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Autonomous
Decentralized Community
Communication for
Information Dissemination 
To meet the increasing demand for real-time content delivery, the proposed

Autonomous Decentralized Community Communication system offers an

efficient information dissemination infrastructure with a decentralized

architecture.ADCC’s aim is to help end-user communities communicate and

exchange information efficiently; to meet this goal, the system uses an application-

level multicast technique that arbitrarily scales to large groups.The ADCC system

also features a scalable community construction and maintenance scheme that

eases the burden of organizing an online community network.

Internet services offer rapidly evolving
and frequently accessed information
spaces for anyone, anywhere, anytime.

Service providers build such publish-
and-subscribe services from their own
viewpoints: they provide the same infor-
mation to all end users, regardless of
demand and situation (such as location,
time of day, and so on). This Web-based
publish–subscribe scheme has two tradi-
tional models. The pull model requires
users to access to the SP periodically to
retrieve new information, while the push
model requires SPs to deliver content that
changes frequently.

Each of these models has disadvan-

tages. With the pull model, users might
access information and find that it’s
unchanged since their last access or that it
contains a large, redundant subset of ear-
lier content retrievals. This model is also
vulnerable to flash crowds — rapid, sharp
surges in requests that overwhelm the
server and dramatically increase response
time. For its part, the push model fails to
take advantage of the Internet’s collabora-
tive potential: currently, 90 percent of
Internet resources are invisible and
untapped.1 The push model typically uses a
one-to-many model in which the SP deliv-
ers content directly to each user. Clearly,
this approach has scalability limitations. 



To address the drawbacks of the pull and push
models, we’ve designed an information-dissemina-
tion infrastructure that offers efficient and cooper-
ative real-time content delivery. Our Autonomous
Decentralized Community Communication (ADCC)
system was inspired by the autonomous decentral-
ized system (ADS) concept.2 ADCC is an
autonomous decentralized architecture formed by
a community of end users (members) with similar
interests and demands.3 The system lets communi-
ty members maintain autonomy while they coop-
erate and share information without overloading
any single node. The system’s autonomous decen-
tralized communication technique offers members
flexible cooperation and communication using a
hybrid pull–push approach: when community
members download interesting content from the
server, they forward it to all community members.4

Here, we describe ADCC and offer results from a
simulation of a large, real-world community.

ADCC Overview
ADCC blends the cooperative spirit of social com-
munities with the ADS concept.5,6 In contrast to the
anyone-anywhere-anytime model, ADCC’s goal is
to provide specific users with information at a spe-
cific place and time.

ADCC Community
We define an autonomous community as a coher-
ent group of active members who have individual
objectives, common interests, and information
needs that occur at a specified time, and sometimes

in a specified place3 (as when an earthquake occurs
in Japan, for example, or a particular mall is hav-
ing a sale at a specific time).7,8 Community mem-
bers work together to enhance each member’s indi-
vidual objectives in a timely manner. 

Each ADCC member acts as both an informa-
tion sender and receiver. Furthermore, when a par-
ticipant sends out information, it is meaningful to
all members, and all members want to receive
information from all senders in the community.
Unlike peer-to-peer (P2P) systems, communication
among ADCC members is multilateral: communi-
ty members cooperate for the satisfaction of indi-
viduals and the whole. 

Architecture
ADCC’s community network is a self-organized
logical topology in which a set of nodes, V, con-
siders the symmetric connectivity and existence of
loops. Each node tracks its immediate neighbors in
a table. Community node X’s immediate neighbors
are defined as the set of nodes

INSx = {y; x, y ∈ V, h(x, y) = 1} (1)

where h(x, y) is the number of logical hops
between nodes X and Y.

Each node knows its neighbor nodes and shares
this knowledge with other nodes to form a loosely
connected network. In Figure 1, the solid lines rep-
resent logical links among nodes. Based on its user’s
preferences, each node judges autonomously
whether to join or leave the community network by
creating or destroying the logical links with its
neighbor members. Users communicate their prefer-
ences using a Java utility (such as Java Developer
Almanac 1.4), which then generates XML data. The
community’s boundaries change dynamically along
with member requirements. As Figure 1 shows, the
ADCC architecture has no central server.

