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要旨

Formal verification of low-level software has became a trend in the formal
methods community. Indeed, this software captures much of our attention, as it
tends to be embedded in every day devices. However, the real stakes remain in
the fact that much of these devices are critical for human lives: airplanes flying
controls, vital medical devices or security probes in power plants. Beyond such
stakes, the challenge that such software verification represents also motivates
the research community.

In this work we investigate how to verify a memory property for a special
case of low-level software: operating systems. More precisely, we are interest in
proving the task isolation for the Topsy operating system. The task isolation
is the property that asserts that no user application can access the operating
system kernel memory. Topsy is an embedded operating system, dedicated to
intelligent network devices, implemented in the Engineering School of Zurich
(Switzerland).

Our approach makes use of two well-known formal methods: model-checking
and interactive theorem proving. Using the SPIN model checker, we build an
abstraction of the whole operating system, its underlying hardware, and some
test user-applications. We verify formally on this model several properties, and
among them, the task isolation. Through this model we are able to identify
which parts of the code have a key role in the property. To formally prove the
correctness of the source code, we use the Coq proof assistant. More precisely, we
implement a library to mechanically prove Hoare-triples. We formally verified
several parts of Topsy source code: context switching, the list library, and the
memory allocator. For the later, our verification allowed to find non-trivial
bugs.

The most important contribution of our work is a set of Coq libraries to
mechanically prove Hoare-logic triples. These libraries has proven useful in the
verification of source code taken from a realistic operating system. Our libraries
implement the semantics of a subset of C and MIPS assembly, separation logic
connectives, and proof systems for separation logic triples. For all of them we
prove their completeness and soundness w.r.t. the formal semantics of separa-
tion logic triples (defined through the language semantics). Our libraries also
include several tactics that discharge the users from several subgoals. Another
important contribution is an original verification algorithm for separation-logic
triples. We implemented it by reflection inside the Coq proof assistant, and
prove mechanically its soundness. This is the first certified verifier, for separa-
tion logic, implemented by reflection in a prof assistant.

形式的検証の研究分野では、ハードウェアに近い低レベルソフトウェアの形式
的検証が盛んに行われはじめている。これは、低レベルソフトウェア (自動車の
ブレーキシステムや飛行機の飛行制御、生命に関わる医療機器、発電所の保安調
査など) が我々の生命に影響するからである。これに加え、低レベルソフトウェ
アの検証の困難さも形式的検証が盛んになっている理由の一つである。実際、低
レベルソフトウェアは複雑で、しばしば複数のプログラミング言語で記述され、
また難解な制御フローを実装しているため、検証は困難である。



本論文は、低レベルソフトウェアの一つである、オペレーティングシステム
カーネルの形式的検証を扱う。なお、本論文ではネットワークデバイスのための
組み込みオペレーティングシステムである Topsy を対象とする。オペレーティン
グシステムのようなソフトウェアは、ユーザアプリケーションを実行したり、そ
れらにサービスを提供したり、外部とのインターフェイスを提供したりする。我々
の主目的は、オペレーティングシステムカーネルとユーザアプリケーションの相
互作用にある。
本論文は、まずシステムを SPIN モデル検査器においてハードウェア、カー

ネル、ユーザアプリケーションのモデルとして抽象化する。この抽象化を用いて、
メッセージ通信サービスとカーネルメモリ領域の保護に関する性質を検証する。
カーネルメモリ領域の保護に関する性質を扱うためには、メモリ確保とコンテキ
スト切替の機能を実現するコードが重要となる。このため、次にこれらの機能を
実装するソースコードの検証を行う。この目的のために、C に似た言語とMIPS
アーキテクチャ向けアセンブリ言語をCoq 定理証明支援系においてモデル化しラ
イブラリとして実装する。また、分離論理と呼ばれるよく知られたHoare 論理の
拡張もライブラリとして実装する。これらのライブラリを用いてTopsy のメモリ
アロケータとコンテキスト切替のコードを検証する。更に、検証の自動化につい
ても調査を行う。また、正しさが証明された分離論理の検証のための関数を Coq
において実装し、この関数から正しさが保証された検証器を自動生成する。更に
この検証器を用いて、オペレーティングシステムに必須のデータ構造であるリス
ト操作の検証を行う。
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Chapter 1

