

1

Abstract

The extreme dynamism and the rapidly changing user’s
requirements in current information systems promote imperative
needs for the Autonomous Community Information System
(ACIS) proposition. ACIS is a decentralized architecture that
forms a community of individual end-users (community members)
having the same interests and demands in somewhere, at specified
time. It allows the community members to mutually cooperate and
share information without loading up any single node excessively.
In this paper, an efficient autonomous decentralized community
construction technique is proposed to reduce: the communication
delays among members with take into consideration the latency
among them and the required time to join/leave. This technology
organizes the community members into a hierarchy of
sub-communities. This paper illustrates the step-step construction
technique and the membership management operations for the
proposed hierarchical community structure. In addition, it studies
the community communication among members to quantify and
study the tradeoff between the communication delay and the
membership control (join/leave) overhead.

1. Introduction

Internet services provide large, rapidly evolving, highly
accessed information spaces for anyone, anywhere and
anytime. They are constructed from the service providers
(SP)’ point of view. SPs provide information regardless of
the end-users’ demands and situations (e.g. location and
time). There is no discernment between differences in place
and time; end-users in any situation receive the same
contents. The web-based publish/subscribe has two
traditional models: Pull-model that requires users accesses
to the SP periodically to retrieve new information and
Push-model that requires SP to deliver contents that change
frequently. The pull-model has the following
disadvantages: First, the information users receive may be
not have changed since their last access and even if it has

changed, will often contain a large redundant subset of the
earlier retrieval contents. Second, when a rapid and sharp
surge in the volume of requests arriving at a server often
results in the server being overwhelmed and response times
shooting up. Flash crowds are typically triggered by events
of great interest, whether planned ones such as sport events
(e.g. FIFA 1998 world cup event [1]) or unplanned ones
such as, terrorists attack in September, 11, 2001
overwhelmed major news sites such as MSNBC and CNN
[2]. The push-model fails to take the advantage of the
collaborative power of the Internet, currently, 90% of
Internet resources are invisible and untapped [3]. It often
uses a one-to-many model where the SP is expected to
deliver contents directly to each of the users. Clearly, this
approach has scalability limitations. We believe that the
time has come for an Internet infrastructure for efficient real
time and cooperative content delivery.
 The Autonomous Community Information System (ACIS)
[4] has been proposed as a framework for large-scale
information systems such as content delivery systems.
ACIS is a decentralized architecture that forms a
community of individual end-users (community members)
having the same interests and demands in somewhere, at
specified time. It allows the community members to
mutually cooperate and share information without loading
up any single node excessively. For a productive
cooperation and flexible communication among members
an autonomous decentralized multilateral communication
technique has been proposed [5], [6]. It is a hybrid pull/push
approach, when at least one of the community members has
downloaded an interesting content for the community from
the server (e.g. news server), she/he shares it with all the
community members by forwarding it to all of them.
Overall our results suggest that ACIS can achieve good
performance for large number of members under the
assumption that the communication cost between each node
is one unit of time. The question then is: can ACIS support

A Novel Hierarchical Community Architecture with End-to-End
Delay Awareness for Communication Delay Enhancement

Khaled Ragab, Naohiro Kaji, Khoirul Anwar, Yuji Horikoshi,

Hisayuki Kuriyama and Kinji Mori

Tokyo Institute of Technology
2-12-1 Ookayama, Meguro, Tokyo 152-8552, Japan

Tel: +81-3-5734-2664, Fax: +81-3-5734-2510,
Email: {ragab@mori., nkaji@mori, anwar@mori. horikoshi@mori.,

 kuriyama@mori. mori@}cs.titech.ac.jp

2

large number of members with different communication
cost. The main concern and contribution of this paper is to
answer that question by constructing and maintaining the
community overlay network. The performance of the
community communication could be improved if the
application level connectivity between community nodes is
congruent with the underlying IP-level topology [7]. We
identified that the use of underlying topology awareness
may raise the bandwidth bottleneck problem. Thus, the
communication delay will be increased. ACIS considers
latency between nodes as an important criterion that need to
be optimized. Thus, we have turned to construct the
community network with node-node latency awareness.
The problem of constructing an optimal community
network overlay is known to be NP-hard [8], [9]. In this
paper, an efficient autonomous decentralized community
construction technique is proposed to reduce both the
communication delay of a message that broadcasted to all
community nodes with take into consideration the latency
among them and the required time for membership
management. This technique organizes the community
nodes into a hierarchy of sub-communities as will be
described in section 3. This paper studies the community
communication among members to quantify and study the
tradeoff between the communication delay and membership
control (join/leave) overhead.
The remainder of this paper is organized as follow. Section
2 briefly clarifies the autonomous community information
system concept, the system architecture and communication
technique. Section 3 presents our proposed construction
technique. Section 4 presents the community
communication protocol and evaluation over the
hierarchical structure. We review related work on
application level multicast protocols in section 5. The last
section draws conclusions and future work.

