
Logical Relations for
Encryption

Eijiro Sumii
University of Tokyo

Joint work with Benjamin Pierce,
University of Pennsylvania

Overview

n Introduction
n The cryptographic λ-calculus
n Logical relations
n Application: protocol encoding
n Extensions
n Related work
n Conclusion

Motivation

Two approaches to information hiding:
n Encryption

n mainly studied in security systems

n Type abstraction
n mainly studied in programming languages

(polymorphism, modules, objects, etc.)

How are these related?

Results

n Cryptographic λ-calculus +
n Logical relation of the polymorphic λ-

calculus
⇒ Method of proving secrecy in programs

using encryption

Adapting the theory of type abstraction
for encryption

Example

A program p(i) consisting of
— a secret integer i and
— an interface function λx. x mod 2

Example

A program p(i) consisting of
— a secret integer i and
— an interface function λx. x mod 2

n Information hiding by type abstraction
p(i) = pack int, 〈i, λx. x mod 2〉

as ∃α. α × (α → int)

Example

A program p(i) consisting of
— a secret integer i and
— an interface function λx. x mod 2

n Information hiding by type abstraction
p(i) = pack int, 〈i, λx. x mod 2〉

as ∃α. α × (α → int)
n Information hiding by encryption

p(i) = new k in 〈{i}k, λ{x}k. x mod 2〉

Overview

n Introduction
n The cryptographic λ-calculus
n Logical relations
n Application: protocol encoding
n Extensions
n Related work
n Conclusion

The Cryptographic λ-Calculus

e　::=　{e1}e2　|　let {x}e1 = e2 in e3 else e4　

|　new x in e　|　k　|　...
τ　::=　bits[τ]　|　key[τ]　|　...

Simply typed call-by-value λ-calculus
+ (perfect) cryptographic primitives

The Cryptographic λ-Calculus

e　::=　{e1}e2　|　let {x}e1 = e2 in e3 else e4　

|　new x in e　|　k　|　...
τ　::=　bits[τ]　|　key[τ]　|　...

Simply typed call-by-value λ-calculus
+ (perfect) cryptographic primitives

new x in e　→　[k/x]e　(k fresh)
let {x}k1 = {v}k2 in e1 else e2

→　[v/x]e1 (if k1 = k2) or e2 (if k1 ≠ k2)

Secrecy ≅ Non-Interference ≅
Contextual Equivalence

[Q] How to state the (partial) secrecy of the
value of i?

[A] By conditional non-interference:
if i ≡ j (mod 2), then p(i) and p(j) are
equivalent under any context

"Outsiders cannot observe
the difference of the secret"

Overview

n Introduction
n The cryptographic λ-calculus
n Logical relations
n Application: protocol encoding
n Extensions
n Related work
n Conclusion

Logical Relation

[Q] How to prove contextual equivalence?
[A] By a logical relation "∼" between

programs, defined by induction on their
type

Main theorem:
e1 ∼ e2 : τ　⇒　e1 ≈ e2 : τ

"related programs are contextually equivalent"

Logical Relation for Simple
Types (standard)

n Integers are related iff they are equal
i ∼ j : int　⇔　i = j

n Functions are related iff they return related
results when applied to related arguments

f ∼ g : τ1 → τ2　⇔
f v ∼ g w : τ2　for any　v ∼ w : τ1

n Pairs are related iff their elements are related
(v1, v2) ∼ (w1, w2) : τ1 × τ2　⇔

v1 ∼ w1 : τ1　and v2 ∼ w2 : τ2

Logical Relation for Type
Abstraction (also standard)

The relation environment ϕ gives the relation ϕ(α)
between values of each abstract type α
ϕ├ v1 ∼ v2 : α　⇔　(v1, v2) ∈ ϕ(α)

Logical Relation for Type
Abstraction (also standard)

The relation environment ϕ gives the relation ϕ(α)
between values of each abstract type α
ϕ├ v1 ∼ v2 : α　⇔　(v1, v2) ∈ ϕ(α)
ϕ├ pack σ1, e1 as ∃α.τ

