

1

Abstract
Autonomous Decentralized Community Communication System
(ADCCS) is a decentralized architecture that forms a community
of individual and autonomous end-users (community members)
having the same interests and demands in somewhere, at specified
time. It enables them to mutually cooperate and share information
without loading up any single node excessively. ADCCS does not
seize the advantage of heterogeneity of the community
nodes-nodes latencies. Thus, this paper proposes
ADCCS-Multilayer. It is an autonomous decentralized multi-layer
community overlay network that enhances the communication
delay among the community members. This paper presents an
efficient step-step construction technique to reduce both the
communication delays among members and the required time to
join/leave. Experimental results show that ADCCS-Multilayer
enhances the community communication delay.

1. Introduction

Current Internet information services (e.g. Web-based
publish/subscribe) provide services for anyone, anywhere
and anytime. The service providers (SP) provide
information regardless of the end-users’ demands and
situations (e.g. location and time). Users in any situation
receive the same contents. We believe that the time has
come for an Internet infrastructure that provides large,
rapidly evolving, customized, highly accessed information
spaces for specific end-users, in specific time and location.

The web-based publish/subscribe has two traditional
models: Pull-model that requires users accesses to the SP
frequently to retrieve new information and Push-model that
is required by SP to deliver contents that change frequently.
Each of these models has disadvantages. With the pull
model, users might access information and find that it’s
unchanged since their last access or that it contains a large,
redundant subset of earlier content retrievals. This model is
also vulnerable to flash crowds – rapid, sharp surges in
requests that overwhelm the server and dramatically
increase response time. For its part, the push-model often
uses a one-to-many model in which the SP delivers contents
directly to each user. Clearly, this approach has scalability
limitations.

To address the drawbacks of the pull and push models,
based on the success of the Autonomous Decentralized

System (ADS) [1, 2, 3], we have designed an Autonomous
Decentralized Community Communication System
(ADCCS) [4] as a framework for large-scale information
systems such as content delivery systems. ADCCS forms a
community of individual members having the same
interests and demands in somewhere, at specified time. It
allows the members to mutually cooperate and share
information without loading up any single node excessively.
For a productive cooperation and flexible communication
among members an autonomous decentralized multilateral
communication technique has been proposed [5]. It is a
hybrid pull/push approach, when at least one of the
community members has downloaded an interesting
content for the community from the server (e.g. news
server), she/he shares it with all the community members by
forwarding it to all of them. Overall our results suggest that
ADCCS can achieve good performance for large number of
members under the assumption that the communication cost
between each node is one unit of time [4]. While in reality
the latencies from nodes-nodes are different. The question
then is: can ADCCS support large number of members with
different communication cost. The main concern and
contribution of this paper is to answer this question. It
describes and evaluates an approach for constructing and
maintaining an autonomous Community Overlay Network
(CON). The performance of the communication could be
improved if the CON is constructed with node-node latency
awareness. In this paper, we propose the CON’s
construction technique to reduce both the communication
delay of a message that broadcasted to all community nodes
with considering the latency among them and the required
time for membership management.

The remainder of this paper is organized as follow.
Section 2 briefly clarifies the ADCCS concept and the
system architecture. Section 3 presents the proposed
construction technique. Section 4 presents the community
communication techniques. The evaluation and the
simulation results of this communication protocol over the
ADCCS-Multilayer are described in section 5. We review
related work on application level multicast protocols in
section 6. The last section draws conclusion.

Multi-layer Autonomous Community Overlay Network for
Enhancing Communication Delay

Khaled Ragab, Yuji Horikoshi, Hisayuki Kuriyama and Kinji Mori

Tokyo Institute of Technology
2-12-1 Ookayama, Meguro, Tokyo 152-8552, Japan

Tel: +81-3-5734-2664, Fax: +81-3-5734-2510
Email: {ragab@mori., horikoshi@mori., kuriyama@mori., mori@}cs.titech.ac.jp

2

A u to n o m o u s C o n tro lla b ility

X

Y
ZW

S

XW

L e v e l 0

L e v e l 1

L ev e l 2

N o n -m em b er
N o rm a l M em b e r

L ead e r M em b er
L o g ica l L in k

X

Y

Z

W

S

S 1
(0)

C o m m u n ity

S 2
(0)

S 3
(0)

S 4
(0)

S 5
(0)

S 1
(1)S 2

(1)

U n d erly in g N e tw o rk

A u to n o m o u s C o o rd in a b ility

α (0)

α (1)

α (2)S 1
(2)

Fig. 1 ADCCS-Multilayer: architecture.

