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Abstract 
Autonomous Decentralized Community Communication System 
(ADCCS) is a decentralized architecture that forms a community 
of individual and autonomous end-users (community members) 
having the same interests and demands in somewhere, at specified 
time. It enables them to mutually cooperate and share information 
without loading up any single node excessively. ADCCS does not 
seize the advantage of heterogeneity of the community 
nodes-nodes latencies. Thus, this paper proposes 
ADCCS-Multilayer. It is an autonomous decentralized multi-layer 
community overlay network that enhances the communication 
delay among the community members. This paper presents an 
efficient step-step construction technique to reduce both the 
communication delays among members and the required time to 
join/leave. Experimental results show that ADCCS-Multilayer 
enhances the community communication delay. 

1. Introduction 

Current Internet information services (e.g. Web-based 
publish/subscribe) provide services for anyone, anywhere 
and anytime. The service providers (SP) provide 
information regardless of the end-users’ demands and 
situations (e.g. location and time). Users in any situation 
receive the same contents. We believe that the time has 
come for an Internet infrastructure that provides large, 
rapidly evolving, customized, highly accessed information 
spaces for specific end-users, in specific time and location. 

The web-based publish/subscribe has two traditional 
models: Pull-model that requires users accesses to the SP 
frequently to retrieve new information and Push-model that 
is required by SP to deliver contents that change frequently. 
Each of these models has disadvantages. With the pull 
model, users might access information and find that it’s 
unchanged since their last access or that it contains a large, 
redundant subset of earlier content retrievals. This model is 
also vulnerable to flash crowds – rapid, sharp surges in 
requests that overwhelm the server and dramatically 
increase response time. For its part, the push-model often 
uses a one-to-many model in which the SP delivers contents 
directly to each user. Clearly, this approach has scalability 
limitations.  

To address the drawbacks of the pull and push models, 
based on the success of the Autonomous Decentralized 

System (ADS) [1, 2, 3], we have designed an Autonomous 
Decentralized Community Communication System 
(ADCCS) [4] as a framework for large-scale information 
systems such as content delivery systems. ADCCS forms a 
community of individual members having the same 
interests and demands in somewhere, at specified time. It 
allows the members to mutually cooperate and share 
information without loading up any single node excessively. 
For a productive cooperation and flexible communication 
among members an autonomous decentralized multilateral 
communication technique has been proposed [5]. It is a 
hybrid pull/push approach, when at least one of the 
community members has downloaded an interesting 
content for the community from the server (e.g. news 
server), she/he shares it with all the community members by 
forwarding it to all of them. Overall our results suggest that 
ADCCS can achieve good performance for large number of 
members under the assumption that the communication cost 
between each node is one unit of time [4]. While in reality 
the latencies from nodes-nodes are different. The question 
then is: can ADCCS support large number of members with 
different communication cost. The main concern and 
contribution of this paper is to answer this question. It 
describes and evaluates an approach for constructing and 
maintaining an autonomous Community Overlay Network 
(CON). The performance of the communication could be 
improved if the CON is constructed with node-node latency 
awareness. In this paper, we propose the CON’s 
construction technique to reduce both the communication 
delay of a message that broadcasted to all community nodes 
with considering the latency among them and the required 
time for membership management.  

The remainder of this paper is organized as follow. 
Section 2 briefly clarifies the ADCCS concept and the 
system architecture. Section 3 presents the proposed 
construction technique. Section 4 presents the community 
communication techniques. The evaluation and the 
simulation results of this communication protocol over the 
ADCCS-Multilayer are described in section 5. We review 
related work on application level multicast protocols in 
section 6. The last section draws conclusion. 
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Fig. 1 ADCCS-Multilayer: architecture. 

