
Bridging the Gap
between TDPE and SDPE

Eijiro Sumii
Department of Information Science,

Graduate School of Science,
University of Tokyo

Roadmap

(1) Naive Online SDPE

(3) Online TDPE

(2) Offline TDPE

(4) Cogen Approach
to Online SDPE

Roadmap

(1) Naive Online SDPE

(3) Online TDPE

(2) Offline TDPE

(4) Cogen Approach
to Online SDPE

What is Partial Evaluation?

• Partial Evaluation = Program Specialization
p = λs. λd. 1 + s + d

s = 2↓ s = 2
p2 = λd. 3 + d

• Partial Evaluation ≈ Strong Normalization
(λs. λd. 1 + s + d) @ 2

→ λd. 1 + 2 + d
→ λd. 3 + d

Naive Syntax-Directed PE

• Represent Programs as Data
e　::=　x　|　λx.e　|　e1@e2

• Manipulate Them Symbolically
PE(x) = x
PE(λx.e) = λy. PE(e[y/x]) (where y is fresh)
PE(e1@e2) = PE(e[PE(e2)/x]) (if PE(e1) = λx.e)
PE(e1@e2) = PE(e1) @ PE(e2) (otherwise)

Implementation in ML

datatype exp = Var of string
| Abs of string * exp
| App of exp * exp

…
fun PE (Var(x)) = Var(x)
| PE (Abs(x, e)) =
let val y = gensym ()
in Abs(y, PE (subst x (Var(y)) e))
end

| PE (App(e1, e2)) =
let val e1' = PE e1

val e2' = PE e2
in (case e1' of

Abs(x, e) => PE (subst x e2' e)
| e => App(e, e2'))

end

Example

Partially Evaluate p = λs. λd. s @ d
with Respect to s = λx. x

≈ Strongly Normalize
p @ s = (λs. λd. s @ d) @ (λx. x)

- let val p = Abs("s",
Abs("d",

App(Var "s",
Var "d")))

val s = Abs("x", Var("x"))
in PE (App(p, s))
end;

> val it = Abs ("x1",Var "x1") : exp

Problems of Naive SDPE

• Naive SDPE is Complex
– Includes an Interpreter
– Requires one clause in the partial evaluator

for one construct in the target language

• Naive SDPE is Inefficient
– Incurs interpretive overheads such as:

• syntax dispatch
• environment manipulation

Roadmap

(1) Naive Online SDPE

(3) Online TDPE

(2) Offline TDPE

(4) Cogen Approach
to Online SDPE

Type-Directed PE [Danvy 96]

• Originates in Normalization by Evaluation
in Logic and Category Theory

value

eval ↑　↓ reify
exp

normalize = reify o eval
• Exploit the Evaluator of the Meta Language

Example

- let fun p s d = s d
fun id x = x
val p_id = p id

in reify (E-->E) p_id
end;

> val it = Abs ("x1",Var "x1") : exp

How to Reify?
— When the Domain is a Base Type —

• ↓α→α v = λx. v @ x
e.g. ↓α→α (λx. (λy. y) @ x)

= λz. (λx. (λy. y) @ x) @ z
= λz. (λy. y) @ z
= λz. z

• ↓α→τ v = λx. ↓τ (v @ x)
e.g. ↓α→α→α (λx. λy. x)

= λp. ↓α→α ((λx. λy. x) @ p)
= λp. λq. (λx. λy. x) @ p @ q
= λp. λq. q

In ML...

- let val f = fn x => (fn y => y) x
val z = gensym ()

in Abs(z, f (Var(z)))
end;

> val it = Abs ("x1",Var "x1") : exp
- let val g = fn x => fn y => x

val p = gensym ()
val q = gensym ()

in Abs(p, Abs(q, g (Var(p)) (Var(q))))
end;

> val it = Abs ("x2",Abs ("x3",Var "x2")) : exp

How to Reify?
— When the Domain is a Function Type —

7↓(α→α)→α v = λx. v @ x　　　⇐ Type Error

3↓(α→α)→α v = λx. v @ (λy. x @ y)

e.g. ↓(b→b)→b (λf. f @ x)
= λy. (λf. f @ x) @ (λz. y @ z)
= λy. (λz. y @ z) @ x
= λy. y @ x

In ML...