2. ADCCS

2.1 Concept
The ADCCS technology [4] has been proposed on the basis
of the Autonomous Decentralized System (ADS) concept
[2] [3]. The basis of the ADCCS is to provide the
information to specific users in specific place at specific
time (for example when a particular Mall holds a sale at
specific time [6]). In contrast, current information systems
provide the information to anyone, anywhere and anytime.
The Autonomous Community is a communication
environment for coherent group of autonomous members
having individual objectives, common interests and
demands at specified time and somewhere/anywhere. The
community members are autonomous, cooperative and
active actors and they mutually cooperate to enhance the
objectives for all of them timely. In ADCCS, each member
plays a dual role as an information sender and receiver.
Furthermore, each message from a participant is
meaningful to all other members and at the same time every
member is typically interested in data from all other senders
in the community. Community members cooperate not only
for the satisfaction of one of them but also for all of them.

2.2 Architecture
The CON is a self-organized logical topology. It is a set of
nodes with considering the existence of loops. It organizes
the community nodes into multi-level of sub-communities
[7]. The i-th sub-community at level j is denoted by Si

(j).
Leader is a special member of Si

(j) that is responsible for
membership management of the Si

(j). Each level j+1
contains leaders of all Si

(j) at level j. Figure 1 shows a CON
that contains five sub-communities in level 0, two sub-
communities in level 1 and one sub-community in level 2.

In figure 1, the bold lines represent the logical link
among the community nodes. Each node judges
autonomously to join/leave the community network by
creating/destroying its logical links with its neighbor’s
nodes based not only on the node latency with its neighbors,
but also on its user’s preferences. Each node keeps track of
its neighbors in a table that contains their addresses. Each
node knows its neighbors and shares this knowledge with
other nodes for forming a loosely connected mass of nodes.

L

A

B
M

C

F
H

G

E I

J

K

P

D

O

N

2

5 3

43

233

4

23

1 2

22
1

2
3

2
3

3

2

1

Fig. 2 An example of sub-community structure

3. Autonomous Decentralized Community
Construction Technique

To take advantage of the heterogeneity of the community
nodes-nodes latencies, this section describes the proposed
construction technique. It organizes the community
network into multi-levels of sub-communities.

3.1 Sub-Community

3.1.1 Definition and structure
Each sub-community Si

(j) has two special members: Leader
and Mediator. The leader Li

(j) is responsible for
membership management of the Si

(j). The mediator Mi
(j) is

responsible for transmitting contents from/to the Si
(j). The

mediator Mi
(j) is one of the neighbors of Li

(j) that has the
smallest latency to Li

(j). It keeps a list of the Leader’ s
neighbors. Each node belongs to the Si

(j) has
communication delay to the leader and the mediator that is
bounded by a selected value αi

(j). Thus, Si
(j) at level j can be

defined as a set of nodes x0 that satisfies the Latency
Awareness Condition (LAC) as follows:

;
),(;

),(;

)(
1

)(
10

)(
1

)(
10

)(

2

1

=≤∑

=∑ ≤

=
−+

−+

jl
im

j
i

path
kk

j
im

path

j
ikk

j
i

Lxifαxxδx

Mxifαxxδx
S

Where δ(X, Y) denotes the current round-trip end-to-end
delay from X to Y. The dotted line in figure 2 represents the
Path1= x0, x1,…,xm=Li

(j) from node x0=k to L through the
mediator node M. The gray line in figure 2 represents the
Path2= x0, x1,…,xm=Mi

(j) from node x0=I to M through node
A and leader node L. Figure 2 shows that the
communication delay from any node to the leader and the
mediator in the sub-community is less than or equal αi

(j)

=10ms. Each leader Li
(j) autonomously determines αi

(j) and
adapts it to cope with the changing of the nodes
communication delays. We conclude that the sub-
community is a set of nodes with considering LAC, existing
of loops and bounding node’s connectivity by π.

