forces unnatural evaluation of 1 + 2 *)

Our Solution: VMλabl

Use labeled arguments [Garrigue & Ait-Kaci 94]

view V{lx = x; ly = y; lz = z} = ... in
let v' = V{ly = 1 + 2} in

(* natural to evaluate 1 + 2 here *)
vmatch v' with V{ly = y'} → ...

Syntax of VMλabl

M (term) ::= ... (same as before)
| view V{l+ = x+} = M1 in M2 (view definition)
| M1{l+ = M2

+} (view application)
| vmatch M1 with V{l* = x*} ⇒ M2 else M3

(view matching)

l X* and X+ are abbreviations for
X1, ..., Xn where n ≥ 0 or n > 0, respectively

Semantics of VMλabl (1/3)

v (value) ::= ... (same as before)
| 〈ε; V{l* = v*, m+ = x+} = M〉

(view constructor closure)
| V{l+ = v1

+} = v2 (view)

Semantics of VMλabl (2/3)

v (value) ::= ... (same as before)
| 〈ε; V{l* = v*, m+ = x+} = M〉

(view constructor closure)
| V{l+ = v1

+} = v2 (view)

Semantics of VMλabl (3/3)

v (value) ::= ... (same as before)
| 〈ε; V{l* = v*, m+ = x+} = M〉

(view constructor closure)
| V{l+ = v1

+} = v2 (view)

Type System of VMλabl

τ (type) ::= ... (same as before)
| view{l* : τ*}τ (view / view constructor type)

Implementation of VMλabl

Translation by Camlp4 into OCaml/OLabl
– value of view constructor ⇒ function with labeled

arguments
– representation of view ⇒ polymorphic variants

l Recall "view = pair of a value and its representation (of an
extensible data type)"

n Why polymorphic variants?
(not abstract types, exceptions, etc.)
– Allow pattern matching (unlike abstract types)
– Don't require type declaration (unlike exceptions)

Conclusions

l We have formalized and implemented VML
(ML with views), a functional programming
language for scientific knowledge discovery

l Real applications are explained in a previous
paper [Bannai et al. 2001]
– Detection of gene regulatory sites
– Characterization of N-terminal protein sorting

signals

u People do find functional programming (and its
theories) useful, if they open their mind

