VMI : A Functional Calculus for
Scientific Discovery

Eijiro Sumii
Hideo Bannai
University of Tokyo

Outline of the Talk
O

e Background
- Discovery science and functional programming

e Simple VMI
e VMI abl

Discovery Science
ILNCS/LNAI 1532, 1721, 1967, 2226]

e A new area of computer science and artificial
Intelligence

e Originates in a project in Japan
(http://www.1.kyushu-u.ac.jp/~arikawa/discovery;

m Aims to carry out a unified study of computer-
alded knowledge discovery

m Based on formal logic, machine learning, data
mining, etc.

Knowledge as Functions
G

Function f

— oy,
—
-— =

X L
~ ., L
5.—1_"

Function h

Knowledge discovery = finding a "good" function

Knowledge Discovery by
Functional Programming

aam
e Fully automatic knowledge discovery is too
difficult
P Human interaction Is essential

e \What kind of interface is good for manipulating
functions? (simple, expressive, fast, ...)
— Functional programming!

Example
S

e let data : (input” output) list =
[(175.4, 73.9); (167.6, 66.1); (180.8, 81.2); ...]
— List of pairs of two data (e.g., people's height and weight)
o let fithess :
(input ® output) ® (input = output) list ® float = ...

- Tells how well a given function fits given data (according to
some statistical criterion)

e let affine_approx :
(input = output) list ® (input ® output) = ...
— Creates the affine function f(x) = ax + b that fits given data best

How It works...

S
let f = affine _approx data ;;
val f : iInput ® output = <fun>
fitness data f
- . float = 0.98

How It works...or does it?

S
let f = affine _approx data ;;
val f : i1nput ® output = <fun>
fitness data f
- . float = 0.98

Not really helpful —what is the function f ???

Naive Solutions
A

e Show the source code
- Not very nice, because it can be too complex

e Pair the function with its representation
let f' = affine_approx' data ;;
val f'
(float ® float) =~ repr =
<fun>, AffineFun(1l.03, -102.8)
- Works, but too troublesome to do by hand

e In particular because of a typing problem: functions with
different representations may need to have the same type

Our Solution: "Views"

Pair of a value and its representation

(of an extensible data type) that remembers
"how the value was created"

(* views for abstract types [Wadler 87])
view AffineFun(a, b) =fun x ® a x + b ;;
view AffineFun of float * float : float -> fl oat
let v = affine _approx' data ;;

- . (float -> float) view =
<fun> as AffineFun(1.03, -102.8)

vimatch v wwth AffineFun(a, b) ® (a, b) else Y4 ;;

- . float * float = (1.03, -102.8)

VML: ML Extended with Views

S
e Originally proposed in [Bannal et al. 2001]

¢ Defined in English prose only :-(

3
m Had problematic syntax and semantics :-(:-(
m Never implemented successfully :-(:-(:-(

VMI : | -calculus extended with
VIews

e Simple VMI : every view must take just one
argument

e VMI abl: views may take any number of
arguments in any order

m Implemented as an extension of OCaml/OLabl

Outline of the Talk
O

e Background
- Discovery science and functional programming

e Simple VMI
e VMI abl

Syntax of Simple VMI
S

M (term) ;= ... (standard | -terms)
view V{x} = M; In M, (view definition)
V (view constructor)
M, {M,} (view application)
vmatch M, with V{x} P M, else M,

(view matching)
| valof M (view destruction)

Semantics of Simple VMI (1/2)
G

v (value) ;= ... (standard | -values)
| & V{x} =Mn (view constructor closure)
| V{vib=v, (view)

/" fresh EV — (&, V{x} = M)+ Ms v

, : (E-VDe
EFview V{x} = M1 in M> | v
8|—M1~U<5’;V{x}:M,> EFM> | v
E xr—ok- M |
(E-VApD)

EF M {M-VI VIivl = o

Semantics of Simple VMI (2/2)
G

v (value) ;= ... (standard | -values)
| & V{x} =Mn (view constructor closure)
| V{vib=v, (view)

My V) =
sy = (VL) =)
E,xr— v F My v

: (E-VMatch-Suc
- vmatch M with V{z} = M5 else M3 | v

EFM| { }=vw

(E-ValOf)
EH~valof M L o

Type System of Simple VMI (1/2)