Construction and Maintenance
Our community network will be symmetric in that
each node will have identical network duties. As
mentioned, there is no central controller for mem-
bership management. We have three goals for net-
work construction and maintenance. First, we
want to construct a community network that can
efficiently support broadcast. We hope to avoid
network hotspots by distributing the network
traffic evenly among nodes during the broadcast.
Second, the network construction must be highly
scalable. Finally, the community network’s topol-
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Figure 1. The autonomous decentralized community architecture.
Nodes B, C, D, and E are A’s immediate neighbors. Unlike peer-to-
peer systems, ADCC members cooperate for the good of both
individual members and the community as a whole.
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ogy must provide redundancy. Node failures must
not lead to the network disconnecting or severely
hampering broadcast properties. 

To accomplish these goals, we must build a
self-organized community network that lets nodes
efficiently join or leave the system, maintains a
short network diameter, avoids hotspots, and
achieves fault tolerance. Therefore, we’ve designed
the community network as follows.

Community network construction3 polices the
nodes joining and leaving the network and orga-
nizes them in a 2d regular graph: G = (V, E), in
which V is the set of nodes with labels [M] = {1, 2,
…, M}, and E is the set of edges. Because nodes join
and leave frequently, E and V change over time. The
graph G is composed of independent d edge-disjoint
Hamilton cycles (HCs), which connect all nodes in
a graph and visit each node only once.9 Each node
has 2d neighbors — establishing node connectivity
— labeled as rp

(1), rs
(1), rp

(2), rs
(2) , …, rp

(d), rs
(d). For each

i, rp
(i) denotes the neighbor node’s predecessor and

rs
(i) denotes the neighbor node’s successor on the

i-th HC. Using HC is advantageous in that nodes
joining or leaving require only local changes in the
network. Having covered the basics of community,
we can now illustrate ADCC’s joining, leaving, and
fault-tolerance processes.

Joining and Leaving 
To join a community, end user A must discover at
least one community node, X. To do so, A can
either use information from an out-of-band boot-
strap mechanism (such as Narada10) or employ net-
work broadcasting and discovery techniques such
as IP multicast. 

Node A sends a join request to the newly dis-
covered community node X, which must then find
2d neighbors in order for node A to connect. If
some joining nodes connect to node X’s neighbors,
the network diameter increases linearly (as in a
completely ordered regular graph).11 To avoid this,
joining nodes in our network select 2d neighbors
randomly.3 For our purposes here, however, each
node autonomously determines how many new
nodes have connected to it within period t; we call
this the node join-rate ϕ(t). 

Node X broadcasts a join request to all com-
munity nodes within O(log2d M) layers. Each node
autonomously decides, based on its join rate ϕ(t),
whether to reply “Ok to join.” Node X receives some
“OK to join” messages, from which it autonomously
selects d nodes in different HCs. As Figure 2 shows,
the selected d nodes then call the add() routine to

add joining node A in each i-th HC. The add routine
inserts the joining node between the calling node
and its successor in the i-th HC. For the edge
between the calling node and its successor, the rou-
tine substitutes two edges, one between calling and
joining nodes and one between the joining node and
the calling node’s successor. The Edge(B, C, i)
routine makes C B’s successor and B C’s predecessor.
It thus creates the communication session between
nodes B and C. Obviously, the join process requires
only local network changes. 

When a member leaves the community, it noti-
fies its neighbors and calls the leave() routine for
each HC. This routine creates edges at d between
the leaving node’s successor and predecessor
nodes. Again, this requires only local network
changes with O(d) messages.3

Fault Tolerance
To achieve fault tolerance, we assume that each node
knows the predecessor of its predecessor node and
the successor of its successor node in each cycle. 

To detect node failure, the neighboring nodes in
the INSx periodically exchange keep-alive messages
with node X. If node X is unresponsive for a period
T, neighbor nodes presume it has failed. All neigh-
bors of the failed node update their INS sets and
execute the FT() routine (see Figure 2), which con-
nects two nodes around the failed node in the same
cycle and sets the calling node’s predecessor and
successor to the failing node’s predecessor and suc-
cessor, respectively. This maintains the HC as well
as the same number of links for all nodes. 

