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What is Partial Evaluation?

• Partial Evaluation = Program Specialization
p = λs. λd. 1 + s + d

s = 2↓ s = 2
p2 = λd. 3 + d

• Partial Evaluation ≈ Strong Normalization
(λs. λd. 1 + s + d) @ 2

→ λd. 1 + 2 + d
→ λd. 3 + d



Naive Syntax-Directed PE

• Represent Programs as Data
e　::=　x　|　λx.e　|　e1@e2

• Manipulate Them Symbolically
PE(x) = x
PE(λx.e) = λy. PE(e[y/x]) (where y is fresh)
PE(e1@e2) = PE(e[PE(e2)/x]) (if PE(e1) = λx.e)
PE(e1@e2) = PE(e1) @ PE(e2) (otherwise)



Implementation in ML

datatype exp = Var of string
| Abs of string * exp
| App of exp * exp

…
fun PE (Var(x)) = Var(x)
| PE (Abs(x, e)) =
let val y = gensym ()
in Abs(y, PE (subst x (Var(y)) e))
end

| PE (App(e1, e2)) =
let val e1' = PE e1

val e2' = PE e2
in (case e1' of

Abs(x, e) => PE (subst x e2' e)
| e => App(e, e2'))

end



Example

Partially Evaluate p = λs. λd. s @ d
with Respect to s = λx. x

≈ Strongly Normalize
p @ s = (λs. λd. s @ d) @ (λx. x)

- let val p = Abs("s",
Abs("d",

App(Var "s",
Var "d")))

val s = Abs("x", Var("x"))
in PE (App(p, s))
end;

> val it = Abs ("x1",Var "x1") : exp



Problems of Naive SDPE

• Naive SDPE is Complex
– Includes an Interpreter
– Requires one clause in the partial evaluator

for one construct in the target language

• Naive SDPE is Inefficient
– Incurs interpretive overheads such as:

• syntax dispatch
• environment manipulation
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Type-Directed PE [Danvy 96]

• Originates in Normalization by Evaluation
in Logic and Category Theory

value

eval ↑　↓ reify
exp

normalize = reify o eval
• Exploit the Evaluator of the Meta Language



Example

- let fun p s d = s d
fun id x = x
val p_id = p id

in reify (E-->E) p_id
end;

> val it = Abs ("x1",Var "x1") : exp



How to Reify?
— When the Domain is a Base Type —

• ↓α→α v = λx. v @ x
e.g. ↓α→α (λx. (λy. y) @ x)

= λz. (λx. (λy. y) @ x) @ z
= λz. (λy. y) @ z
= λz. z

• ↓α→τ v = λx. ↓τ (v @ x)
e.g. ↓α→α→α (λx. λy. x)

= λp. ↓α→α ((λx. λy. x) @ p)
= λp. λq. (λx. λy. x) @ p @ q
= λp. λq. q



In ML...

- let val f = fn x => (fn y => y) x
val z = gensym ()

in Abs(z, f (Var(z)))
end;

> val it = Abs ("x1",Var "x1") : exp
- let val g = fn x => fn y => x

val p = gensym ()
val q = gensym ()

in Abs(p, Abs(q, g (Var(p)) (Var(q))))
end;

> val it = Abs ("x2",Abs ("x3",Var "x2")) : exp



How to Reify?
— When the Domain is a Function Type —

7↓(α→α)→α v = λx. v @ x　　　⇐ Type Error

3↓(α→α)→α v = λx. v @ (λy. x @ y)

e.g. ↓(b→b)→b (λf. f @ x)
= λy. (λf. f @ x) @ (λz. y @ z)
= λy. (λz. y @ z) @ x
= λy. y @ x



In ML...