S
t (type) ::= ... (standard | -types)
| view{t,}t, (view constructor type)
| view{ }t (view type)

xiTHEM T L,V iview{r}ri F My 1
[Fview V{z} = My in M5 : m

(T-VDe

= My :view{r}r' TEFM>:T

My (Mo} viea{}r L1 VAPP)

Type System of Simple VMI (2/2)

S
t (type) ::= ... (standard | -types)
| view{t,}t, (view constructor type)
| view{ }t (view type)

(V) =view{r}ry 'k Mq:view{}n
|_,CL'ZT|—M2:T2 |_|—M3ZT2

- vmatch M4 with V{x} = M5 else M3 : 15

(T-VMatc

F M :view{}T

(T-ValOf)
[- valof M : T

Type Soundness

It-M: T,
then = M I error

Outline of the Talk
O

e Background
- Discovery science and functional programming

e Simple VMI
e VMI abl

Partial Application of Multiple-
Argument Views: The Problem
S

e Partial application of functions is a convenient
feature of higher-order functional languages

...but does not extend to views in a naive way

Example (the originally proposed approach):
view V{X, y, z} = ... In
letv'=funx® funz® V{x,1+ 2,2} In

vmatch v with V{ , vy, }® ...
(* forces unnatural evaluation of 1 + 2 *)

Our Solution: VMI abl

S
Use labeled arguments [Garrigue & Ait-Kaci 94]

view V{/, =X; {, =y; (, =z} =...1n
let v =V{/, =1+ 2}In
(* natural to evaluate 1 + 2 here *)
vmatch v' with V{/, =y} ® ...

Syntax of VMI abl
S

M (term) ;= ... (same as before)
view V{/* = x*} = M, In M, (view definition)
M {¢* = M,"} (view application)
vmatch M; with V{/* = x*} b M, else M,

(view matching)

e X* and X* are abbreviations for
X4y .oy X, Where n2 0 orn> 0, respectively

Semantics of VMI abl (1/3)
S

v (value) ;= ... (same as before)
| & V{/* =v*, m* = x*} =Mn
(view constructor closure)
| V{{*=v,"}=v, (view)

V'’ fresh
eV {(EV{IT=2T)=M)F M, v

. : (E-VDe
EFview V{IT =T} = M; in Mo | v

Semantics of VMI abl (2/3)
S

v (value) ;= ... (same as before)
| & V{/* =v*, m* = x*} =Mn
(view constructor closure)
| V{{*=v,"}=v, (view)

My GV =0 =t =yt = M)
EF MF of
£+ M {13 =MF} U ot =0
V{3 ZUT,ljzv;,lg_:y‘l'}:M)

(E-VApp-Par

Semantics of VMI abl (3/3)
S

v (value) ;= ... (same as before)
| & V{/* =v*, m* = x*} =Mn
(view constructor closure)
| V{{*=v,"}=v, (view)

EF My (& V{E=vi1T =0T} = M)
EI—MQ_I_UUS_ 8’,x+l—>v;_|—MUv

(E-VApp-Fu
- M = MIY v =0t i =0l =0

Type System of VMI abl
O

t (type) ::= ... (same as before)
| view{/* :t*}t (view /view constructor type)
r,x+:T+|_M1:Tl F,V:view{l+:7+}Tll—M2:72

T-VDef
[Fview V{IT =21} = M; in My : m (

MCEMycview{It oot 575y M ot
=M {I+ = MQ_I_} view{l§ i T3}T

(T-VADpPDP)

(V) =view{l* : 7%, 1§t 75}7 T F My @ view{l§: 15}7
Cz*: 7+ Mo:7" ITHMz:7
[+ vmatch M7 with V{l* = 2*} = M> else M3 : 7/

(T-VMatc

Implementation of VMI abl

Translation by Camlp4 into OCamli/OLabl|

— value of view constructor P function with labeled
arguments

— representation of view b polymorphic variants

e Recall "view = pair of a value and its representation (of an
extensible data type)"

m Why polymorphic variants?
(not abstract types, exceptions, etc.)

- Allow pattern matching (unlike abstract types)
- Don't require type declaration (unlike exceptions)

Conclusions
I

e \We have formalized and implemented VML
(ML with views), a functional programming
anguage for scientific knowledge discovery

e Real applications are explained in a previous
paper [Bannai et al. 2001]
— Detection of gene regulatory sites

— Characterization of N-terminal protein sorting
signals

¢ People do find functional programming (and its
thaonriec) 1icefiil 1f theyy onen theair mind