2. ADCCS 

2.1 Concept 
The ADCCS technology [4] has been proposed on the basis 
of the Autonomous Decentralized System (ADS) concept 
[2] [3]. The basis of the ADCCS is to provide the 
information to specific users in specific place at specific 
time (for example when a particular Mall holds a sale at 
specific time [6]). In contrast, current information systems 
provide the information to anyone, anywhere and anytime. 
The Autonomous Community is a communication 
environment for coherent group of autonomous members 
having individual objectives, common interests and 
demands at specified time and somewhere/anywhere. The 
community members are autonomous, cooperative and 
active actors and they mutually cooperate to enhance the 
objectives for all of them timely. In ADCCS, each member 
plays a dual role as an information sender and receiver. 
Furthermore, each message from a participant is 
meaningful to all other members and at the same time every 
member is typically interested in data from all other senders 
in the community. Community members cooperate not only 
for the satisfaction of one of them but also for all of them. 

2.2 Architecture 
The CON is a self-organized logical topology. It is a set of 
nodes with considering the existence of loops. It organizes 
the community nodes into multi-level of sub-communities 
[7]. The i-th sub-community at level j is denoted by Si

(j). 
Leader is a special member of Si

(j) that is responsible for 
membership management of the Si

(j). Each level j+1 
contains leaders of all Si

(j) at level j. Figure 1 shows a CON 
that contains five sub-communities in level 0, two sub- 
communities in level 1 and one sub-community in level 2.  

In figure 1, the bold lines represent the logical link 
among the community nodes. Each node judges 
autonomously to join/leave the community network by 
creating/destroying its logical links with its neighbor’s 
nodes based not only on the node latency with its neighbors, 
but also on its user’s preferences. Each node keeps track of 
its neighbors in a table that contains their addresses. Each 
node knows its neighbors and shares this knowledge with 
other nodes for forming a loosely connected mass of nodes. 
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Fig. 2 An example of sub-community structure 

3. Autonomous Decentralized Community 
Construction Technique 

To take advantage of the heterogeneity of the community 
nodes-nodes latencies, this section describes the proposed 
construction technique. It organizes the community 
network into multi-levels of sub-communities. 

3.1 Sub-Community 

3.1.1 Definition and structure 
Each sub-community Si

(j) has two special members: Leader 
and Mediator. The leader Li

(j) is responsible for 
membership management of the Si

(j). The mediator Mi
(j) is 

responsible for transmitting contents from/to the Si
(j). The 

mediator Mi
(j) is one of the neighbors of Li

(j) that has the 
smallest latency to Li

(j). It keeps a list of the Leader’ s 
neighbors. Each node belongs to the Si

(j) has 
communication delay to the leader and the mediator that is 
bounded by a selected value αi

(j). Thus, Si
(j) at level j can be 

defined as a set of nodes x0 that satisfies the Latency 
Awareness Condition (LAC) as follows:  
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Where δ(X, Y) denotes the current round-trip end-to-end 
delay from X to Y. The dotted line in figure 2 represents the 
Path1= x0, x1,…,xm=Li

(j) from node x0=k to L through the 
mediator node M. The gray line in figure 2 represents the 
Path2= x0, x1,…,xm=Mi

(j) from node x0=I to M through node 
A and leader node L. Figure 2 shows that the 
communication delay from any node to the leader and the 
mediator in the sub-community is less than or equal αi

(j) 

=10ms. Each leader Li
(j) autonomously determines αi

(j) and 
adapts it to cope with the changing of the nodes 
communication delays. We conclude that the sub- 
community is a set of nodes with considering LAC, existing 
of loops and bounding node’s connectivity by π. 

3.1.2 Sub-community Step-Step Construction 
To construct the Si

(j) step-step, we have developed a 
join_sub(X, Si

(j)) routine. It inserts the new node X to the Si
(j). 

The join_sub scenario is as follows. The leader Li
(j) of the 

Si
(j) forwards join-request to its neighbors and then waits 

their replies. As soon as a node received the join–request, it 
processes the instance of the procedure Node_joinCheck 
that is given in figure 3, to decide autonomously the new 
node X can connect to itself or not. As soon as, the leader of 
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the Si
(j) received some replies, it selects the nodes that have 

the smallest latency to X and then X connects to at most π 
nodes from them. 

