
Service Discovery Technology in Autonomous Decentralized

Community System

Yuji Horikoshi Khaled Ragab Naohiro Kaji Kinji Mori
Department of Computer Science, Tokyo Institute of Technology

2-12-1 Ookayama Meguro, Tokyo, 152-8552, Japan.
Tel: +81-3-5734-2664, Fax: +81-3-5734-2510

E-mail: {horikoshi@mori., ragab@mori., nkaji@mori., mori@}cs.titech.ac.jp

Abstract

In recent years, information services in accordance
with users' preference, utilization place and time are
required more and more. Autonomous Decentralized
Community System (ADCS) has been proposed to
provide services for a Local Majority, which consists of
users who have similar preferences or are in a similar
situation. ADCS network consists of many autonomous
stationary nodes that support wireless communication to
users’ mobile terminals and the network covers lands.
Cooperation among nodes achieves flexibility of the
system and allows users in a Local Majority to cooperate
mutually and share information.

In ADCS various services, which are created by users
or service providers (SP), are allocated on the network
and their positions are unpredictable. To utilize services,
the distributive service discovery technology, which
limits request forwarding with TTL, is available.
However, it has problem on response time. This paper
proposes the service discovery technology that does not
limit query forwards but make reply messages as cancel
massages that stop request forwarding follow and catch
up with request messages by cooperation among nodes
based on Autonomous Decentralized Community System
concept. The effectiveness of proposal on response time
is shown by simulation.

1. Introduction

The advancement of information and communication
technology has made global and various information
services available in anytime and anywhere for anyone.
Mobile information service terminals have been
pervasive. Users can access many services or the Internet
with mobile phone services like i-mode in Japan.

Users, however, have been provided with too many
services to know which service is appropriate for them.
Service providers (SP) also have been troubled in service
for users by various needs of increasing users. Under this

background, the requirement for mobile information
services with situation-awareness has increased. The
information services, which consider users’ situations,
time and place, and preferences, are required.

We have proposed Community Service, where services
are provided through mutual cooperation between SP and
a Local Majority, which consists of users who have a
similar preference or are in a similar situation, and
mutual cooperation among a Local Majority.

A system with flexibility and timeliness is required to
provide Community Service, because a service area
changes according to a state of existence of a Local
Majority and properties of services, and users would like
to utilize at the moment.

Some location-aware systems using mobile terminals
for providing services based on locations of users have
been reported.[1][2] These technologies have described a
basic concept of service mediation platform. They has
assumed that each service is provided to static area and
considered no dynamic area. Systems using a service
accelerator system and an autonomous decentralized
service system to provide personal service have been
reported.[3][4] These systems has mediated between SP
and a user and provided an individual user with services
based on their profiles. They have not considered a group
of users.

Autonomous Decentralized Community System
(ADCS) has been proposed to provide services for a
Local Majority.[5][6] ADCS consists of many
autonomous nodes forming a network and cooperation
among nodes achieves flexibility of the system and
allows users in a Local Majority to cooperate mutually
and share information.

In order to provide Community Service such as the
information sharing in ADCS, a node corresponded to a
user requesting information needs to discover
information created by other users, which is defined as
service, i.e. service discovery is required. A naïve
method to discover services is available. However, it has
problem on the response time to discover.

This paper reports the proposition of Autonomous
Service Discovery Technology for timeliness in ADCS.

This paper is structured as follows. Next section
presents the application and system requirements.
Section 3 discusses ADCS. Section 4 exposes
Autonomous Service Discovery Technology. Section 5
shows the effectiveness of this technology. Last section
concludes this paper.

2. Application and Requirements

2.1. Community Service

User would like to utilize appropriate services in
accordance with users’ situations and preferences.
Community Service to satisfy this need has been
proposed. Community Service is the service for a Local
Majority and it is achieved through mutual cooperation
among a Local Majority and cooperation between SP and
a Local Majority.

The image of Community Service is as follows. In
lunchtime, hungry users in a city area want to know
restaurant information. They are in a Local Majority for a
restaurant as a SP. The SP disseminates information of
lunchtime service for accessible users to the SP. Users in
the Local Majority want to exchange information on
restaurants by word of mouth with their mobile
terminals.