2. Community System, Architecture and
Communication Technology

2.1 Concept

We have identified that the constructive cooperation among
end-users assure the well-customized information service’s
provision and utilization. Blending the spirit of cooperation
in the social communities, and the Autonomous
Decentralized System (ADS) concept [10] [11], we have
proposed the concept of Autonomous Community
Information System (ACIS), [4]. The basis of the ACIS
concept is to provide the information to specific users in
specific place at specific time. On the contrary, current
information systems provide the information to anyone,
anywhere and anytime. Thus, we have defined Autonomous
Community as a place of a coherent group of autonomous
members having individual objectives, common interests

and demands at specified time and somewhere/anywhere.
The community members are autonomous, cooperative and
active actors and they mutually cooperate to enhance the
objectives for all of them timely. In ACIS, each community
member acts both as an information sender and a receiver.
Furthermore, each message from a participant is
meaningful to all the other community members and at the
same time every member is typically interested in data from
all other senders in the community. Contrary to the
peer-peer systems, the communication among the
community members is conducted on multilateral basis, as
will be shown in section 2.3. Community members
cooperate not only for the satisfaction of one of them but
also for all of them. Thus, the average satisfaction rate of M
members is approximately one.

ACIS is a promising concept for information services
operating at the edge of the network. It realizes the
large-scale information system that successfully able to
carry out, and enhance community members’ objectives
(e.g. timely information sharing) in a very dynamic
environment. It guarantees the constructive cooperation and
fairness among the community members with a very high
degree of autonomy among them. We have developed a
system architecture, called Autonomous Decentralized
Community System (ADCS), that fosters the concept of the
autonomous community information system.

A u to n o m o u s C o n tr o lla b ilityA u to n o m o u s C o o r d in a b ility

U n d e r ly in g N e tw o r k

B

C

A

D

E
B C D E

N o n -m e m b e r
M e m b e r

L o g ic a l l in k s

Fig. 1 Autonomous decentralized community system architecture.

2.2 Architecture

The autonomous decentralized community network is a
self-organized logical topology. It is a set of nodes with
considering the bilateral-hierarchy, the symmetric
connectivity and the existence of loops. Community nodes
are networked on a bilateral hierarchy basis. The bilateral
logical contact between two community nodes will occur on
the basis, the users of those nodes have same interests and
demands, at specified time in somewhere. It is likely that in
bilateral contacts, community members are get to know
each other and share information. Each node keeps track of
its immediate neighbors in a table contains their addresses.
Each node knows its neighbor’s nodes and shares this
knowledge with other nodes for forming a loosely
connected mass of nodes. For example, Figure 1 shows that

3

each community node knows only four members. The bold
lines represent the logical bilateral-link among the
community nodes. Each node judges autonomously to
join/leave the community network by creating/destroying
its logical links with its neighbor’s members based on its
user’s preferences. Section 3 will present the proposed
hierarchical structure to manage the community network.

2.3 Autonomous Decentralized Community
Communication Technology

The conventional communication, typically through Web
browsers, has been built on the one-to-one communication
protocol. In one-to-one, data travels between two users, e.g.,
e-mail, e-talk. This protocol gobbles up the network
bandwidth and makes the real time services unresponsive.
In the conventional one-to-many group’s communication
the message travels primarily from a server to multiple
users, e.g., web download and software distribution. For
very large groups (thousands of members) or very dynamic
multicast groups (frequent joins and leaves), having a single
group controller (e.g. Bayeux [12]) might not scale well.

Conventional communication techniques use the
destination address (e.g. unicast address, multicast address)
to send the data. In very changing environment likes ACIS,
the state of the community nodes and the stability of
connections are so unpredictable (i.e. end-users are
frequently joined and left). Obviously, these conventional
communication techniques are not applicable. Thus the
autonomous decentralized community communication
technique has broached [5], to assure a productive
cooperation, a flexible and timely communication among
members. The main ideas behind our proposed
communication technique are: content-code
communication (community service-based) for flexibility
and multilateral communication for timely and productive
cooperation among members.

2.3.1 Service-oriented and Multilateral Community
Communication

The first main idea behind the autonomous decentralized
community communication technique is the separation of
the logical community services’ identifier from the physical
node address [14]. In this communication technique, the
sender does not specify the destination address but only
sends the content/request with its interest Content Code
(CC) to its neighbor’s nodes. CC is assigned on a type of the
community service basis and enables a service to act as a
logical node appropriate for the community service. Figure
2 shows the community communication message format.
CC is uniquely defined with respect to the common interest
of the community members (e.g. politic, news, etc.). The
information content is further specified by its Characterized
Code (CH). The CH is the hash of the message content. It is

uniquely specified with respect to the message content (e.g.
data or request). We can compute it with the collision
resistance hash function (e.g. SHA-1 [13]) that ensures a
uniform distribution of CH.