3.1.2 Sub-community Step-Step Construction
To construct the Si

(j) step-step, we have developed a
join_sub(X, Si

(j)) routine. It inserts the new node X to the Si
(j).

The join_sub scenario is as follows. The leader Li
(j) of the

Si
(j) forwards join-request to its neighbors and then waits

their replies. As soon as a node received the join–request, it
processes the instance of the procedure Node_joinCheck
that is given in figure 3, to decide autonomously the new
node X can connect to itself or not. As soon as, the leader of

3

the Si
(j) received some replies, it selects the nodes that have

the smallest latency to X and then X connects to at most π
nodes from them.

Procedure Node_joinCheck(X, rf)
{ // X: new joining node and rf: received from node.
Id:=my_node_id;
If (connectivity(Id) >π)
 Forward(join-request(X), {neighbors{Id}- {rf}});
Else
 { // Path={x0=Id, x1, …,xm=Li

(j)}
);,(),(1 XIdδxxδτ

Pathx
ii

i

+∑=
∈

+

 if (τ < αi
(j)) Send(Li

(j),”Ok to join”,τ); } }
Fig. 3 Node_joinCheck operation at each node

3.2 Proposed Multi-layer structure

The ADCCS-Multilayer structure organizes CON into
multi-level of sub-communities [7] as follows:

1. Level 0 contains all nodes that are currently partaking in
the community. It is partitioned into β0 sub-
communities.

2. Level j+1 contains all leaders and mediators of the
sub-communities at level j. It is partitioned into βj+1
sub-communities. Obviously, βj> βj+1; j= 0, 1, …k-1.

3. The leaders/mediators at level j automatically become
members of the sub-community of leaders/mediators at
level j+1, if they satisfy the LAC at level j+1. For j≥0,
the number of nodes at level j+1 is βj. Level-k consists
of a few sub-communities (e.g. one or two). Each
sub-community contains a few members.

4. If a node belongs to level j then it must be in one
sub-community in each of the levels 0, 1, … j-1.
Furthermore, any node at level j>0 must be a leader/
mediator of the sub-community and belongs to all lower
levels.

5. For any i and j, αi
(j) < αi

(j+1).
Where βj is the number of sub-communities at level j and K
is the number of levels. This scheme is used to map the
community nodes into levels as shown in figures 1 and 5.
3.2.1 Step-Step Construction
This section illustrates the step-step construction of the
ADCCS-Multilayer. Figure 4-i shows that node A initiates
the community of an interest, creates a sub-community S1

(0)
and becomes a leader of S1

(0). Then, node B wants to join
the community and then sends join request to node A. As
soon as, node A receives join request it checks the
round-trip latency to the joining node B. If the joining node
satisfies the LAC (δ (A, B)< α1

(0)), then A connects B via a
logical link. Similarly, the joining node C sends a join
request to a node in the community (e.g. B). Node B
forwards the join request to the leader of the
sub-community it belongs (e.g. leader is node A). The
leader checks if the joining node satisfies the LAC or not.
Figure 4-ii shows the join process of node C when the LAC
satisfied. Otherwise, Figure 4-iii shows that the joining

node C, joins the community and becomes a leader of its
own created S2

(0). Then, node C sends a join_leadersub
(S1

(1)) request to the neighbor leader (e.g. node A). Then, A
checks if C satisfies the LAC at the upper level or not. If
δ(A,C)< α1

(1)) then C joins the sub-community of leaders
S1

(1) at the upper level otherwise C creates a new
sub-community of leaders S2

(1) at the upper level.
Recursively, new nodes join the community and
consequently the ADCCS-Multilayer is constructed.

A
A B

B j o i n

δ (A ,B) < α 1
(0) ; A i s l e a d e r o f B

(i)

< α 1
(0)

A B
< α 1

(0)
C
< α 1

(0)

δ (A , C) < α s 1

(i i)

A
B

< α 1
(0)

C

L e v e l 0

L e v e l 1AC
S u b c o m m u n i t y
o f l e a d e r

S 1
(0)S 2

(0)

δ (A ,C) > α 1
(0) a n d δ (B ,C) > α 1

(0)

(i i i)

α 1
(1)

J o i n _ l e a d e r S u b

O K

C o m m u n i t y

S 1
(1)

Fig. 4 Step-step construction multi-layer CON structure.