Procedure Node_joinCheck(X, rf) 
{ // X: new joining node and rf: received from node.  
Id:=my_node_id; 
If (connectivity(Id) >π) 
 Forward(join-request(X), {neighbors{Id}- {rf}}); 
Else 
 { // Path={x0=Id, x1, …,xm=Li

(j)} 
);,(),( 1 XIdδxxδτ

Pathx
ii

i

+∑=
∈

+  

 if (τ < αi
(j))  Send(Li

(j),”Ok to join”,τ); } } 
Fig. 3 Node_joinCheck operation at each node 

3.2 Proposed Multi-layer structure 

The ADCCS-Multilayer structure organizes CON into 
multi-level of sub-communities [7] as follows: 

1. Level 0 contains all nodes that are currently partaking in 
the community. It is partitioned into β0 sub- 
communities. 

2. Level j+1 contains all leaders and mediators of the 
sub-communities at level j. It is partitioned into βj+1 
sub-communities. Obviously, βj> βj+1; j= 0, 1, …k-1. 

3. The leaders/mediators at level j automatically become 
members of the sub-community of leaders/mediators at 
level j+1, if they satisfy the LAC at level j+1. For j≥0, 
the number of nodes at level j+1 is βj. Level-k consists 
of a few sub-communities (e.g. one or two). Each 
sub-community contains a few members. 

4. If a node belongs to level j then it must be in one 
sub-community in each of the levels 0, 1, … j-1. 
Furthermore, any node at level j>0 must be a leader/ 
mediator of the sub-community and belongs to all lower 
levels.  

5. For any i and j, αi
(j) < αi

(j+1). 
Where βj is the number of sub-communities at level j and K 
is the number of levels. This scheme is used to map the 
community nodes into levels as shown in figures 1 and 5.  
3.2.1 Step-Step Construction 
This section illustrates the step-step construction of the 
ADCCS-Multilayer. Figure 4-i shows that node A initiates 
the community of an interest, creates a sub-community S1

(0) 
and becomes a leader of S1

(0). Then, node B wants to join 
the community and then sends join request to node A. As 
soon as, node A receives join request it checks the 
round-trip latency to the joining node B. If the joining node 
satisfies the LAC (δ (A, B)< α1

(0)), then A connects B via a 
logical link. Similarly, the joining node C sends a join 
request to a node in the community (e.g. B). Node B 
forwards the join request to the leader of the 
sub-community it belongs (e.g. leader is node A). The 
leader checks if the joining node satisfies the LAC or not. 
Figure 4-ii shows the join process of node C when the LAC 
satisfied. Otherwise, Figure 4-iii shows that the joining 

node C, joins the community and becomes a leader of its 
own created S2

(0). Then, node C sends a join_leadersub 
(S1

(1)) request to the neighbor leader (e.g. node A). Then, A 
checks if C satisfies the LAC at the upper level or not. If 
δ(A,C)< α1

(1)) then C joins the sub-community of leaders 
S1

(1) at the upper level otherwise C creates a new 
sub-community of leaders S2

(1) at the upper level. 
Recursively, new nodes join the community and 
consequently the ADCCS-Multilayer is constructed.  
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Fig. 4 Step-step construction multi-layer CON structure. 

3.3 Members Join and Leave 

As new members join and existing members leave the 
community, the basic operations to create and maintain the 
ADCCS-Multilayer structure is required. This section 
presents autonomous decentralized algorithms for 
community membership management. This approach is 
proposed to arrange the set of members into a multi-layer 
control topology with considering the latency awareness 
condition.  
3.3.1 Join Process: Bottom-up and Top-down 

Similar to Narada [8], ADCCS-Multilayer is able to get at 
least one community node A by an out-of-band bootstrap. 
The joining node X sends a join request to one node A as 
shown in figure 5. The join request is redirected along the 
multi-layer CON structure bottom-up and top-down to find 
the appropriate sub-community as follows: 

1. Node X sends join request to node A that belongs to Si
(j) 

at level j=0. 
2. Node A checks  

a) If [δ(X,A) + δ(X, Li
(j)) ] < αi

(j)  Create_link(X,A) 
b) Otherwise, forwards join request to Li

(j) 
3. Li

(j) checks  
a) If δ(X, Li

(j)) < αi
(0)  Call join_sub(X, Si

(j)); exit; 
b) Otherwise, Li

(j) forwards join request to the leader 
Lu

(j+1) of the sub-community Su
(j+1) at the upper 

level, where Li
(j) ∈ Su

(j+1). 
4. Set j:= j+1 and then  Lu

(j) checks 
a) If δ(X, Lu

(j)) < αu
(0)  forwards join request down. 

b) Otherwise, forwards join request to all members zm 
belongs to Su

(j) except zm=Lu
(j). 