Fig. 2 Community communication message format.

The second main idea behind the autonomous decentralized
community communication technique is multilateral
communication for timely and productive cooperation [6].
The multilateral communication likely occurs between the
community members that are already networked on a
bilateral basis. All members communicate productively for
the satisfaction for all the community members, as follow.

The proposed communication technique performs the
communication among the community members that has
called “1 N”. A brief scenario of the 1 N community
communication is described as follows. The community
node asynchronously sends a message to each one from N
neighbor’s nodes. Then, those N nodes forward the same
message to another N nodes in the next layer and so on,
until all the community nodes received the message. The
autonomy of the 1 N communication can be seen as
follow. Each community node recognizes autonomously a
member from non-member and judges autonomously to
forward community messages to only N community
neighbor’s nodes. In order to avoid the congestion that may
be happening if some of the community nodes
simultaneously send identical messages, each node keeps a
short memory of the recently routed messages and judges
autonomously to forward only one copy of the received
messages to the other neighbor’s nodes. Moreover, each
node autonomously takes a decision to keep or delete the
short memory of the received message based on the
frequency of receiving such message.

The 1 N communication technology does not rely on
any central controller. Each community node has its own
local information and communicates only with specified
number (N) of the neighbor’s nodes. There is no global
information such as IP multicast group address [15] or
multicast service nodes [9], [16].

2.3.2 Community Communication Protocols

The autonomous decentralized community communication
technology has two communication protocols: hybrid
pull/push based and request /reply-all based.
• Hybrid pull/push based protocol. When one of the

community members has new information (e.g.
downloaded from news server), she/he publishes it to all
the community members using “1 N”. Thus, it offers
an effective solution to the flash crowd and represents a
scalable solution for large-scale information
dissemination systems.

CC CH Data/Request

4

• Request/reply-all based protocol. When a community
member wants to locate information, she/he emits a
request message. Then the others community members
cooperate to locate the requested information. When any
community node receives the requested message, it
processes the request. If no results are found at that node,
the node will forward the request to its neighbor’s nodes
by using “1 N”. Otherwise, the node will produce
results, such as pointers to the information or the whole
content based on the size of the information. Then that
node will send a reply message not only to the node,
which requested the information but also to all the
community members. The reply to all protocol affords
the other community members to send the same request.
Consequently, all the community members enrich their
experiences and/or get to know new services without
requesting, in which individually they cannot get to
know. . In addition, it decreases the traffic per node by
avoiding multiple requests for the same content.

In 1 N multilateral community communication all
members cooperate for the satisfaction of all the community
members, [6], contrary to the peer-peer (P2P)
communication techniques. In P2P, peers cooperate for the
satisfaction of only one, which request the information
(unilateral benefits).

3. Autonomous Decentralized Community
Construction Technique

3.1 Proposed Hierarchical structure

In this section, we propose a hierarchical structure that is
used to manage N nodes currently in the community.
Community nodes are organized in a multi-levels hierarchy
of sub-communities. Si

(j) denotes the sub-community
number i at the level j. Each sub-community Si

(j) has two
special members: Leader and Mediator. The leader Li

(j) is
responsible for membership management of the Si

(j). The
mediator Mi

(j) is responsible for transmitting contents
from/to the Si

(j). The mediator Mi
(j) is one of the neighbors

of Li
(j) that has the smallest communication cost to Li

(j). It
keeps a list of the Leader’ s neighbors. In the
sub-community Si

(j) all nodes have communication delay to
the leader and the mediator that is bounded by a selected
value αi

(j). Thus, the sub-community Si
(j) at level j can be

defined as a set of nodes x0 that satisfy the latency
awareness condition as follows:

;
),(;

),(;

)(
1

)(
10

)(
1

)(
10

)(

2

1

















=≤∑

=∑ ≤

=
−+

−+

jl
im

j
i

path
kk

j
im

path

j
ikk

j
i

Lxifαxxδx

Mxifαxxδx
S

L

A

B
M

C

F
H

G

E I

J

K

P

D

O

N

2

5 3

43

233

4

23

1 2

22
1

2
3

2
3

3

2

1

Fig. 3 An example of sub-community structure

Where δ(X, Y) denotes the currently end-to-end delay from
X to Y measured by round-trip message. Path1= x0,
x1,…,xm=Li

(j) as shown in figure 3 by the doted line from
node k to L through the mediator node M. Path2= x0,
x1,…,xm=Mi

(j) as shown in figure 3 by the gray line from
node I to M through nodes A and the leader node L. Figure 3
shows that the communication delay from any node to the
leader and the mediator in the sub-community is less than or
equal αi

(j) =10ms (i.e. All nodes satisfy the latency
awareness condition). Each sub-community leader Li

(j)
determines αi

(j) autonomously and adapts it to cope with the
changing of the nodes communication delay.