2.2. System Requirements

In order to provide Community Service, a system with
flexibility and timeliness is required.

Users would like to utilize the appropriate service in
accordance with their preferences and situation like their
location and time to SP in each user’ s accessible area.
The service areas differ according to each service
property. Therefore, flexibility is required.

Users would like to utilize appropriate services at the
moment. Therefore, timeliness is required.

3. Autonomous Decentralized Community
System

Autonomous Decentralized Community System
(ADCS) has been proposed, which achieves flexibility
described previously. The System is structured based on
Autonomous Decentralized System.[7] ADCS consists of
autonomous nodes connecting each other. In order to
provide services, nodes forms autonomously a group,
which is called community, in accordance with service
property. In a community, all messages are broadcasted
within the community. Figure 1 shows the architecture of
this system.

The architecture is Data Field architecture and each
node communicates and processes autonomously with
content codes. Each node consists Autonomous Control
Processor (ACP) that judges and processes based on
local information, storage that stores users’ requests and

services and Neighboring Nodes Table (NNT).
Each node autonomously judges whether a received

message is forwarded to its neighboring node by service
property in messages and NNT. As a result of this
judgment of each node, the group that consists nodes
receiving the message is a community.

Nodes are base stations for wireless communications
and connect SP and users with mobile terminals. The
network covers lands. They transmit data between
physically neighboring nodes and broadcast messages to
the users within the sphere of each cell. SPs and users
communicate with the physically nearest node and have
information such as users’ preferences and service
information.

The area covered by community of nodes is service
area. Users in the area can exchange information.

4. Autonomous Service Discovery
Technology

4.1. Service Discovery

In ADCS, when services a user demands are not
provided the node the user stays in, discovering services
to create a community is needed. In order to provide
Community Service for a user, discovering of
information that other users or SPs provide is required.
Such information is defined as service.

The architecture of ADCS is based on the network that
consists of many nodes. Services provided in ADCS are
massive numbers and positions of services change by
user’s moving. Thus, their positions are unpredictable.

Because many services are provided and change every
moment, a centralized mediation of services is difficult.
Therefore, distributive discovering is required. It is
realized that a node which request services send request
messages to the network and nodes on the network relay
these messages one by one.

4.2. Problem in Service Discovery

In Autonomous Decentralized Community System, to
provide services in accordance with users’ situations too
wide a search area for service discovery is unsuitable for

Figure1: System Architecture

zzzC

yyyB

xxxD

Info.Node

Neighboring
Node TableStorage

ACP

Message

Node

Message
Send / Receive

Manage

CC Data

Community
（Service Area）

not forward

forward

J

D

G E
F

C

B
AI

H

Selective Receive

Autonomous
Process

Link

user’s situations as well as produces wasteful traffics.
Therefore, to stop a propagation of requests is required.

A naive method using messages with Time To Live
(TTL), which decreases every a forward and makes a
message vanish when it becomes zero is available. Such
a method is used in some P2P systems.[8]

However, to design an appropriate TTL in advance is
difficult because services’ positions are unpredictable
and physical density of nodes is not uniform. Under this
situation, requests with a certain TTL may fail to
discover services. In this case, a node with the naive
method waits for receiving a reply during an adequate
term using a timer: the service discovery timer, and the
node detects failure of it the timer expires. A node sends
a request with bigger TTL if fails, and repeats this
process until a service is discovered.

Thus, under unpredictable situation, the naive method
cannot achieve timeliness on service discovery because
of waiting time in the case of failure. A technology which
assures timeliness on service discovery even if the
unpredictable situation is required.

4.3. Overview of Autonomous Service
Discovery Technology

In order to prevent the response time of service
discovery from worsening in unpredictable situations,
Autonomous Service Discovery Technology is proposed.
This technology does not limit an area request messages
reach in advance, but makes reply messages, which stop
forwards of request messages, pursue and catch up with
request messages. Thus service discoveries can be done
with only one sending of requests to a network and the
response time is prevented from worsening caused by
waiting time for requesting again when a request fails.