5. Each node zm checks  
a) If δ(X, zm) < αi

(0)  zm sends a reply message to 
Lu

(j) that contains “ok to join” and δ(X, zm). 
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b) Otherwise, no node from zm send any reply 
message to Lu

(j). 
6. Lu

(j) waits for a period of time γ to gather replies from 
all zm nodes belong to the Su

(j). Then, two cases exist as 
follows. 
a) Lu

(j) receives some replies and selects one that has 
the smallest latency to X. Then, it forwards the join 
request down (i.e. set j:= j-1) to the selected leader that 
calls join_sub() routine. 
b) Otherwise, Lu

(j) does not receive any reply within 
the time-out period γ. Thus, it forwards the join 
request to the upper level (i.e. set j:= j+1) and then 
repeats steps 4 - 6. 

7. The join request is forward from bottom to up and then 
top to down until the LAC is satisfied. Otherwise, there 
is no sub-community satisfies the LAC then a new 
sub-community containing the joining node is created. 

The join process terminates at level 0 when the joining node 
either finds a sub-community (e.g. S4

(0) in figure 5) that 
satisfies the LAC or not. Therefore, the join overhead is 
O(β0) in terms of the number of nodes that must check the 
latency with the joining node. 

This construction technique reflects that each node takes 
the decision autonomously based on its local information 
and there is no specific server that is responsible for 
membership management. Thus, the proposed construction 
technique is scalable for large number of nodes. 
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Fig. 5 Example: Join process in control tree. 

3.3.2 Leave/failure Process 

When node X wants to leave the community, it notifies its 
neighbors in the Si

(0). Li
(0) and Mi

(0) are the leader and the 
mediator of Si

(0) respectively. The leave algorithm is 
described as follows: 

1. If [(X ≠ Li
(0)) and (X ≠ Mi

(0))]  Neighbors of X remove 
their links to X. For example, nodes k and G remove 
their links to the leaved node N in figure 2. 

2. If [(X= Li
(0)) and Li

(0) ∈ levels l0 ,…,lh]  Each mediator 
Mi

(j) becomes leader (i.e. Li
(j)= Mi

(j)), where j=0,..., h. 
Then, each leader selects a new node that has the 
smallest latency to its neighbors and assigns it as a new 
mediator. This process is repeated on h-levels l0 ,…,lh. 

3. If [(X= Mi
(0)) and Mi

(0) ∈ levels l0 ,…,lh]  Each leader 
Li

(j) selects a new mediator from its neighbors that has 
the smallest latency to Li

(j), where j= 0, ..., h.  

It is also required to consider the difficult case of node 
failure. In such case, failure should be detected locally as 
follows. The neighboring nodes periodically exchange 
keep-alive message with node X. If X is unresponsive for a 
period T, it is presumed failed. All neighbors of the failed 
node update their neighbor’s sets. This technique scales 
well: exchanging messages among small number of nodes 
does fault detection, and recovery from faults is local; only 
a small number of nodes are involved. If the leader of the 
sub-community fails and the mediator is still working then 
the mediator takes the leader responsibilities, connects to 
the leader’s neighbors and selects another mediator to take 
its responsibilities. Therefore, the failure of the leader does 
not affect the community service continuity of other nodes. 
Similarly, when mediator fails, the leader is still working 
and can appoint new mediator quickly.  