Community nodes are organized in multi-level hierarchy
of sub-communities that recursively defined as follows
(where βj is the number of sub-communities at level j and K
is the number of levels):
1. Level 0 contains all nodes currently in the community. It

is partitioned into β0 sub-communities.
2. Level j+1 contains all leaders of the sub-communities at

level j. It is partitioned into βj+1 sub-communities.
Obviously, βj> βj+1; j=0,1,…k-1.

3. The leaders at level j automatically become members of
a sub-community of leaders at level j+1, if they satisfy
the latency awareness condition at level j+1. For j≥0, the
number of nodes at level j+1 is βj. Level-k has a few
sub-communities (e.g. one or two). Each one contains a
few members.

4. If a node belongs to level j then it must occur in one
sub-community in each of the levels 0,1,… j-1.
Furthermore, any node at a level j>0 must be a leader of
the sub-community it belongs to at every lower level.

5. For any i and j, αi
(j) < αi

(j+1).

This scheme is used to map the community nodes into
levels as can be seen in figure 4. This figure shows that the
hierarchical community structure consists of three levels.
Level 0 contains 13 nodes and organized into six
sub-communities. The sub-communities of leaders at level
0 form level 1 and they are organized into two
sub-communities. Finally, level 2 contains only one
sub-community contains two nodes.

5

Level 1

Level 2

L1L3
L2

L2L5

L5
L6 L4

L5

L6
L4 L3 L2 L1

A

E

CFKG

B

<=10ms

<=30ms
<=30ms

<=60ms

<=28ms <=28ms

<=7ms <=9ms <=12ms <=8ms

<=10ms

S1
(0)

S6
(0)

S1
(1)

S2
(1)

S1
(2)

S2
(0)

Level 0

Community
Fig. 4 Example: Multi-level hierarchy of sub-communities.

3.2 Step-Step Construction

This section illustrates the construction of the community as
hierarchical structure. Figure 5-i shows that node A initiates
the community of an interest, creates a sub-community S1

(0)
and becomes a leader of S1

(0). Then, node B has the same
interest and wants to join the community. Node B sends a
join request to node A. As soon as node A received join
request it checks the round-trip latency to the joining node
B. If the joining node satisfies the latency awareness
condition (δ (A, B)< α1

(0)), then connects B to A by a logical
link. Similarly, the joining node C sends a join request to a
node in the community (e.g. B). This node forwards the join
request to the leader of the sub-community it belongs (e.g.
leader is node A). The leader checks the latency awareness
condition with the joining node. Figure 5-ii shows the join
process of node C where the latency awareness condition is
satisfied. Otherwise, Figure 5-iii shows that the joining
node C, joins the community and becomes a leader of its
own created sub-community S2

(0). Then node C sends a
join_leadersub (S1

(1)) request to the neighbor leader (e.g.
node A). Then this neighbor leader checks if it satisfies the
latency awareness condition at the upper level. If δ
(A,C)< α1

(1)) then C joins the sub-community of leaders
S1

(1) at the upper level otherwise C creates a new
sub-community of leaders S2

(1) at the upper level.
Recursively new joining nodes join the community and
consequently the community hierarchical structure is
constructed.

3.3 Members Join and Leave

This section presents autonomous decentralized algorithms
for community membership management. This approach is
proposed to arrange the set of members into a hierarchical
control topology with take into consideration the latency
awareness condition. As new members join and existing
members leave the community, the basic operations to
create and maintain the hierarchy is required.

A
A B

B join

Latency(A ,B)<α 1
(0) ; A is leader of B

(i)

<α 1
(0)

A B
<α 1

(0)

C <α 1
(0)

Latency(A ,C)<α s1

(ii)

A
B

<α 1
(0)C

Level 0

L evel 1AC
Sub com m unity
of leader

S 1
(0)S 2

(0)

Latency(A ,C)>α 1
(0) and Latency(B ,C)>α 1

(0)

(iii)

α 1
(1)

Jo in_leaderSub

O K

C om m unity

S 1
(1)

Fig. 5 Step-step construction hierarchical community structure.