- let val h = fn f => f (Var("x"))
val y = gensym ()

in Abs(y, h (Var(y)))
end;

Error: operator and operand don't agree
operator domain: exp -> 'Z
operand:         exp
in expression:   h (Var y)

- let val h = fn f => f (Var("x"))
val y = gensym ()

in Abs(y, h (fn z => App(Var(y), z)))
end;

> val it = Abs ("x1",App (Var "x1",Var "x")) : exp



How to Reify?
— In Genral —

↓ : [τ] → τ → exp

↓α v = v
↓σ→τ v = λx. ↓τ (v @ ↑σ x)

(where x is fresh)
↑ : [τ] → exp → τ

↑α e = e
↑σ→τ e = λx. ↑τ (e @ ↓σ x)



Implementation in ML (1)

• Straightforward Implementation Fails to 
Type-Check, Because ↓ and ↑ are 
Dependent Functions

• Solution: Represent a Type τ by a Pair of 
Functions (↓τ, ↑τ) [Yang 98] [Rhiger 99]

datatype 'a typ = RR of ('a -> exp) * (exp -> 'a)

(* reify : 'a typ -> 'a -> exp *)
fun reify (RR(f, _)) v = f v
(* reflect : 'a typ -> exp -> 'a *)
fun reflect (RR(_, f)) e = f e



Implementation in ML (2)

(* E : exp typ *)
val E = RR(fn v => v, fn e => e)

(* --> : 'a typ * 'b typ -> ('a -> 'b) typ *)
infixr -->
fun (dom --> codom) =
RR(fn v =>

let val x = gensym ()
in Abs(x, reify codom (v (reflect dom (Var(x)))))
end,
fn e =>
fn x => reflect codom (App(e, reify dom x)))



Example

- let val S = fn f =>
fn g =>
fn x => (f x) (g x)

val K = fn a => fn b => a
val I = S K K

in reify (E-->E) I
end;

> val it = Abs ("x1",Var "x1") : exp



More Examples

• We can use constructs of ML (but cannot 
residualize them)

- reify (E-->E-->E)
(fn x => fn y => if 3+5<7 then x else y);

> val it = Abs ("x1",Abs ("x2",Var "x2")) : exp

• We may specify a non-principal type (but 
get a redundant result)

- reify ((E-->E)-->(E-->E)) (fn x => x);
> val it =
Abs ("x3",Abs ("x4",

App (Var "x3",Var "x4"))) : exp



Extensions (1): Pair Types

e　::=　...　|　pair(e1,e2)　|　fst e　|　snd e

↓σ×τ v = pair (↓σ fst v, ↓τ snd v)
↑σ×τ e = pair (↑σ fst e, ↑τ snd e)



Extensions (2): Variant Types

e　::=　...　|　true　|　false　|　if e0 then e1 else e2

↓bool v = if v then true else false
↑bool e = ???

— Want to return both "true" and "false" to the 
context and use the results

⇒ Manipulate partial continuation with "shift" & 
"reset" [Danvy & Finlinski 90]



Problems

• Reflection for variant types causes code duplication
↓(α→α)→bool→α

(λf. λx. f @ (f @ (f @ (if x then y else z))))
= λf. λx. if x then f @ (f @ (f @ (y)))
= λf. λx. if x else f @ (f @ (f @ (z)))

• Reflection for primitive/inductive types is impossible
↓int→int (λn. 1 + 2 + n) = ???
↓int_list→int_list (λa. (tl (tl (3 :: a))) = ???
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Online TDPE (1)

• Extend some primitive operators to treat 
residual code [Danvy 97]
x +' y = x + y (if x and y are integers)
x +' y = ↓int x + ↓int y (if x or y is residual code)

For example:
↓int→int (λn. 1 +' 2 +' n)

= λx. (λn. 1 +' 2 +' n) @ x
= λx. 1 +' 2 +' x
= λx. 3 +' x
= λx. 3 + x



In ML...

datatype 'a tlv = S of 'a | D of exp
val I = (* int tlv typ *)

RR(fn D(e) => e
| S(i) => Int(i),
fn e => D(e))

fun add' (S(i), S(j)) = S(i + j)
| add' (x, y) = D(Add(reify I x, reify I y))

- reify (I-->I)
(fn n => add'(add'(S(1), S(2)), n));

> val it = Abs ("x1",Add (Int 3,Var "x1")) : exp



Online TDPE (2)

• Extend any value destructors to treat 
residual code [Sumii & Kobayashi 99]
tl' x = tl x　(if x is a list)
tl' x = tl x　(if x is residual code)

For example:
↓int_list→int_list (λa. (tl' (tl' (3 :: a)))

= λx. (λa. (tl' (tl' (3 :: a))) @ x
= λx. tl' (tl' (3 :: x))
= λx. tl' x
= λx. tl x



In ML...

datatype 'a list = nil | :: of 'a * 'a list tlv
fun L t = (* 'a typ -> 'a list tlv typ *)