The concept of the proposed technology regards
propagations of messages as ripples on a network. This
technology makes a propagation of requests be a ripple
with lower speed and that of replies be a ripple with
higher speed. Moreover, it makes the propagation of
reply massages cancel out that of request messages when
both meet.

When a requester emits the ripple of request and it
reaches a replier, the ripple of reply is also emitted.
Although not only the ripple of requests but also that of
replies propagate on a network, the ripple of replies is
faster than the other and catch up with it sooner or later.
Then propagations of both of messages stop and an area
messages reach is a community. Services are provided to
users in this community. Figure 2 shows this process.

4.4. Message Formats

The formats of two message types used in proposed
technology are described as follows.

4.4.1. Service Discovery Request Message

Figure 3 shows message format of request message for
service discovery. CC indicates the message is request

message for service discovery. Requester Node ID means
an identifier of the node that sends the message. Message
ID is a unique identifier for each message given by the
requester node. Requester Node ID and Message ID
identify each message. Request Content contains how
services a user wants to discovery and utilize. Each node
judges whether it can reply for the request message with
this field.

4.4.2. Service Discovery Reply Message

Figure 4 shows message format of reply message for
service discovery. CC indicates the message is reply
message for service discovery. This field indicates which
node has sent the request message corresponded to this
reply message. This represents which request message
this reply message replies for. This means an identifier of
the node that replies for the request. Nodes that receive
reply messages can find which node provides the service.
This contains contents of reply. Contents vary in
accordance with services.

4.5. Basic Operations of Nodes

Each node takes five states for each request message in
accordance with a process of the service discovery.
When nodes receive a message, nodes check CC of the
received message. If CC indicates Service Request
Message or Service Reply Message, nodes act and
change states according to the current state and content
of received message. Some states have timer and nodes
do similarly when the time is up.

Figure 2: A Service Discovery Process

Figure 3: Format of Request Message

Figure 4: Format of Reply Message

(a) (b) (c)

(d) (e)

: Area request reaches

: Area reply reaches

: Request Message

: Reply Message

: Requester

: Replier

Content Code
(CC)

Requester
Node ID Message ID Request

Content

Content Code
(CC)

Requester
Node ID

Request Message
Message ID

Replier
Node ID

Reply
Content

In order to identify each process of service discovery
when the other process rises at the same time, nodes have
the state table as NNT that makes the states correspond
to request messages. NNT memorizes the destinations of
forwards of the messages. Figure 5 shows this table.

4.6. State Transitions of Nodes

Nodes take five states that are Normal, Processing,
Request Forward Waiting, Reply Waiting and Message
Absorbing based on situation in the process of service
discovery. Figure 6 shows the state transition diagram for
this technology. The initial state is Normal.

Figure 7 shows the correlation of the situation of the
process of this technology shown in Figure 2 with the
states of nodes shown in Figure 6. The state transitions
are like a cycle, i.e. the cycle starts from Normal state
that nodes have not received a request message yet and
ends as states of all nodes involved in the process of
service discovery becomes Normal.

Detail descriptions of each state including actions of
nodes when an event, a receiving of a message is or
expiring of a timer etc., occurs are as follows.

4.6.1. Normal State

This is the state that a node has not received a
service-discovery request message. To avoid infinite

transmissions of service-discovery reply messages, nodes
discard any reply messages except the reply message
corresponded to the request message that they have
received. Actions of nodes when an event occurs are
described as follows.

Receive service-discovery request message
The node registers the request message in NNT and

sets all neighboring nodes except the source node of
forward as destinations. Then, the node goes to
Processing State.

Receive service-discovery reply message
The node discards this reply message.

Send new service-discovery request message
The node creates service discovery request message

and sends it to all neighboring nodes. Then, the node
goes to Reply Waiting State.

4.6.2. Processing State

This is the state that the node processes the received
request message and judges whether the node can reply
to this message.

Judge that the node can reply to the request
The node creates the service-discovery reply message

and sends it to all neighbors. Then, the node goes to
Message Absorbing State.

Judge that the node cannot reply to the request
The node goes to Request Forward Waiting State.