3.3.1 Join Process: Bottom-up and Top-down

When a node wishes to join the community, ADCS assumes
that the node is able to get at least one community node A
by an out-of-band bootstrap mechanism similar to Narada
[17] and CAN [18]. In this paper we do not address the issue
of the bootstrap mechanism. The joining node (X) sends a
join request to one community node A as shown in figure 6.
The join request is redirected along the hierarchical
community structure bottom-up and top-down in order to
find the appropriate sub-community as follows:

1. Node X sends join request to a node, A belongs to Si
(j)

at level j=0.
2. Node A checks

a) If [δ(X,A) + δ(X, Li
(j))] < αi

(j) Create_link(X,A)
b) Otherwise, forwards join request to Li

(j)
3. Li

(j) checks
a) If δ(X, Li

(j)) < αi
(0) Call join_sub(Si

(j)); exit;
b) Otherwise, Li

(j) forwards join request to the leader
Lu

(j+1) of the sub-community Su
(j+1) at the upper level

where, Li
(j) ∈ Su

(j+1).
4. Set j:= j+1 and then Lu

(j) checks
a) If δ(X, Lu

(j)) < αu
(0) forwards join request down.

b) Otherwise, forwards join request to all members zm
belongs to Su

(j) except zm=Lu
(j).

5. Each node zm checks
a) If δ(X, zm) < αi

(0) zm sends a reply message to Lu
(j)

that contains “ok to join” and δ(X, zm).
b) Otherwise, zm does not send a reply.

6. Lu
(j) waits for a period of time γ to gather replies from

all zm nodes belong to the sub-community Su
(j). There

exist two cases as follows:
a) Lu

(j) receives some replies and selects the one that
has the smallest latency to X. Then, it forwards the
join request down (i.e. set j:= j-1) to the selected
leader that calls join_sub routine

b) Otherwise, Lu
(j) does not receive any reply within

the time-out period γ. Thus, it forwards the join
request to the upper level (i.e. set j:= j+1) and then
repeats steps 4 - 6.

6

Y e s
to p -d o w n

B o tto m -u p

L e v e l 0
α 0 = 1 0 m s

L e v e l 1
α 1 = 2 0 m s

L e v e l 2
α 2 = 4 0 m s

S 1
(0)

S 1
(1)

S 1
(2)

L 1L 3
L 2

L 2L 5

L 5
L 6 L 4

L 5
L 6

L 4 L 3 L 2
L 1

A

E

CFKG

B

< = 1 0 m s

< = 2 0 m s< = 2 0 m s

< = 4 0 m s

< = 2 0 m s < = 20 m s

< = 1 0 m s < = 1 0 m s < = 1 0 m s < = 1 0 m s
< = 1 0 m s

S 6
(0)

S 2
(1)

X
J o in _ re q u e s t

N o

J o in _ s u b (S 4
(0))

Fig. 6 Example: Join process in control tree.

7. The join request will forward from bottom to up and
then top-down until satisfies the latency condition
awareness. Otherwise there is no sub-community
satisfies the latency awareness conditions then creates
a new sub-community contains the joining member.

The join process terminates at level 0 when the joining node
either finds a sub-community (e.g. S4

(0) in figure 6) that
satisfies the latency awareness condition or not. Therefore,
the join overhead is O(β0) in terms of the number of nodes
that must check the latency with the joining node.

3.3.2 Leave/failure Process

When a node X wishes to leave the community, it notifies
its neighbors in the sub-community Si

(0). Li
(0) and Mi

(0) are
the leader and the mediator of Si

(0) respectively. The leave
algorithm will be described as follows:

1. If [(X ≠ Li
(0)) and (X ≠ Mi

(0))] Neighbors of X
remove their links to X. For example, nodes k and G
remove their links to the leaved node N in figure 3.

2. If [(X= Li
(0)) and Li

(0) ∈ levels l0 ,…,lh] The mediator
Mi

(j) becomes a leader (i.e. Li
(j)= Mi

(j) for j=0..h) and
selects a new mediator from its neighbors that has the
smallest latency to it. This process is repeated on
h-levels l0,…,lh.

3. If [(X= Mi
(0)) and Mi

(0) ∈ levels l0 ,…,lh] Each leader
Li

(j) selects a new mediator from its neighbors that has
the smallest latency to Li

(j), where j=0,..,h.
It is also required to consider the difficult case of node
failure. In such a case, failure should be detected locally as
follows. The neighboring nodes periodically exchange
keep-alive message with the node X. If node X is
unresponsive for a period T, it is presumed failed. All
neighbors of the failed node update their neighbor’s sets.
This technique scales well: exchanging messages among
small number of nodes does fault detection, and recovery
from faults is local; only a small number of nodes are
involved. In case of the sub-community leader fails, the
mediator is still working and takes the leader
responsibilities, connects to the leader’s neighbors and
selects another mediator to take its responsibilities.
Therefore, the failure of the leader does not affect the

community service continuity of other nodes. Similarly, in
case of the mediator fails, the leader is still working and can
appoint new mediator quickly. In addition, it is possible that
some nodes failure can cause the community network to
become partitioned. In such case, nodes must first detect the
existence of a partition and then repair it by adding another
links to reconnect the community network.