This technique scales well: a few nodes
exchange messages to detect faults, and fault recov-
ery is local, involving only a few nodes |INSx|. In
addition, this technique maintains the network G
composed of disjoint HCs. If a Hamilton path con-
nects every two nodes of G, then G is Hamilton-
connected.12 Thus, the network is unpartitionable;
to prove this, we construct HC with (M ≥ 5). For
example, if we construct the community network as
a four-regular, four-connected graph (in which each
node has four neighbors), then it should have two
edge-disjoint HCs.13 The community network is thus
a connected graph. Because our proposed fault-tol-
erance technique maintains the HC, the resulting
network is connected and unpartitioned.

ADCC Communication
Most Web browsers use a one-to-one communica-
tion protocol that gobbles up network bandwidth
and leads to unresponsive real-time services. One-
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to-many communication models, which feature a
single group controller, are also an option, but
might not scale well for large groups (thousands
of members) or for dynamic multicast groups that
have frequent joins and leaves.

Further, while several implementations of the
application-level multicast protocol exist,10,14 none
of the current designs scales to large groups. Also,
because conventional unicast and multicast tech-
nologies use the destination address to send data,
they’re not applicable in changing environments
in which joins and leaves are frequent.

The ADCC communication technique aims to
provide 

• code content based on community services to
provide flexibility, and 

• multilateral communication to let members
cooperate and attain mutual benefits in a time-
ly and productive manner.

ADCC will thus offer a scalable and flexible alter-
native to current communication methods. 

Content Coding
Our technique first separates the community ser-
vice’s15 logical identifier from the physical node
address. Rather than specifying the destination
address, the sender sends a message to neighbor
nodes. This message contains three fields. The con-
tent code expresses the topic of interest; the sender
assigns it based on a type of community service, so
that the service can act as a logical node. Examples
include codes for politics, news, and so on. The
characterized code uniquely defines further mes-
sage content details. The final field contains the
data (request) itself. 

Multilateral Communication 
Multilateral communication typically occurs among
community members who are already networked on
a bilateral basis. In our 1→N community commu-
nication,4 the community node asynchronously
sends a message to N neighbor nodes. The neighbor
nodes then forward the message to another N nodes
in the next layer, except the node that delivered the
incoming message; this occurs until all community
nodes have received the message. 

As Figure 2 shows, when a node joins the
community, it executes the listen() routine and
listens to all messages propagated in the communi-
ty network that hold the community content code.
The message’s source calls the Forward_message()

routine, which sends the message to all its neighbors.
As soon as a node receives a message, it also calls
the Forward_message routine, which checks to see
whether the message has been received before. If not,
it sends that message to all neighbors except the
node that delivered it.

Congestion is possible if some community
nodes simultaneously send identical messages. To
avoid this, each node remembers the character-
ized code of recently routed messages, and uses
this to decide autonomously whether to forward
the received messages to neighboring nodes.
Moreover, each node autonomously decides
whether to keep or delete the received message’s
characterized code based on how frequently it
receives such messages.

As this description shows, the 1→N commu-
nication technique does not rely on a central
controller. Each node has its own local informa-
tion and communicates only with N neighbor
nodes. Unlike in IP multicast group address16 or
multicast service nodes,17 our method uses no
global information.

Communication Protocols
Our community communication technique has two
protocols, one based on a hybrid pull–push model
and the other on a request–reply-all model.

In the hybrid pull–push-based protocol, com-
munity members publish new information to all
members using 1→N. A typical application is shar-
ing news information among community members
at a specific time or place (here, we refer only to
moderately sized nonmultimedia content). The
push/pull-based protocol offers an effective solu-
tion to the flash crowd problem as follows. When
community member S downloads interesting con-
tent from the server (such as a news server), she
publishes it to all community members, thereby
relieving the server of the task and distributing the
load among the community nodes. When the
number of nodes increases sharply, the load at
each node increases slightly. The push/pull-based
protocol represents a scalable solution for large-
scale information-dissemination systems. 