- let val h = fn f => f (Var("x"))
val y = gensym ()

in Abs(y, h (Var(y)))
end;

Error: operator and operand don't agree
operator domain: exp -> 'Z
operand: exp
in expression: h (Var y)

- let val h = fn f => f (Var("x"))
val y = gensym ()

in Abs(y, h (fn z => App(Var(y), z)))
end;

> val it = Abs ("x1",App (Var "x1",Var "x")) : exp

How to Reify?
— In Genral —

↓ : [τ] → τ → exp

↓α v = v
↓σ→τ v = λx. ↓τ (v @ ↑σ x)

(where x is fresh)
↑ : [τ] → exp → τ

↑α e = e
↑σ→τ e = λx. ↑τ (e @ ↓σ x)

Implementation in ML (1)

• Straightforward Implementation Fails to
Type-Check, Because ↓ and ↑ are
Dependent Functions

• Solution: Represent a Type τ by a Pair of
Functions (↓τ, ↑τ) [Yang 98] [Rhiger 99]

datatype 'a typ = RR of ('a -> exp) * (exp -> 'a)

(* reify : 'a typ -> 'a -> exp *)
fun reify (RR(f, _)) v = f v
(* reflect : 'a typ -> exp -> 'a *)
fun reflect (RR(_, f)) e = f e

Implementation in ML (2)

(* E : exp typ *)
val E = RR(fn v => v, fn e => e)

(* --> : 'a typ * 'b typ -> ('a -> 'b) typ *)
infixr -->
fun (dom --> codom) =
RR(fn v =>

let val x = gensym ()
in Abs(x, reify codom (v (reflect dom (Var(x)))))
end,
fn e =>
fn x => reflect codom (App(e, reify dom x)))

Example

- let val S = fn f =>
fn g =>
fn x => (f x) (g x)

val K = fn a => fn b => a
val I = S K K

in reify (E-->E) I
end;

> val it = Abs ("x1",Var "x1") : exp

More Examples

• We can use constructs of ML (but cannot
residualize them)

- reify (E-->E-->E)
(fn x => fn y => if 3+5<7 then x else y);

> val it = Abs ("x1",Abs ("x2",Var "x2")) : exp

• We may specify a non-principal type (but
get a redundant result)

- reify ((E-->E)-->(E-->E)) (fn x => x);
> val it =
Abs ("x3",Abs ("x4",

App (Var "x3",Var "x4"))) : exp

Extensions (1): Pair Types

e　::=　...　|　pair(e1,e2)　|　fst e　|　snd e

↓σ×τ v = pair (↓σ fst v, ↓τ snd v)
↑σ×τ e = pair (↑σ fst e, ↑τ snd e)

Extensions (2): Variant Types

e　::=　...　|　true　|　false　|　if e0 then e1 else e2

↓bool v = if v then true else false
↑bool e = ???

— Want to return both "true" and "false" to the
context and use the results

⇒ Manipulate partial continuation with "shift" &
"reset" [Danvy & Finlinski 90]

Problems

• Reflection for variant types causes code duplication
↓(α→α)→bool→α

(λf. λx. f @ (f @ (f @ (if x then y else z))))
= λf. λx. if x then f @ (f @ (f @ (y)))
= λf. λx. if x else f @ (f @ (f @ (z)))

• Reflection for primitive/inductive types is impossible
↓int→int (λn. 1 + 2 + n) = ???
↓int_list→int_list (λa. (tl (tl (3 :: a))) = ???

Roadmap

(1) Naive Online SDPE

(3) Online TDPE

(2) Offline TDPE

(4) Cogen Approach
to Online SDPE

Online TDPE (1)

• Extend some primitive operators to treat
residual code [Danvy 97]
x +' y = x + y (if x and y are integers)
x +' y = ↓int x + ↓int y (if x or y is residual code)

For example:
↓int→int (λn. 1 +' 2 +' n)

= λx. (λn. 1 +' 2 +' n) @ x
= λx. 1 +' 2 +' x
= λx. 3 +' x
= λx. 3 + x

In ML...

datatype 'a tlv = S of 'a | D of exp
val I = (* int tlv typ *)

RR(fn D(e) => e
| S(i) => Int(i),
fn e => D(e))

fun add' (S(i), S(j)) = S(i + j)
| add' (x, y) = D(Add(reify I x, reify I y))

- reify (I-->I)
(fn n => add'(add'(S(1), S(2)), n));

> val it = Abs ("x1",Add (Int 3,Var "x1")) : exp

Online TDPE (2)

• Extend any value destructors to treat
residual code [Sumii & Kobayashi 99]
tl' x = tl x　(if x is a list)
tl' x = tl x　(if x is residual code)

For example:
↓int_list→int_list (λa. (tl' (tl' (3 :: a)))

= λx. (λa. (tl' (tl' (3 :: a))) @ x
= λx. tl' (tl' (3 :: x))
= λx. tl' x
= λx. tl x