3.3 Members Join and Leave

As new members join and existing members leave the
community, the basic operations to create and maintain the
ADCCS-Multilayer structure is required. This section
presents autonomous decentralized algorithms for
community membership management. This approach is
proposed to arrange the set of members into a multi-layer
control topology with considering the latency awareness
condition.
3.3.1 Join Process: Bottom-up and Top-down

Similar to Narada [8], ADCCS-Multilayer is able to get at
least one community node A by an out-of-band bootstrap.
The joining node X sends a join request to one node A as
shown in figure 5. The join request is redirected along the
multi-layer CON structure bottom-up and top-down to find
the appropriate sub-community as follows:

1. Node X sends join request to node A that belongs to Si
(j)

at level j=0.
2. Node A checks

a) If [δ(X,A) + δ(X, Li
(j))] < αi

(j) Create_link(X,A)
b) Otherwise, forwards join request to Li

(j)
3. Li

(j) checks
a) If δ(X, Li

(j)) < αi
(0) Call join_sub(X, Si

(j)); exit;
b) Otherwise, Li

(j) forwards join request to the leader
Lu

(j+1) of the sub-community Su
(j+1) at the upper

level, where Li
(j) ∈ Su

(j+1).
4. Set j:= j+1 and then Lu

(j) checks
a) If δ(X, Lu

(j)) < αu
(0) forwards join request down.

b) Otherwise, forwards join request to all members zm
belongs to Su

(j) except zm=Lu
(j).

5. Each node zm checks
a) If δ(X, zm) < αi

(0) zm sends a reply message to
Lu

(j) that contains “ok to join” and δ(X, zm).

4

b) Otherwise, no node from zm send any reply
message to Lu

(j).
6. Lu

(j) waits for a period of time γ to gather replies from
all zm nodes belong to the Su

(j). Then, two cases exist as
follows.
a) Lu

(j) receives some replies and selects one that has
the smallest latency to X. Then, it forwards the join
request down (i.e. set j:= j-1) to the selected leader that
calls join_sub() routine.
b) Otherwise, Lu

(j) does not receive any reply within
the time-out period γ. Thus, it forwards the join
request to the upper level (i.e. set j:= j+1) and then
repeats steps 4 - 6.

7. The join request is forward from bottom to up and then
top to down until the LAC is satisfied. Otherwise, there
is no sub-community satisfies the LAC then a new
sub-community containing the joining node is created.

The join process terminates at level 0 when the joining node
either finds a sub-community (e.g. S4

(0) in figure 5) that
satisfies the LAC or not. Therefore, the join overhead is
O(β0) in terms of the number of nodes that must check the
latency with the joining node.

This construction technique reflects that each node takes
the decision autonomously based on its local information
and there is no specific server that is responsible for
membership management. Thus, the proposed construction
technique is scalable for large number of nodes.

Y e s
to p -d o w n

B o tto m -u p

L e v e l 0
α 0 = 1 0 m s

L e v e l 1
α 1 = 2 0 m s

L e v e l 2
α 2 = 4 0 m s

S 1
(0)

S 1
(1)

S 1
(2)

L 1L 3
L 2

L 2L 5

L 5
L 6 L 4

L 5
L 6

L 4 L 3 L 2
L 1

A

E

CFKG

B

< = 1 0 m s

< = 2 0 m s< = 2 0 m s

< = 4 0 m s

< = 2 0 m s < = 2 0 m s

< = 1 0 m s < = 1 0 m s < = 1 0 m s < = 1 0 m s
< = 1 0 m s

S 6
(0)

S 2
(1)

X
J o in _ re q u e s t

N o

J o in _ s u b (S 4
(0))

Fig. 5 Example: Join process in control tree.

3.3.2 Leave/failure Process

When node X wants to leave the community, it notifies its
neighbors in the Si

(0). Li
(0) and Mi

(0) are the leader and the
mediator of Si

(0) respectively. The leave algorithm is
described as follows:

1. If [(X ≠ Li
(0)) and (X ≠ Mi

(0))] Neighbors of X remove
their links to X. For example, nodes k and G remove
their links to the leaved node N in figure 2.