When community members want to locate
information, they use the request–reply-all-based
protocol to send request messages. Other members
then cooperate to locate the requested information.
If a node finds no results, it forwards the request to
its neighbor nodes using 1→N. Otherwise, the node
sends its results — such as pointers to information
or the actual content, depending on its size — in a
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reply message to the requesting node and all com-
munity members. The reply-all protocol lets all
members expand their knowledge and experience
without issuing specific requests. This is in keeping
with the community’s goal of multilateral benefits.
The protocol also decreases the per-node traffic by
avoiding multiple requests for the same content.

Contrary to P2P communication techniques, in
1→N community communication, all members
cooperate on a single request to the benefit of all
members. In P2P, peers cooperate only for the uni-
lateral benefit of the requesting member. 

Performance
To evaluate ADCC’s efficiency compared with con-
ventional communication techniques, we use the
following metrics.

• Latency measures the communication delay
from one community node to all others.

• Relative mean-delay penalty defines the ratio
of the mean delay between ADCC and unicast
community nodes as compared to their IP mul-
ticast delay. Essentially, RMDP measures the
increased delay that applications perceive while
using ADCC.

• Stress measures the number of identical mes-
sage copies that a physical link carries. Obvi-
ously, we’d like to keep the link stress on all
links as low as possible.

To evaluate performance, we developed a simula-
tion over a randomly generated network with dif-
ferent communication costs between nodes. In
addition to demonstrating that the ADCC architec-
ture performs well in realistic Internet settings, our
simulation illustrates performance issues related to
large communities. 

Simulation Setup
We ran a simulation on a network topology with
100 routers connected by core links. We used the
Georgia Tech random graph generator18 to gener-
ate the network as a transit-stub model. We
assigned a random link delay of 4 to 12 millisec-
onds to each core link; as computed by the graph
generator, the average core link delay is 13 ms. We
randomly assigned the community end nodes to
core routers, with uniform probability. Each com-
munity end node was directly attached to its
assigned router by a LAN link. We set each LAN
link’s delay to 1 ms. End nodes joined the com-
munity network at a rate of 100 nodes per second

with uniform distribution (that is, one node every
10 ms). The leaving rate was 10 nodes per second
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Figure 2. The join and leave processes. The expression (h → Var)
means that the calling node seeks the value of Var from node h.

Add (A, i)
{

Successor_node := (Calling_node r → s(i));
Edge (Calling_node, A, i);
Edge (A, Successor_node, i); 

}

Edge (B, C, i)
{

( B → rs(i) ) := C ;
( C → rp(i) ) := B ; 

}

Leave ( )
{ // LN is leaving node

For i :=1, …, d in parallel 
do Edge (LN → rp(i),LN → rs(i), i)

}
FT(x, i ) 

{ // x is the failed node in cycle i. 
MyPred := (Calling_node → rp(i));
MySucc := (Calling_node → rs(i));
If (x==MyPred) then

(Calling_node → rp(i)) :=(MyPred → rp(i)); 
If (x==MySucc) then

(Calling_node → rs(i)) := (MySucc → rs(i));
}

Listen(CC) 
{// CC is the community communication content    

code
// The self-variable means the calling node id.

do{
if (rec_message.cc == CC) then self.

Forward_message(rec_message);
} while(1);

}

Forward_message(m)
{// m is the message structure contains 

// the CC, CH and data
If ( self.Not_received_before(m) ) then    

for k ∈ {self. Neighbors} —
{self.received_from(m)}

in asynchronously do
self.SendTo(m, k);

}



with random distribution. The community network
spends four-array connectivity for each end node.

Communication Results
We conducted a simulation to compare ADCC with
unicast and P2P communication technologies. We
constructed a P2P overlay network as a completed
order-regular graph.11 The network construction sce-
nario is as follows. When the majority of joining
nodes connect to the neighbors of a specific node,
the P2P overlay network diameter increases linearly
with the increase in network size. In each simulation
run, we randomly selected one community member
as the source and then evaluated the required com-
munication cost to send a message to all nodes.

For simplicity, Figure 3a shows the results of only
the first 3.5 seconds of the simulation’s 20-second

running time. The figure plots the mean communi-
cation cost (MCC) variations required to send a mes-
sage from one node to all nodes at various points
during the experiment. ADCC showed approximate-
ly 90-percent MCC improvement compared to uni-
cast. Given ADCC’s construction techniques (which
yield a short network diameter), ADCC showed about
70-percent improvement compared to P2P. Figure
3b plots the RMDP variation for both sequential uni-
cast and ADCC. Compared to unicast, ADCC showed
about a 90-percent RMDP improvement.