4. Community Communication  

4.1 Autonomous Decentralized Community 
Communication Technique 

The conventional communication has been built on the 
one-to-one and one-to-many group’s communication 
protocols. Currently, there is no design for the application- 
level multicast protocol that scales to thousands of members 
(e.g. Overcast [10], Scattercast [9], Narada [8] and ALMI 
[11]). Conventional communication techniques use the 
destination address (e.g. unicast address, multicast address) 
to send the data. They are not applicable in very changing 
environment likes ADCCS (i.e. end-users are frequently 
join and leave). Thus, the following communication 
technique has broached [5], [4].  
4.1.1 Service-oriented and Multilateral Community 
Communication 
The service-oriented community communication technique 
separates the logical community services’ identifier from 
the physical node address [4]. Thus, the sender does not 
specify the destination address but only sends the 
content/request with its interest Content Code (CC) to its 
neighbor’s nodes. CC is assigned on a type of the 
community service basis and enables a service to act as a 
logical node appropriate for the community service. Figure 
6 shows the community communication message format. 
CC is uniquely defined with respect to the common interest 
of the community members (e.g. politic, news, etc.). The 
information content is further uniquely specified by its 
Characterized Code (CH). 

 

Fig. 6 Message format. 

In the multilateral community communication [4], all 
members communicate productively for the satisfaction for 
all members contrary to the peer-peer (P2P) communication 
techniques, as follow.  

The community communication technique performs the 
communication among the community members that has 

CC CH Data/Request 
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called “1 N”. A brief scenario of the 1 N community 
communication is described as follows. The community 
node asynchronously sends a message to each one from N 
neighbor’s nodes. Then, these N nodes forward the same 
message to another N nodes in the next layer and so on, 
until all nodes in the community communication tree 
received the message. The 1 N technique has two 
protocols [4]: hybrid pull/push based and request /reply-all 
based.  The first offers an effective solution to the flash 
crowd and represents a scalable solution for large-scale 
information dissemination systems. The second presents a 
scalable service discovery technique. The 1 N technique 
does not rely on any central controller. Each community 
node has its own local information and communicates only 
with specified number (N) of the neighbor’s nodes. There is 
no global information such as IP multicast group address 
[12] or multicast service nodes [9]. We present further 
details of 1 N over a CON that is constructed as k-regular 
overlay network (ADCCS) in [4], [5], where N=k-1. 

4.2 Community Communication Technique on 
Multi-layer Structure 
For an efficient community communication, we create a 
multi-layer connected control topology. The content 
delivery path is implicitly defined in the way the multi-layer 
hierarchy is structured and no additional route computations 
are required. The mediators in this structure play important 
roles in this communication technique. A node sends a 
message to its neighbors belong to Si

(0) by using 1 N. 
Once the mediator Mi

(0) receives that message, it forwards 
the message to all mediators belong to the sub-community 
at the upper level. Each mediator forwards that message to 
all members in its sub-community and executes an instance 
of the following procedure. 

Procedure Hcommunity_comm.(Mi
(j), rf) 

{  // Mi
(j) forwards the message that received from rf. 

if (Mi
(j) ∈ levels l0 ,…,lm in sub-communities S (0), …S (m)) { 

for (p = 0,…,m; m ≤ K)  
if (rf ∉ S(p))  

ForwardMessageTo (S (p) - { M(p)}) 
}   } 

Consequently all nodes in the community will receive such 
message. Assume all αi

(j)=αi+1
(j) at each level j, where i=1,.., 

βj-1 and j=0,..,k. Thus, the transmission time to forward a 
message from a node to all nodes is bounded by  

∑+
−

=

1

0

)()( 2
k

j

jk αα  

Thus, the ADCCS-Multilayer approach considers the 
heterogeneity of node-node latencies. It results in a CON 
clustering of nodes into homogenous sub-communities 
thereby reducing the communication delay. 

5. Performance 

5.1 Metrics 
To evaluate the community communication technique over 
ADCCS-Multilayer and compare it with ADCCS [4], [5] 
and the conventional communication techniques; we use the 

following metrics that show the effectiveness of the 
proposed multi-layer construction techniques.  
• Latency measures the communication delay from a 

community node to all others community nodes. 
• Relative Mean Delay Penalty (RMDP) measures the 

increased delay that applications perceive while using 
ADCCS-Multilayer and ADCCS. 