Receive service-discovery request message
The node deletes the node that has forwarded this

request message from the destination list in NNT. Then,
continues processing.

Receive service-discovery reply message
The node discontinues processing and sends the

received reply message to all neighbors except the
forwarder of it. Then, the node goes to Message
Absorbing State.

4.6.3. Request Forward Waiting State

This state uses a timer and realizes slowing of
propagation of requests. The request forward waiting
timer determines how long a node may wait forwards of
the request message. If this timer expires, the node

Figure 5: Neighboring Node Table (NNT)

Figure 6: State Transition Diagram of Nodes

Figure 7: Correlation Between State
Transition and Service Discovery Process

Node A

Node B

...
B

To

RequestForwardWaitingMessage2

......

ReplyWaitingMessage1

StateRequest

Node C

...
A,C

To

ProcessingMessage3

......

ReplyWaitingMessage1

StateRequest

...
A,B

B

To

RequestForwardWaitingMessage3

......

ProcessingMessage2

StateRequest

Normal

Processing

RequestForward
Waiting

ReplyWaiting

MessageAbsorbing

Receive
Request

Finish Process
[Cannot Reply]

Timeout
/ Forward Request

Receive
Request

Receive
Reply

Receive Reply
/ Forward Reply

Receive
Reply

Receive
Request

Receive
Request

Receive
Request

Receive
Reply

Timeout

Receive
Reply

Complete[Can Reply]
/ Do & Forward Reply

Do Request

Normal

Processing

RequestForward
Waiting

ReplyWaiting

MessageAbsorbing

forwards the request message to neighboring nodes listed
in NNT. If the node receives a reply message until this
timer expires, it means that the reply message catches up
with the request message. The node cancels forwards of
the both messages or messages propagate no more. Each
node autonomously determines waitT , the length of the
request forward waiting timer.

Receive service-discovery request message
The node deletes the node that has forwarded this

request message from destination list in NNT and
continues waiting.

Receive service-discovery reply message
The node cancels forwards of the request message and

the reply message. Then the node goes to Message
Absorbing State.

The request forward waiting timer expires
The node forwards the request message that had been

received to nodes listed in NNT. Then, the node goes to
Reply Waiting State.

4.6.4. Reply Waiting State

This is the state that the node waits for receiving the
reply message correlated to the request message the node
has received. When it is received, the node forwards it to
neighboring nodes. This process makes reply messages
pursue preceding request messages.

Receive service-discovery request message
The node discards this request message.

Receive service-discovery reply message
The node forwards this message to all neighboring

nodes except the node that has sent it. Then, the node
goes to Message Absorbing State.

4.6.5. Message Absorbing State

This state is a buffer to avoid direct returning to
Normal State. This prevents the node from reentering the
cycle of the process of service discovery when the node,
in spite of completion of the cycle, receives a request
message again via another path. This state uses a timer.
The message-absorbing timer determines how long the
node continues to discard received messages. This state
has AbsorbT , the length of the message-absorbing timer.
This is given adequately long time.

Receive service-discovery request message
The node discards the received message.

Receive service-discovery reply message
The node discards the received message.

The message-absorbing timer expires
The node deletes the request message corresponded to

this process from NNT. Then, the node goes to Normal
State.

5. Simulation

Simulations verify the behavior and the response time
of proposed technology. Response time is defined as the
time from when a requester sends the request message
until when the requester receives a reply message.

The simulation model is shown as follows. The
simplified network topology shown in Figure 8 is similar
to the topology used in actual simulations.

There are one requester and one replier in the network.
The time of transmission delay of links is 1 [ms]. The
time required for process of each node is 5 [ms]. The
time of the message-absorbing timer (AbsorbT) is 50
[ms].

5.1.1. Verification of Proposed Technology

Many simulations have verified the proposed
technology. Figure 9 shows states of a simplified
simulation process. The black node at the center of the
network is requester node and the black left-lower node
is requester. In this simulation, the time of the request
forward waiting timer (waitT) is 8 [ms].

5.1.2. Evaluation on Response Time

The response time of the proposed technology is
compared with that of the technology using TTL under
the condition that the distance from a request node to a
replier node changes from 1 to 15.