2. If [(X= Li
(0)) and Li

(0) ∈ levels l0 ,…,lh] Each mediator
Mi

(j) becomes leader (i.e. Li
(j)= Mi

(j)), where j=0,..., h.
Then, each leader selects a new node that has the
smallest latency to its neighbors and assigns it as a new
mediator. This process is repeated on h-levels l0 ,…,lh.

3. If [(X= Mi
(0)) and Mi

(0) ∈ levels l0 ,…,lh] Each leader
Li

(j) selects a new mediator from its neighbors that has
the smallest latency to Li

(j), where j= 0, ..., h.

It is also required to consider the difficult case of node
failure. In such case, failure should be detected locally as
follows. The neighboring nodes periodically exchange
keep-alive message with node X. If X is unresponsive for a
period T, it is presumed failed. All neighbors of the failed
node update their neighbor’s sets. This technique scales
well: exchanging messages among small number of nodes
does fault detection, and recovery from faults is local; only
a small number of nodes are involved. If the leader of the
sub-community fails and the mediator is still working then
the mediator takes the leader responsibilities, connects to
the leader’s neighbors and selects another mediator to take
its responsibilities. Therefore, the failure of the leader does
not affect the community service continuity of other nodes.
Similarly, when mediator fails, the leader is still working
and can appoint new mediator quickly.

4. Community Communication

4.1 Autonomous Decentralized Community
Communication Technique

The conventional communication has been built on the
one-to-one and one-to-many group’s communication
protocols. Currently, there is no design for the application-
level multicast protocol that scales to thousands of members
(e.g. Overcast [10], Scattercast [9], Narada [8] and ALMI
[11]). Conventional communication techniques use the
destination address (e.g. unicast address, multicast address)
to send the data. They are not applicable in very changing
environment likes ADCCS (i.e. end-users are frequently
join and leave). Thus, the following communication
technique has broached [5], [4].
4.1.1 Service-oriented and Multilateral Community
Communication
The service-oriented community communication technique
separates the logical community services’ identifier from
the physical node address [4]. Thus, the sender does not
specify the destination address but only sends the
content/request with its interest Content Code (CC) to its
neighbor’s nodes. CC is assigned on a type of the
community service basis and enables a service to act as a
logical node appropriate for the community service. Figure
6 shows the community communication message format.
CC is uniquely defined with respect to the common interest
of the community members (e.g. politic, news, etc.). The
information content is further uniquely specified by its
Characterized Code (CH).

Fig. 6 Message format.

In the multilateral community communication [4], all
members communicate productively for the satisfaction for
all members contrary to the peer-peer (P2P) communication
techniques, as follow.

The community communication technique performs the
communication among the community members that has

CC CH Data/Request

5

called “1 N”. A brief scenario of the 1 N community
communication is described as follows. The community
node asynchronously sends a message to each one from N
neighbor’s nodes. Then, these N nodes forward the same
message to another N nodes in the next layer and so on,
until all nodes in the community communication tree
received the message. The 1 N technique has two
protocols [4]: hybrid pull/push based and request /reply-all
based. The first offers an effective solution to the flash
crowd and represents a scalable solution for large-scale
information dissemination systems. The second presents a
scalable service discovery technique. The 1 N technique
does not rely on any central controller. Each community
node has its own local information and communicates only
with specified number (N) of the neighbor’s nodes. There is
no global information such as IP multicast group address
[12] or multicast service nodes [9]. We present further
details of 1 N over a CON that is constructed as k-regular
overlay network (ADCCS) in [4], [5], where N=k-1.

4.2 Community Communication Technique on
Multi-layer Structure
For an efficient community communication, we create a
multi-layer connected control topology. The content
delivery path is implicitly defined in the way the multi-layer
hierarchy is structured and no additional route computations
are required. The mediators in this structure play important
roles in this communication technique. A node sends a
message to its neighbors belong to Si

(0) by using 1 N.
Once the mediator Mi

(0) receives that message, it forwards
the message to all mediators belong to the sub-community
at the upper level. Each mediator forwards that message to
all members in its sub-community and executes an instance
of the following procedure.