In ML...

datatype 'a list = nil | :: of 'a * 'a list tlv
fun L t = (* 'a typ -> 'a list tlv typ *)

RR(fn D(e) => e
| S(nil) => Nil
| S(x :: y) => Cons(reify t x,

reify (L t) y),
fn e => D(e))

fun tl' (D(e)) = D(Tl(e))
| tl' (S(_ :: x)) = x

- reify (L I --> L I)
(fn a => tl' (tl' (S(S(3) :: a))));

> val it = Abs ("x1",Tl (Var "x1")) : exp

Online TDPE (3)

• Extend all value destructors to treat residual
code [Sumii & Kobayashi 99]
f @' x:τ = f @ x (if f is a function)
f @' x:τ = f @ ↓τ x (if f is residual code)

⇒ Reflection becomes unnecessary!

An Experiment

Specialized & executed an interpreter for a
simple imperative language with a tiny
program (by SML/NJ 110.0.3 on UltraSPARC 168 MHz with 1.2
GB Main Memory)

spec exec
(No PE) 0.30
[Danvy 96](*1) 0.57 0.14
[Danvy 97](*2) 0.24 0.13
[Sumii 99](*2) 0.10 0.14 (msec)

(*1) abstracted out all primitive operators
(*2) removed unnecessary 's by monovariant BTA

Roadmap

(1) Naive Online SDPE

(3) Online TDPE

(2) Offline TDPE

(4) Cogen Approach
to Online SDPE

Cogen Approach to Online SDPE

We are going to:
• Realize a simple & efficient online SDPE

by using:
– Higher-Order Abstract Syntax
– Deforestation

• See a similarity between the SDPE and our
online TDPE

Higher-Order Abstract Syntax

Represent binding in the target language by
binding in the meta langauge

datatype hexp = HAbs of hexp -> hexp
| HApp of hexp * hexp
| HSym of string

For example,
HAbs(fn x => HApp(HAbs(fn y => y), x)) : hexp

represents λx. (λy. y) @ x

Converter from HOAS to FOAS

fun conv (HAbs(f)) =
let val x = gensym ()
in Abs(x, conv (f (HSym(x))))
end

| conv (HApp(e1, e2)) = App(conv e1, conv e2)
| conv (HSym(s)) = Var(s)

Online SDPE in HOAS

fun PE (HAbs(f)) = HAbs(fn x => PE (f x))
| PE (HApp(e1, e2)) =
let val e1' = PE e1

val e2' = PE e2
in (case e1' of HAbs(f) => f e2'

| _ => HApp(e1', e2'))
end

| PE (HSym(s)) = HSym(s)

- let val e = HAbs(fn x =>
HApp(HAbs(fn y => y),

x))
in conv (PE e)
end;

> val it = Abs ("x1",Var "x1") : exp

Deforestation (1)

A priori compose HAbs, HApp & HSym with PE
(Instead of first constructing an hexp by HAbs,
HApp & HSym and then destructing it by PE)

fun habs'(f) = HAbs(fn x => f x)
fun happ'(e1, e2) =

let val e1' = e1
val e2' = e2

in (case e1' of HAbs(f) => f e2'
| _ => HApp(e1', e2'))

end
fun hsym'(s) = HSym(s)

Deforestation (2)

Simplify by η-reduction & inlining

val habs' = HAbs
fun happ'(HAbs(f), e2) = f e2
| happ'(e1, e2) = HApp(e1, e2)

val hsym' = HSym

- conv
(habs'(fn x => happ'(habs'(fn y => y), x)));

> val it = Abs ("x1",Var "x1") : exp

Comparison

Online TDPE ≈ Cogen approach to online SDPE
Reification operator

≈ Converter from HOAS to FOAS
Value destructors extended for residual code

≈ HOAS constructors composed with PE

They are more similar in dynamically-typed languages
(e.g. Scheme) than in statically-typed ones (e.g. ML)
[Sumii & Kobayashi 99]

Related Work

• [Helsen & Thiemann 98]
Pointed out similarity between offline TDPE and

cogen approach to offline SDPE
(C.f.　Our PE is online.)

• [Sheard 97]
Extended Danvy's TDPE in various but ad hoc ways

such as lazy reflection, type passing, etc.
(C.f.　Our TDPE is more simple, efficient, and powerful.)

Conclusion

• We have:
– Reviewed Danvy's TDPE
– Extended it with online value destructors
– Seen the similarity of our online TDPE and cogen

approach to online SDPE

• Our future work includes:
– More integration of SDPE and TDPE
– More sophisticated treatment of side-effects

(including non-termination)