Introduction

Formal verification of low-level software has become a trend in the formal meth-
ods community. This is justified by the fact that our lives rely on this software.
Indeed, nowadays cars brake systems rely on such software, as does the flying
controls of our airplanes, the vital medical devices in our hospitals, and the
probes that maintain the security in our power plants. Beyond these crucial
stakes, the difficulty of such software verification also motivates the commu-
nity. Indeed this software verification presents a challenge. Low-level software
are complex because they directly manipulate their underlying hardware, be-
cause, for sake of code reusability, they are written in different languages and
finally because, for most of them (like operating systems), they implement subtle
control-flow.

1.1 Motivation

In this thesis, we study the formal verification of a particular case of low-level
software: operating system kernels. The main goal of these kind of software is
to provide an abstraction, of the underlying hardware, to applications. More
precisely, the operating system kernels provide to applications a running envi-
ronment: execution slots (abstraction of the processor), services (like synchro-
nization and communication), and a normalized interface for inputs/outputs
(abstraction of the peripherals). Therefore, applications are highly dependant
on the operating system they are running on. This implies that the correctness
of a program can only be assured if the operating system is also correct.

The recent progress of the hardware technologies (both in prices and features
of processors and memories), and economics stakes (reusable software are more
profitable than specific ones) fed the trend of using operating systems in more
and more embedded solutions. However, the trade-off of this evolution is that
certification of systems becomes more and more tedious.

In this thesis, we investigate how one can verify an operating system, using
two of the most well-studied formal methods: model-checking and interactive
theorem proving. Obviously the full verification of this kind of software is not
yet tractable, still we provide a method that can be used for the verification of
precise property. In our work we focus on a memory property: the task isolation
[7]. This property can be stated informally as:
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A user application cannot access (i.e., read or write in) the kernel
space memory

This property is important, as it ensures that no user applications will cor-
rupt the system through its data. Most of viruses and root-kits try to override
their privilege in order to gain the control of the system. We illustrate our
methods through the verification of an embedded operating system, for network
devices, named Topsy [10].

Basically, our approach consists in building the abstraction of the whole
operating system, as well as its underlying hardware, inside the SPIN model
checker. Thanks to this model we verify some properties of the system, such
as flag consistency for the message passing facility, property of the election of
the next thread to be executed, and obviously the task isolation. Through this
model we can find which part of the system are important for this later property.
Our next move is to formally verify the corresponding source code. For this
purpose, we implement, in the Coq proof assistant, a library to mechanically
certified C-like and MIPS assembly source code. This libraries are used to
formally verify the memory allocator (also known as the heap manager), and
the context switching source code of Topsy. Our verification has proven useful,
as it allowed us to find non-trivial bugs inside the original source code.

1.2 Background

In this section, we provide some basic background informations that should
help the readers with the material presented in this thesis. First we provide
a general description of what is an operating system, and an overview of the
Topsy operating system. Then, we describe the two formal methods that we
applied to the verification of Topsy: model checking and interactive theorem
proving.

1.2.1 Operating Systems

In order to build an application for a computer, there is mainly two approaches:
either directly write a program that will manage the underlying hardware (the
processor and the peripherals), or to leave this role to some underlying software,
that will provide an abstraction of the underlying hardware (namely, an oper-
ating system)1. The first approach main benefit is the possibility to build an
application as optimized as possible, and main disadvantages are that they are
more difficult to develop, and that they can only run on the same model of hard-
ware. The second approach disadvantage is an overhead over the resource usage.
The main benefits are that if the interface of the operating system is standard,
then a given application should be able to run on different platform (as long
as they are all supported by the operating system), and that the development
costs are reduced.

Although it is customary to use the term operating system, it would be
more correct to use the term operating system kernel. This term refers to the
software that run on top of the hardware, and that provide the abstractions to

1A further abstraction consists in building an additional layer between the operating system
and the applications (this layer is oftenly named a virtual machine). The most famous system
which embraces such an approach is Java from SunMicrosystem.
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the application, whereas operating system could refer to a whole set of software
(obviously including the kernel, but also the user interface or the file system, if
any).