Procedure Hcommunity_comm.(Mi
(j), rf)

{ // Mi
(j) forwards the message that received from rf.

if (Mi
(j) ∈ levels l0 ,…,lm in sub-communities S (0), …S (m)) {

for (p = 0,…,m; m ≤ K)
if (rf ∉ S(p))

ForwardMessageTo (S (p) - { M(p)})
} }

Consequently all nodes in the community will receive such
message. Assume all αi

(j)=αi+1
(j) at each level j, where i=1,..,

βj-1 and j=0,..,k. Thus, the transmission time to forward a
message from a node to all nodes is bounded by

∑+
−

=

1

0

)()(2
k

j

jk αα

Thus, the ADCCS-Multilayer approach considers the
heterogeneity of node-node latencies. It results in a CON
clustering of nodes into homogenous sub-communities
thereby reducing the communication delay.

5. Performance

5.1 Metrics
To evaluate the community communication technique over
ADCCS-Multilayer and compare it with ADCCS [4], [5]
and the conventional communication techniques; we use the

following metrics that show the effectiveness of the
proposed multi-layer construction techniques.
• Latency measures the communication delay from a

community node to all others community nodes.
• Relative Mean Delay Penalty (RMDP) measures the

increased delay that applications perceive while using
ADCCS-Multilayer and ADCCS.

• Stress measures the number of identical copies of a
message carried by a physical link. Obviously, we’d like
to keep the link stress on all links low as possible.

5.2 Simulation
We set the simulation’s parameters as follows. The Georgia
Tech [13] random graph generator using the transit-stub
model is used to construct a network topology with 100
routers linked by core links. Random link delay of 4-12ms
was assigned to each core link. The community end-nodes
were randomly assigned to routers in the core with uniform
probability. Each community end-node was directly
attached by a LAN link to its assigned router. The delay of
each LAN link was set to be 1ms. End-nodes join/leave the
CON with random distribution as had shown in figure 7-a.
It shows the variations of the community network size with
the simulation time. The CON spends 4-array connectivity
for each end-node and it is organized into two levels (i.e. set
k = 2). Each sub-community leader Li sets α(0) = 4ms,
approximately less than or equal Minimum(τij), where Li is
connected to router i and τij is the communication cost from
router i to router j. As a result it is expected that the
communication cost on ADCCS-Multilayer be close to the
IP-Multicast.
5.2.1 Communication Results
We have conducted a simulation to compare ADCCS [4],
ADCCS-Multilayer with unicast. In each run of the
simulation, one community member is picked as source at
random and then the required communication cost to send a
message to all nodes is evaluated. We ran this simulation
for 20 minutes, for the sake of the simplicity; figure 7-b
shows only the simulation results of the first 3.5 Seconds
from the simulation running time. It plots the variations of
the Mean Communication Cost (MCC) required to send a
message from a node to all nodes participated at each
instance of time during the experiment. ADCCS-Multilayer
has shown about 39% improvement of the MCC compared
with ADCCS and 93% compared with unicast. We argue
that ADCCS-Multilayer shows 39% imprecision compared
with ADCCS to the proposed latency-awareness
multi-layer structure of sub-communities. In addition,
figure 7-c plots the variation of RMDP for sequential
unicast, ADCCS and ADCCS-Multilayer. The vertical axis
represents a given value of RMDP associated with the
community network size in log-scale presentation.
ADCCS-Multilayer shows about 94% improvement of the
RMDP to unicast and about 39% imprecision to ADCCS of
the RMDP. From these results we conclude that the
ADCCS-Multilayer enhance the community
communication compared to the ADCCS.

6

 5.2.2 Link Stress
We have conducted our experiment with a community size
300 members. One of the members picked as source at
random and we evaluate the stress of each physical link. We
study the variation of physical link stress under
ADCCS-Multilayer, ADCCS, IP Multicast and naïve
unicast as shown in figure 7-d. The horizontal axis
represents stress and the vertical axis represents the number
of physical links with a given stress. The stress is at most 1
for IP Multicast. Under ADCCS-Multilayer, ADCCS and
naïve unicast, most links have a small stress-this to be
expected. However, the significant lies in the tails of the
plots. Under naïve unicast, one link has stress 299. This
because that links near the source have high stress.
However, ADCCS-Multilayer and ADCCS distribute the
stress more evenly across the physical links.
ADCCS-Multilayer has about 73% improvement over
naïve unicast. ADCCS has about 55% improvement over
naïve unicast. We argue that ADCCS-Multilayer has high
improvement ratio than ADCCS to the multi-layer structure
that is aware with the latency among the community nodes.