∼ pack σ2, e2 as ∃α.τ : ∃α.τ　⇔
ϕ, α a r├ e1 ∼ e2 : τ for some r ⊆ σ1 × σ2

Logical Relation for Type
Abstraction (also standard)

The relation environment ϕ gives the relation ϕ(α)
between values of each abstract type α
ϕ├ v1 ∼ v2 : α　⇔　(v1, v2) ∈ ϕ(α)
ϕ├ pack σ1, e1 as ∃α.τ

∼ pack σ2, e2 as ∃α.τ : ∃α.τ　⇔
ϕ, α a r├ e1 ∼ e2 : τ for some r ⊆ σ1 × σ2

E.g., pack int, 〈1, λx. x mod 2〉 as ∃α.α×(α→int)
and pack int, 〈3, λx. x mod 2〉 as ∃α.α×(α→int)
can be related by taking α a {(1,3)}

Logical Relation for Encryption
(new!)

The relation environment ϕ gives the relation ϕ(k)
between values encrypted by each secret key k

ϕ├ {v1}k1 ∼ {v2}k2 : bits[τ]　⇔
(v1, v2) ∈ ϕ(k)　where　k = k1 = k2

Logical Relation for Encryption
(new!)

The relation environment ϕ gives the relation ϕ(k)
between values encrypted by each secret key k

ϕ├ {v1}k1 ∼ {v2}k2 : bits[τ]　⇔
(v1, v2) ∈ ϕ(k)　where　k = k1 = k2

ϕ├ new k in e1 ∼ new k in e2 : τ　⇔
ϕ, k a r├ e1 ∼ e2 : τ　for some r

Logical Relation for Encryption
(new!)

The relation environment ϕ gives the relation ϕ(k)
between values encrypted by each secret key k

ϕ├ {v1}k1 ∼ {v2}k2 : bits[τ]　⇔
(v1, v2) ∈ ϕ(k)　where　k = k1 = k2

ϕ├ new k in e1 ∼ new k in e2 : τ　⇔
ϕ, k a r├ e1 ∼ e2 : τ　for some r

E.g., new k in 〈{1}k, λ{x}k. x mod 2〉
and new k in 〈{3}k, λ{x}k. x mod 2〉
can be related by taking k a {(1,3)}

Overview

n Introduction
n The cryptographic λ-calculus
n Logical relations
n Application: protocol encoding
n Extensions
n Related work
n Conclusion

Application: Protocol Encoding

Encode:
— Sending of a message by the message itself
— Receiving of a message by a function
— Network and attacker by a context

Application: Protocol Encoding

E.g., 1.　A → B {i}k
2.　B → * i mod 2

n p = new k in 〈{i}k, λ{x}k. x mod 2〉
n Network(p) = #2(p) #1(p)　→*　i mod 2
n Attacker(p) = any context for p

Encode:
— Sending of a message by the message itself
— Receiving of a message by a function
— Network and attacker by a context

Examples

n Well-known attack on (a bad use of)
Needham-Schroeder public-key protocol

n Correctness proof of (the same use of)
"improved" Needham-Schroeder public-
key protocol

n "Necessarily parallel" attack on ffgg
protocol

Overview

n Introduction
n The cryptographic λ-calculus
n Logical relations
n Application: protocol encoding
n Extensions
n Related work
n Conclusion

Extensions

n Recursive functions/types
for making the attackers Turing-complete
— cf. [Pitts-98], [Crary-Harper], etc.

n State/linearity
for encoding protocols more precisely
— cf. [Pitts-Stark-98], [Bierman-Pitts-Russo-00]

Related Work

n Logical relations
n Relational parametricity [Reynolds-83]
n Representation independence [Mitchell-91]
n λ-calculus with name generation [Stark-94]

n Protocol verification
n Various logics, theorem proving, model

checking, etc. [many!]
n In particular, spi-calculus [Abadi-Gordon]

Conclusion
n We have adapted the theory of type abstraction

to encryption
n Can we do something in the other direction?

E.g., implement type abstraction by encryption
I.e., encode the polymorphic λ-calculus

into the untyped cryptographic λ-calculus
(while preserving contextual equivalence)

⇒ Extend the scope of type abstraction from the
statically typed world to the untyped world
(such as open network)

