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Motivation

Two approaches to information hiding:
n Encryption

n mainly studied in security systems

n Type abstraction
n mainly studied in programming languages 

(polymorphism, modules, objects, etc.)

How are these related?



Results

n Cryptographic λ-calculus +
n Logical relation of the polymorphic λ-

calculus
⇒ Method of proving secrecy in programs 

using encryption

Adapting the theory of type abstraction
for encryption
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— a secret integer i and
— an interface function λx. x mod 2
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The Cryptographic λ-Calculus

e　::=　{e1}e2　|　let {x}e1 = e2 in e3 else e4　

|　new x in e　|　k　|　...
τ　::=　bits[τ]　|　key[τ]　|　...

Simply typed call-by-value λ-calculus
+ (perfect) cryptographic primitives



The Cryptographic λ-Calculus

e　::=　{e1}e2　|　let {x}e1 = e2 in e3 else e4　

|　new x in e　|　k　|　...
τ　::=　bits[τ]　|　key[τ]　|　... 

Simply typed call-by-value λ-calculus
+ (perfect) cryptographic primitives

new x in e　→　[k/x]e　(k fresh)
let {x}k1 = {v}k2 in e1 else e2

→　[v/x]e1 (if k1 = k2) or e2 (if k1 ≠ k2)



Secrecy ≅ Non-Interference ≅
Contextual Equivalence

[Q] How to state the (partial) secrecy of the 
value of i?

[A] By conditional non-interference:
if i ≡ j (mod 2), then p(i) and p(j) are 
equivalent under any context

"Outsiders cannot observe
the difference of the secret"
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Logical Relation

[Q] How to prove contextual equivalence?
[A] By a logical relation "∼" between 

programs, defined by induction on their 
type

Main theorem:
e1 ∼ e2 : τ　⇒　e1 ≈ e2 : τ

"related programs are contextually equivalent"



Logical Relation for Simple 
Types (standard)

n Integers are related iff they are equal
i ∼ j : int　⇔　i = j

n Functions are related iff they return related 
results when applied to related arguments

f ∼ g : τ1 → τ2　⇔
f v ∼ g w : τ2　for any　v ∼ w : τ1

n Pairs are related iff their elements are related
(v1, v2) ∼ (w1, w2) : τ1 × τ2　⇔

v1 ∼ w1 : τ1　and v2 ∼ w2 : τ2



Logical Relation for Type 
Abstraction (also standard)

The relation environment ϕ gives the relation ϕ(α) 
between values of each abstract type α
ϕ├ v1 ∼ v2 : α　⇔　(v1, v2) ∈ ϕ(α)
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(new!)

The relation environment ϕ gives the relation ϕ(k) 
between values encrypted by each secret key k
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Encode:
— Sending of a message by the message itself
— Receiving of a message by a function
— Network and attacker by a context



Application: Protocol Encoding

E.g., 1.　A → B {i}k
2.　B → * i mod 2

n p = new k in 〈{i}k, λ{x}k. x mod 2〉
n Network(p) = #2(p) #1(p)　→*　i mod 2
n Attacker(p) = any context for p

Encode:
— Sending of a message by the message itself
— Receiving of a message by a function
— Network and attacker by a context



Examples

n Well-known attack on (a bad use of) 
Needham-Schroeder public-key protocol

n Correctness proof of (the same use of) 
"improved" Needham-Schroeder public-
key protocol

n "Necessarily parallel" attack on ffgg
protocol
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Extensions

n Recursive functions/types
for making the attackers Turing-complete
— cf. [Pitts-98], [Crary-Harper], etc.

n State/linearity
for encoding protocols more precisely
— cf. [Pitts-Stark-98], [Bierman-Pitts-Russo-00]



Related Work

n Logical relations
n Relational parametricity [Reynolds-83]
n Representation independence [Mitchell-91]
n λ-calculus with name generation [Stark-94]

n Protocol verification
n Various logics, theorem proving, model 

checking, etc. [many!]
n In particular, spi-calculus [Abadi-Gordon]



Conclusion
n We have adapted the theory of type abstraction 

to encryption
n Can we do something in the other direction?

E.g., implement type abstraction by encryption
I.e., encode the polymorphic λ-calculus

into the untyped cryptographic λ-calculus
(while preserving contextual equivalence)

⇒ Extend the scope of type abstraction from the 
statically typed world to the untyped world
(such as open network)