6. Conclusion

This paper presents the step-step construction and
maintenance technique of the latency awareness
ADCCS-Multilayer structure. This structure reduces both
the communication delay among community nodes and the
join overhead. Furthermore, it presents the simulation
results that show the effectiveness of the proposed
technologies.

References
[1] K. Mori, Et. al., “Proposition of Autonomous

Decentralization Concept,” Journal of IEE Japan, Vol. 104,
no. 12, 1984, pp. 303-310 (Japanese).

[2] K. Mori, “Autonomous Decentralized Systems: Concept,
Data Field Architecture and Future Trends,” Proc. IEEE
ISADS, Japan, 1993.

[3] K. Mori, et al., “Autonomous Decentralized Software
Structure and its Application,” Proc. IEEE FJCC'86, Nov.
1986.

[4] K. Ragab N. Kaji, K. Mori, “Scalable Multilateral
Autonomous Decentralized Community Communication
Technique for Large-Scale Information Systems”, IEICE
Transaction on Comm., Vol. E87-B, No. 3, March 2004.

[5] K. Ragab, Et al., “ACIS: A large-scale Autonomous
Decentralized Community Communication Infrastructure,”
IEICE Transaction on Info. Sys. Vol. E87-D, No. 4, April
2004.

[6] T. Ono Et. al., “Service-oriented Communication
Technology for Achieving Assurance,” 22nd ICDCS (ADSN
workshop) IEEE CS Press, 2002, pp. 69-74.

[7] K. Ragab Et al., “A Novel Hierarchical Community
Architecture with End-to-End Delay Awareness for
Communication Delay Enhancement”, Proc. IEEE/IPSJ
SAINT, Jan., 2004, Tokyo, Japan.

[8] Y. H. Chu, S. G. Rao, and H. Zhang, “A case for end system
multicast,” Proc. Of ACM Sigmetrics, June 2000, pp. 1-12.

[9] Y. Chawathe, Et al., “Scattercast: An Architecture for
Internet Broadcast Distribution as an Infrastructure Service,"
Ph.D Thesis, University of California, Berkeley, Dec. 2000.

[10] J. Jannotti, Et al., “Overcast: Reliable Multicasting with as n
Overlay Network,” In Proc. 4th Symp. OSDI, Oct. 2000.

[11] D. Pendarakis, Et al., “ALMI: an application level multicast
infrastructure”, In Proc. of 3rd Symp. USITS, March 2001.

[12] S. Deering and D. Cheriton, “Multicast routing in datagram
internetworks and extended LANs,” ACM Trans. on
Computer Systems, 8(2):85-110, May 1990.

[13] E. W. Zegura, Et al., “How to model an internetwork” in Proc.
of IEEE Infocom, 1996, San Francisco.

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

0 . 0 6 0 . 5 0 . 9 7 1 . 4 2 1 . 8 5 2 . 2 9 2 . 7 4 3 . 1 9

S im u la t io n T im e [S e c]

N
um

be
r o

f M
em

be
rs

Fig. 7-a Variation of Community network size per time.

0

0.2

0.4

0.6

0.8

1

0.06 0.5 0.97 1.42 1.85 2.29 2.74 3.19
Simulation Time [Sec]

M
ea

n
C

om
m

un
ic

at
io

n
C

os
t [

Se
c]

ADCCS ADCCS-Multilayer Unicas t
Fig. 7-b MCC: Comparison

0
0.5

1
1.5

2
2.5

10 40 70
100 130 160 190 220 250 280

Number of Members

RM
D

P
(lo

g-
sc

al
e)

ADCCS ADCCS-Mult ilayer Unicast

Fig. 7-c RMDP: Comparison

1

1 0

1 0 0

1 0 0 0

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

S t r e s s o f P h y is c a l L in k

N
um

be
r o

f P
hy

sic
al

 L
in

ks

A D C C S U n ic a s t
IP M u ltic a s t A D C C S -M u ltila y e r

U n i c a s tA D C C S

A D C C S - M u l t i l a y e r

I P - M u l t i c a s t

Fig. 7-d Physical link stress