• Stress measures the number of identical copies of a 
message carried by a physical link. Obviously, we’d like 
to keep the link stress on all links low as possible. 

5.2 Simulation 
We set the simulation’s parameters as follows. The Georgia 
Tech [13] random graph generator using the transit-stub 
model is used to construct a network topology with 100 
routers linked by core links. Random link delay of 4-12ms 
was assigned to each core link. The community end-nodes 
were randomly assigned to routers in the core with uniform 
probability. Each community end-node was directly 
attached by a LAN link to its assigned router. The delay of 
each LAN link was set to be 1ms. End-nodes join/leave the 
CON with random distribution as had shown in figure 7-a. 
It shows the variations of the community network size with 
the simulation time. The CON spends 4-array connectivity 
for each end-node and it is organized into two levels (i.e. set 
k = 2). Each sub-community leader Li sets α(0) = 4ms, 
approximately less than or equal Minimum(τij), where Li is 
connected to router i and τij is the communication cost from 
router i to router j. As a result it is expected that the 
communication cost on ADCCS-Multilayer be close to the 
IP-Multicast. 
5.2.1 Communication Results 
We have conducted a simulation to compare ADCCS [4], 
ADCCS-Multilayer with unicast. In each run of the 
simulation, one community member is picked as source at 
random and then the required communication cost to send a 
message to all nodes is evaluated. We ran this simulation 
for 20 minutes, for the sake of the simplicity; figure 7-b 
shows only the simulation results of the first 3.5 Seconds 
from the simulation running time. It plots the variations of 
the Mean Communication Cost (MCC) required to send a 
message from a node to all nodes participated at each 
instance of time during the experiment. ADCCS-Multilayer 
has shown about 39% improvement of the MCC compared 
with ADCCS and 93% compared with unicast. We argue 
that ADCCS-Multilayer shows 39% imprecision compared 
with ADCCS to the proposed latency-awareness 
multi-layer structure of sub-communities. In addition, 
figure 7-c plots the variation of RMDP for sequential 
unicast, ADCCS and ADCCS-Multilayer. The vertical axis 
represents a given value of RMDP associated with the 
community network size in log-scale presentation. 
ADCCS-Multilayer shows about 94% improvement of the 
RMDP to unicast and about 39% imprecision to ADCCS of 
the RMDP. From these results we conclude that the 
ADCCS-Multilayer enhance the community 
communication compared to the ADCCS.  
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 5.2.2 Link Stress 
We have conducted our experiment with a community size 
300 members. One of the members picked as source at 
random and we evaluate the stress of each physical link. We 
study the variation of physical link stress under 
ADCCS-Multilayer, ADCCS, IP Multicast and naïve 
unicast as shown in figure 7-d. The horizontal axis 
represents stress and the vertical axis represents the number 
of physical links with a given stress. The stress is at most 1 
for IP Multicast. Under ADCCS-Multilayer, ADCCS and 
naïve unicast, most links have a small stress-this to be 
expected. However, the significant lies in the tails of the 
plots. Under naïve unicast, one link has stress 299. This 
because that links near the source have high stress. 
However, ADCCS-Multilayer and ADCCS distribute the 
stress more evenly across the physical links. 
ADCCS-Multilayer has about 73% improvement over 
naïve unicast. ADCCS has about 55% improvement over 
naïve unicast. We argue that ADCCS-Multilayer has high 
improvement ratio than ADCCS to the multi-layer structure 
that is aware with the latency among the community nodes. 

6. Conclusion  

This paper presents the step-step construction and 
maintenance technique of the latency awareness 
ADCCS-Multilayer structure. This structure reduces both 
the communication delay among community nodes and the 
join overhead. Furthermore, it presents the simulation 
results that show the effectiveness of the proposed 
technologies.  
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Fig. 7-a Variation of Community network size per time. 
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Fig. 7-c RMDP: Comparison 
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Fig. 7-d Physical link stress 