4. Community Communication on Hierarchy:
Protocol and Evaluation

4.1 Community Communication Technique on
Hierarchical Structure

For an efficient community communication, we create a
hierarchically connected control topology. The content
delivery path is implicitly defined in the way the hierarchy
is structured and no additional route computations are
required. The mediators in this hierarchy play important
roles in this communication technique. A node sends a
message to its neighbors in its sub-community Si

(0) by using
1 N communication. Once the mediator Mi

(0) receives
such message, it forwards the message to all mediators
belong to the sub-community at the upper level. Each
mediator forwards such message to all members in its
sub-community. Each mediator Mi

(j) executes an instance of
the following procedure.

Procedure Hcommunity_comm.(Mi
(j), rf)

{ // Mi
(j) forwards the message that received from rf.

 if (Mi
(j) ∈ levels l0 ,…,lm in sub-communities S (0), …S (m))

for (p = 0,…,m; m ≤ K)
if (rf ∉ S(p))
 ForwardMessageTo (S (p) - { M(p)})
end if
end for

 end if }
Consequently all nodes in the community will receive such
message. Assume all αi

(j)=αi+1
(j) at each level j, where i=1,..,

βj-1 and j=0,..,k. Thus, the transmission time to forward a
message from one community node to all nodes is bounded
by

∑+
−

=

1

0

)()(2
k

j

jk αα (1)

For example, figure 7 shows the message transmission
initiated from node E. Node E sends it to all members in the
sub-community S1

(0), once the mediator M1
(0) received such

message, it forwards the message to all members in the S1
(1).

The mediator M1
(1) forwards the message up to the level 2

and so on. The required sequence to forward the message to
all members in the community through the hierarchical
structure is shown in figure 7 by dotted arrows with index of
order. In this figure, the transmission time is bounded by
100ms. Thus, the hierarchical sub-community approach
considers the heterogeneity of node-node latencies.

7

M 1M 3M 5M 7

M 2M 4M 6M 8

S 1

S 2

S 3

S 4

S 5

S 6

S 7

S 8

C o m m u n ity
Lev

el
0

A
E

C
O

F

K

G

B

H

X

Y

Z

1

Lev
el

2M 8

M 5

M 2

M 3 3
3

4

Lev
el

1

M 1M 3

M 2
M 4M 5M 6

M 7
M 8

2

44

5

α 1
（ 0 ） = 1 0 m s

α 2
（ 0 ） = 1 0 m s

…
α 8

（ 0 ） = 1 0 m s

α 1
（ 1 ） = 2 0 m s

α 2
（ 1 ） = 2 0 m s

α 3
（ 1 ） = 2 0 m s

α 4
（ 1 ） = 2 0 m s

α 1
（ 2 ） = 3 0 m s

Fig. 7 Community communication through Hierarchical structure

It results in a community network clustering of community
nodes into homogenous sub-communities thereby reducing
the communication delay.

4.2 Performance Evaluation
This section presents a preliminary performance evaluation
and a discussion of the tradeoff between join overhead and
the communication delay. In addition, it presents our future
plan for the simulation.

For the sake of simplicity, we assume that each
sub-community at level j has an equal α(j) =αi

(j) for i=1…βj
and α(j+1)= C α(j) ; C>1. We also assume that the maximum
communication latency between any two nodes in the
community network is τ. Thus, τ ≤ βk α(k) τ ≤
βk Cα(k-1) τ ≤ βk C2α(k-2) τ ≤ βk Ckα(0). Then, the
number of levels, k can be determined as follows:

())0(log αβτk kC≥ (2)
For example, assume τ=120ms, βk=2, α(0) =10 and C=2,
then the number of levels, k≈3.

The join overhead is O(β0) in terms of the number of
nodes to contact. It satisfies the following relation.