RR(fn D(e) => e
| S(nil) => Nil
| S(x :: y) => Cons(reify t x,

reify (L t) y),
fn e => D(e))

fun tl' (D(e)) = D(Tl(e))
| tl' (S(_ :: x)) = x

- reify (L I --> L I)
(fn a => tl' (tl' (S(S(3) :: a))));

> val it = Abs ("x1",Tl (Var "x1")) : exp



Online TDPE (3)

• Extend all value destructors to treat residual 
code [Sumii & Kobayashi 99]
f @' x:τ = f @ x (if f is a function)
f @' x:τ = f @ ↓τ x (if f is residual code)

⇒ Reflection becomes unnecessary!



An Experiment

Specialized & executed an interpreter for a 
simple imperative language with a tiny 
program (by SML/NJ 110.0.3 on UltraSPARC 168 MHz with 1.2 
GB Main Memory)

spec exec
(No PE) 0.30
[Danvy 96](*1) 0.57 0.14
[Danvy 97](*2) 0.24 0.13
[Sumii 99](*2) 0.10 0.14 (msec)

(*1) abstracted out all primitive operators
(*2) removed unnecessary 's by monovariant BTA
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Cogen Approach to Online SDPE

We are going to:
• Realize a simple & efficient online SDPE 

by using:
– Higher-Order Abstract Syntax
– Deforestation

• See a similarity between the SDPE and our 
online TDPE



Higher-Order Abstract Syntax

Represent binding in the target language by 
binding in the meta langauge

datatype hexp = HAbs of hexp -> hexp
| HApp of hexp * hexp
| HSym of string

For example,
HAbs(fn x => HApp(HAbs(fn y => y), x)) : hexp

represents λx. (λy. y) @ x



Converter from HOAS to FOAS

fun conv (HAbs(f)) =
let val x = gensym ()
in Abs(x, conv (f (HSym(x))))
end

| conv (HApp(e1, e2)) = App(conv e1, conv e2)
| conv (HSym(s)) = Var(s)



Online SDPE in HOAS

fun PE (HAbs(f)) = HAbs(fn x => PE (f x))
| PE (HApp(e1, e2)) =
let val e1' = PE e1

val e2' = PE e2
in (case e1' of HAbs(f) => f e2'

| _ => HApp(e1', e2'))
end

| PE (HSym(s)) = HSym(s)

- let val e = HAbs(fn x =>
HApp(HAbs(fn y => y),

x))
in conv (PE e)
end;

> val it = Abs ("x1",Var "x1") : exp



Deforestation (1)

A priori compose HAbs, HApp & HSym with PE
(Instead of first constructing an hexp by HAbs, 
HApp & HSym and then destructing it by PE)

fun habs'(f) = HAbs(fn x => f x)
fun happ'(e1, e2) =

let val e1' = e1
val e2' = e2

in (case e1' of HAbs(f) => f e2'
| _ => HApp(e1', e2'))

end
fun hsym'(s) = HSym(s)



Deforestation (2)

Simplify by η-reduction & inlining

val habs' = HAbs
fun happ'(HAbs(f), e2) = f e2
| happ'(e1, e2) = HApp(e1, e2)

val hsym' = HSym

- conv
(habs'(fn x => happ'(habs'(fn y => y), x)));

> val it = Abs ("x1",Var "x1") : exp



Comparison

Online TDPE ≈ Cogen approach to online SDPE
Reification operator

≈ Converter from HOAS to FOAS
Value destructors extended for residual code

≈ HOAS constructors composed with PE

They are more similar in dynamically-typed languages 
(e.g. Scheme) than in statically-typed ones (e.g. ML) 
[Sumii & Kobayashi 99]



Related Work

• [Helsen & Thiemann 98]
Pointed out similarity between offline TDPE and 

cogen approach to offline SDPE
(C.f.　Our PE is online.)

• [Sheard 97]
Extended Danvy's TDPE in various but ad hoc ways 

such as lazy reflection, type passing, etc.
(C.f.　Our TDPE is more simple, efficient, and powerful.)



Conclusion

• We have:
– Reviewed Danvy's TDPE
– Extended it with online value destructors
– Seen the similarity of our online TDPE and cogen 

approach to online SDPE

• Our future work includes:
– More integration of SDPE and TDPE
– More sophisticated treatment of side-effects 

(including non-termination)