The technology using TTL sends a request message
with TTL 5 at first. If the first trial fails to discover
services, the node sends a request with TTL 10 again. If
the second trial fails, TTL 15 is adopted.

The result is shown in Figure 10. Figure 10 describes
that the response time of the proposed technology is
proportional to the distance between a requester and a
replier. However, the response time of the naïve method
worsens drastically as the distance becomes bigger.
Because the response time with the proposed technology
does not worsen drastically even though a distance to
services increases, the proposed technology has the
effectiveness on timeliness in unpredictable situations;
even if a distance to services is unpredictable and the
distance may be far, the technology always achieves the
moderate response time.

Figure 8: Simulation Model

Distance between
Requester and Replier

Replier

Requester

6. Conclusion

Community Service, which is provided through
cooperation among a Local Majority, is proposed to
provide services in accordance with users' situations and
preferences. To provide Community Service, a system
with flexibility and timeliness is required. Autonomous
Decentralized Community System is for providing
Community Service. In ADCS, flexibility is achieved by
the architecture that forms a community, which is a
group of nodes. Broadcasting of information within a
community allows Community Service such as
information sharing among users near each other at the
time.

When services which a user want is not provided,
service discovery to form a community is required.
Autonomous Service Discovery Technology that is able
to discover services without limiting propagations of
request messages in advance is proposed. This
technology avoids worsening of the response time on
service discover in unpredictable situations, which the
naive method has. Simulations verify behavior of this
technology and show effectiveness on timeliness in
unpredictable situations. There is a difficulty to
determine the waiting time of each node, nevertheless the
response time does not worsen even if replier node is far
from requester. Nodes' autonomous function to
determine waiting times will be studied.

References

[1] J. Hightower and G. Borriello, “Location Systems
for Ubiquitous Computing,” IEEE Computer,
vol.34, no.8, pp.57-66, 2001.

[2] N. Marmasse and C. Schmandt, Location-Aware
Information Delivery with ComMotion,”HUC2000,
LNCS1927, pp.157-171, 2000.

[3] Kinji Mori et al., “Service Accelerator (SEA)
System for Supplying Demand Oriented
Information Services”, Proc. of IEEE CS Workshop
Future Trend of Distributed Computer Systems,
pp149-161, 1994.

[4] ADSS DSIG (Autonomous Decentralized Service
Systems, Domain Special Interest Group), White
Paper for ADDS, ads/98-12-01, OMG, 1997,
http://www.omg.org/

[5] T. Ono, K. Ragab, N. Kaji, and K. Mori,
Service-oriented Communication Technology for
Achieving Assurance, The 22nd International
Conference on Distributed Computing Systems
Workshops, pp69-74, 2002.

[6] K. Ragab, T. Ono, N. Kaji, and K. Mori,
Community Communication Technology for
achieving Timeliness in Autonomous Decentralized
Community Systems, Proceedings of the 2nd
International Workshop on Autonomous
Decentralized System (IWADS 2002), pp56-60,
2002.

[7] Kinji Mori, “Autonomous Decentralized Systems:
Concept, Data Field Architecture and Future
Trends”, Proc of ISADS93, pp150-157, March
1999.

[8] Matei Ripeanu. Peer-to-Peer Architecture Case
Study: Gnutella Network. In Int'l. Conf. on
Peer-to-Peer Computing (P2P2001), Linkoping,
Sweden, August 2001.

t = 0 t = 10 t = 20 t = 30

t = 40 t = 50 t = 60 t = 70

t = 80 t = 90 t = 100 t = 110

t = 120 t = 130 t = 140 t = 150

: Normal : Requester / Replier

: Processing : Request Forward Waiting

: Reply Waiting : Message Absorbing

Figure 9: Simulation Result

Comparison of the Response Time

0

50

100

150

200

250

300

350

400

450

0 2 4 6 8 10 12 14 16

Distance from requester to replier

R
es

po
n
se

 T
im

e

Proposal (W=2)

Proposal (W=4)

Proposal (W=8)

Conventional (TTL=5, 10, 15)

Figure 10: Simulation Result on Response Time