Construction and Maintenance Overhead
The cost of joining communication is the time
required to forward the join request message with-
in the community network. We ran this simulation
for 20 minutes; as a result, the community net-
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Figure 3. Simulation results. Results for (a) the mean communication cost variations for sending a message from one node
to all nodes, and (b) the RMDP variation for ADCC and sequential unicast, for the first 3.5 seconds of simulation. (c)
Results for construction and maintenance overhead for 5.5 seconds of simulation with 500 members. (d) The physical link
stress variations for ADCC, IP multicast, and naïve unicast.
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work’s size became 108,000 members and the
required communication cost for network con-
struction and maintenance was about 384 ms.

In the simulation, we randomly selected 10 nodes
to leave the network each second by calling the
leave() routine; maintenance costs varied accord-
ing to the cost of communicating to the leaving
node’s successor and predecessor neighbors. Figure
3c shows partial results for 5.5 seconds of simula-
tion with 500 members. The peaks represent the
leaving costs. The results show a logarithmic
increase in communication cost for network con-
struction and maintenance, with standard deviation
approximately equal to 0.0033. Such results indicate
that the network-construction and maintenance
techniques are scalable to a large membership.

Link Stress
To evaluate physical link stress, we used a simulat-
ed community of 300 members. We randomly
selected one member as a source and then evaluat-
ed each physical link, studying the variation in link
stress for ADCC, IP multicast, and naïve unicast (see

Figure 3d). As the figure shows, the stress is at most
one message per physical link for IP multicast. As
expected, most links endure little stress under both
ADCC and naïve unicast. The significance, howev-
er, is in the plots’ tail: under naïve unicast, we mea-
sured stress on a single link at 299, because links
near the source are highly stressed. In contrast,
ADCC distributes the stress more evenly across the
physical links, decreasing the overall link stress
more than 50 percent versus naïve unicast.

Conclusion
We’re currently extending our work on ADCC in sev-
eral directions. Because latency between members is
an important criterion, we’re planning to optimize it
by organizing the community as several subcom-
munities. Each subcommunity will have a leader,
and the latency from any member to the leader will
be bounded by a specific value. We’re now investi-
gating how to construct and maintain these sub-
communities. We’re also studying ways to enhance
communication costs while maintaining acceptable
construction and maintenance overhead.
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Related Work in Data Dissemination Infrastructures

During the past decade,much work has
demonstrated information dissemina-

tion infrastructures’ usefulness to large-
scale distributed systems.

Like Overcast,1 Narada,2 and the
Application-Level Multicast Infrastructure
(ALMI),3 the Autonomous Decentralized
Community Communication system
(ADCC) implements multicast, uses a self-
overlay network, and assumes only unicast
support from the underlying network
layer. Whereas Narada and ALMI are ded-
icated to collaborative applications used
by small groups, however, ADCC is a
framework for collaborative applications
used by large groups.

Scattercast4 and Overlay Multicast Net-
work Infrastructure (OMNI)5 are designed
for global content distribution and media-
streaming infrastructure support, with
proxies deployed across the Internet to
support many clients. For large-scale data
distributions, such as live Webcasts, they
use a single source. In contrast, ADCC
nodes are peers that are organized in a
community network.The community con-

cept is a “real” end-system multicast
approach: The end systems (individual
members) work cooperatively to deliver
the data to the whole community.

ADCC is dedicated for multisender
applications with many participants. It does
not depend on the multicast support by
routers (as in IP multicast) and does not
depend on multicast service nodes (as in
Scattercast and OMNI); such a reliance
clearly constitutes a single point of failure
and entails vulnerability to flash-crowd
problems.

ALMI takes a centralized approach to
the tree-creation problem, which consti-
tutes a single failure point for all the
group’s control operations. In contrast,
ADCC takes a decentralized approach —
no one node knows the total system.6

Scattercast and Narada take a mesh-based
approach, in which every member should
maintain a full list of all other members.
This approach does not scale well. ADCC
scales well to large groups because each
member is required to know only neigh-
boring members.
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