β0∝1/α(0) (3)
where τ ≤ β0 α(0). Then, as α(0) increases, the join overhead
decreases. Equation (1) shows the upper bound of the
community communication delay on the proposed
hierarchical structure. It can be written as follows:

)2...2(1)0(+++ −kK CCα (4)
Where α(j+1)= C α(j) ; C is constant and C>1.
The previous equation number 4 shows that if α(0) increases
then the number of levels, k decreases and consequently the
communication delay among community nodes increases.
Thus, the increasing of α(0) leads to increase the
communication delay and decrease the join overhead. This
relation presents a tradeoff between the join overhead and
the community communication delay. Now we are
developing a simulation in order to show the effectiveness
of our proposition and study this tradeoff. We are using the
GT-ITM generator [21] to create 1,000 routers transit-sub
graph as our underlying network topology. The routers will
not run the code to construct and maintain the community

network. In contrast, this code will be run on 100,000
end-nodes that will be randomly designated to routers with
uniform probability. Our assumption likes [17], the
end-nodes are connected by LAN link to its designated
routers. Now we are developing ACIS over end-nodes for
the sake of how to join and leave the ACIS network with
achieving the latency awareness condition.

5. Related Work
ACIS, like Overcast [19], Narada [17] and ALMI [20],
implement multicast, uses a self-organizing overlay
network and assume only unicast support from the
underlying network layer. Narada and ALMI target
collaborative applications with a small number of group
members. However, ACIS is a framework for collaborative
applications with a large number of group members. ALMI
is centralized overlay construction protocol that uses the
tree-first approach. In this approach, a shared content
delivery tree is constructed. It relies on a recursive
algorithm to enhance the tree. Clearly, it constitutes a single
point of failure for all control operations related to the group.
Narada is distributed overlay construction protocol that uses
the mesh-first approach. In this approach, every member
should keep a full list of all other members. Therefore, both
ALMI and Narada approaches do not scale well to the large
group sizes. In contrast, ACIS takes a decentralized
approach: no node knows the total system as shown in
section3. In addition, ACIS creates a control hierarchical
topology with considering the latency awareness condition.
The content delivery path is implicitly defined on this
hierarchical topology. Thus, the ACIS is scalable for large
number of members.

Scattercast [9] and OMNI [16] are designed for global
content distribution. They argue for infrastructure support,
where proxies are deployed in the Internet to support large
number of users. For large-scale data distributions, such as
live web casts, a single source exists. In contrast in the
ACIS, the nodes are considered to be equal peers and are
organized in the community network. The community
concept is a “real” end-system multicast approach. The
end-systems (autonomous members) work cooperatively to
deliver the data on the whole community members. ACIS is
dedicated for multi-sender applications with large number
of participants. It does not depend on the multicast support
by the routers (e.g. IP multicast) and does not depend on the
multicast service nodes MSNs (e.g. Scattercast and OMNI).
A rapid and sharp surge in the volume of requests arriving
at MSN often leads to a flash crowd. Clearly, MSN
constitutes a single point of failure for information
provisions to the group. Scattercast, like Narada takes a
mesh-based approach to the tree creation problem.
Therefore, Scattercast does not scale well to the large group
sizes. In the other side, the ACIS scales well to the large
number of members because each member is required to

8

know a small number of other members (neighbors). The
proposed community information system (ACIS) is a
framework for both information sharing and large-scale
data distribution applications. A comparison of different
application level multicast systems with the community
system is tabulated in table 1.

Table 1: Application level multicast systems
 Control approach Overlay

structure
Group

size Senders

ALMI Centralized
Tree-first Peers Small Multi

NARADA Distributed
Mesh-first Peers Small Multi

Scattercast Distributed
Mesh-first MSNs Small Single

OMNI Distributed
Tree-first MSNs Small Single

ACIS
Decentralized

Loosely control
Implicit-approach

Autonomous
Members Large Multi

Some other recent projects like CAN [18] have also
addressed the scalability issue in creating the overlay
network. CAN defines a virtual d-dimensional Cartesian
coordinate space, and each node owns a part of this space.
Both ACIS and CAN nodes maintain constant state for
other members and as a result exchange a constant number
of periodic messages. However, this overhead in Bayeux is
logarithmic.

6. Conclusion
This paper considers latency between community nodes as
an important criterion that need to be optimized. For that
reason an autonomous decentralized community
construction technique is proposed. It organizes the
community as a number of sub-communities. Each
sub-community has a leader and a mediator. The latency
from any node to the leader and the mediator is bounded by
specific value α. To reduce both the communication delay
among community nodes and the join overhead, this paper
has presented a novel hierarchical structure of
sub-communities. Furthermore, this paper has studied how
to construct and maintain sub-communities.
 We are currently extending this work in several
directions. First, the frequent joining and leaving makes
imperative needs for an adaptable hierarchical structure. To
do that each sub-community leader must adapt these
changes by adapting the value α. As a result, the
sub-community has to be divided into ones with small α, or
be merged with another ones to form a sub-community with
large α. Second, due to the congestion in the network the
latency from node to node may change dynamically. It is
required that each node detects the communication delay to
receive contents in the community. Thus, each node judges
autonomously to leave the sub-community and rejoin
another one to enhance its communication delay. Finally,
we are developing a simulation to show the effectiveness of
our proposed techniques.

 7. References
[1] Martin Arlitt, Tai Jin, “Workload Characterization of the 1998 World

Cup Web Site,” Hewlett Packard Co. 1999.
[2] J. Jung, B. Kirshanmurthy, and M. Rabinovich, “Flash Crowds and

Denial of Service Attacks: Characterization and Implications for
CDNs and Web Sites”, The 11th Int. World Wide Web Conference,
WWW2002, Hawaii, USA, May, 2002.

[3] R. Dornfest, “Dark Matter, Sheep and the Cluster: Resolving
Metaphor Collision in P2P,” The O'Reilly Peer-to-Peer and Web
Services Conference Washington, D.C., November 5-8, 2001

[4] K. Ragab, T. Ono, N. Kaji, K. Mori, “ Autonomous Decentralized
Community Concept and Architecture for a Complex Adaptive
Information System,” Proc. IEEE FTDCS, Puerto Rico, May 2003.

[5] K. Ragab, T. Ono, N. Kaji, K. Mori, “Community Communication
Technology for Achieving Timeliness in Autonomous Decentralized
Community Systems,” Proc. IEEE IWADS, Beijing, China, pp 56-60,
Nov., 2002.

[6] K. Ragab N. Kaji, K. Moriyama, K. Mori, “Scalable Multilateral
Communication Technique for Large-Scale Information Systems,"
Proc. IEEE COMPSAC 2003, Nov., 2003, Dallas, USA.

[7] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
“Topologically-aware overlay construction and server
selection,” INFOCOM, New York, New York, June 2002.

[8] M.R. Garrey and D.S. Johnson, “Computers and Intractability: A
Guide to the Theory of NP-completeness,” W. H. Freeman and
Company, San Francisco, CA, 1979.

[9] Y. Chawathe. Et al., “Scattercast: An Architecture for Internet
Broadcast Distribution as an Infrastructure Service," Ph.D Thesis,
University of California, Berkeley, Dec. 2000.

[10] K. Mori, “Autonomous Decentralized Systems: Concept, Data Field
Architecture and Future Trends,” Proc. of the first Int. Sym. On ADS,
(ISADS'93), IEEE, Kawasaki, Japan, pp. 28-34, 1993.

[11] K. Mori, H. Ihara, et al., “Autonomous Decentralized Software
Structure and its Application,” Proc. IEEE FJCC'86, pp.1056-1063.
November 1986.

[12] S. Q. Zhuang, B. Y. Zhao, A. D. Hoseph, R. H. Katz and J. D.
Kubiatowicz, “Bayeux: An Architecture for Scalable and Fault
tolerant Wide-area Data Dissemination,” In Proc. Of the 11th Int.
Workshop on Network and Operating Systems Support for Digital
Audio and Video (NOSSDAV), June 2001.

[13] FIPS 180-1 Secure hash standard. Technical Report Publication
180-1, Federal Information Processing Standard (FIPS), National
Inst. Of Standards and Technology, US Dept of Commerce,
Washington D.C., April 1995.

[14] K. Ragab N. Kaji, K. Mori, “Service-Oriented Autonomous
Decentralized Community Communication Technique for a
Complex Adaptive Information System," Proc. IEEE/WIC WI 2003,
Oct. 2003, Halifax, Canada.

[15] S. Deering and D. Cheriton, “Multicast routing in datagram
internetworks and extended LANs,” ACM Trans. on Computer
Systems, 8(2):85-110, May 1990.

[16] S.Banerjee et al.,"Construction of an Efficient Overlay Multicast
Infrastructure for Realtime Applications," Proc. of IEEE INFOCOM
2003.

[17] Y. H. Chu, S. G. Rao, and H. Zhang, “A case for end system
multicast,” in Proc. Of ACM Sigmetrics, June 2000, pp. 1-12.

[18] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, “A
Scalable Content-Addressable Network,” Proc. Of SIGCOMM’01,
California, USA.

[19] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and J. W.
O’toole. “Overcast: Reliable Multicasting with as n Overlay
Network,” In Proc. Of the Fourth Symposium on Operating System
Design and Implementation (OSDI), pages 197-212, Oct. 2000.

[20] D. Pendarakis, S. Shi, D. Verma and M. Waldvogel, “ALMI: an
application level multicast infrastructure”, In Proc. of 3rd Usnex
Symp. on Internet Technologies and Systems (USITS), March 2001.

[21] E. W. Zegura, K. Calvert, and S. Bhattacharjee, “How to model an
internetwork” in Proc. of IEEE Infocom, 1996, San Francisco.