The Topsy Operating System

We have chosen the Topsy operating system as a test-bed for the formal ver-
ification of task isolation. Topsy was initially created for educational use and
has recently evolved into an embedded operating system for network cards [10].
It is well-suited for mechanical verification because it is small and simple, yet
it is a realistic use-case because it includes most classical features of operating
systems.

Topsy was originally developed for the MIPS architecture [40], yet it provides
an abstraction layer for the underlying processor. This abstraction layer has
proven useful to port Topsy to the Intel x86 architecture. Topsy implements a
flat memory model, which means that the paging feature of the processors is not
used. Topsy splits the memory of the underlying hardware into two segments:
one is used for the kernel programs, and the other for the user programs.

Topsy is a micro-kernel, which means that all the high-level services are pro-
vided by kernel-thread servers, while the kernel only provides message passing.
The interfaces between user applications and kernel-thread servers are build on
top of the message passing interface.

Topsy does not include dynamic loading of code. This implies that the user
applications (which may be composed of several threads) and the kernel code
must be compiled and linked together. This specificity is not a limitation to
Topsy usage, because it is an embedded operating system.

1.2.2 Formal Methods

The denomination formal methods refers to the set of approaches that allow
to mathematically model a system and its properties. All these methods may
be sorted by the notion of tradeoff between expressiveness (which condition the
size and accuracy of models) and the effort cost for verification.

In our work we make use of two well-known formal methods: model-checking
and interactive theorem proving. Basically, model checking provides automatic
verification for state transition systems (graphs that model all the possible exe-
cutions), whereas interactive theorem proving provides an environment to write
by hand proofs for models build through functional programs and logical rela-
tions.

Model Checking

Model checking is a formal method which focuses on model: abstraction of
some system (software, hardware or more complex system, such as a subway).
The main principle of model checking consists in enumerating all the possible
execution traces, and find either, if for all of them a desired property is satisfied,
or if there is some state that satisfies an error property. The main challenge
faced by model checker is the state explosion: the number of possible execution
traces grows exponentially in function of the number of variables in the model.
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The main advantage of model checking is that verification of some property
for a given model is entirely automatic. However, in general, the state explosion
problem implies that the verification may be untractable. Thus, most of the
time, the use of model checker, such as SPIN, asks the user to manipulate a
certain number of parameters which control optimizations for the state space
exploration (like compression of states, partial order reduction, . . . ). Obviously
the fact that model checking is automatic also implies some trade-off over the
expressiveness of the model description and the formula languages.

Interactive Theorem Proving

Interactive theorem proving is a formal method which objective is to mechani-
cally formalize the pencil-and-paper proofs, such that their correctness can be
automatically verified2. More precisely, one models the systems in terms of
mathematical definitions and functions. Proof assistants also provide definition
for the most common logical formulas, which are used to build lemmas. Finally,
these tools provide interactive command language to build proofs.

Interactive proof assistant are convenient to implement complex systems in
their full details. Indeed these tools languages have enough expressiveness to de-
tail every aspects of any systems. This expressiveness also allows to express any
properties, as precise as possible. The obvious trade-off is that the verification
of complex properties over complex systems imply complex proofs. However,
most well engineered proof assistant implements several decision procedure (like
first order, or Presburger arithmetic), in order to discharge the user from te-
dious, yet not complex, proofs. Although such facility exists, building proofs in
this tools remains hard, as it includes a non-negligible overhead compared to
pencil-and-paper proofs.

1.3 Our Verification Approach

Our approach is to consider the system from different points of view. First, we
build an abstract model of the whole system, inside the SPIN model checker [8].
This abstraction allows to consider each parts of the system, their interactions,
and gives an accurate image of how the system executes. Through this model,
we try to find which parts of the system are important for the task isolation
property. Once we have identified them, we observe what are their desired
behaviors and how they are related to the task isolation. Through these studies
we deduce for each part what its specification is. More precisely, we capture
through logical assertions their behaviors that, if not respected, may lead a user
thread to be able to read or write inside the kernel memory.

Then we take a closer look at the source code of each identified parts. We
input their concrete specifications, and semantics inside the Coq proof assistant
[12], and formally build their proofs of correctness.

2The Goedel incompleteness asserts that the proofs cannot be generated automatically.
However, the Curry-Howard isomorphism asserts that proofs can be checked automatically.
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1.3.1 Design Verification

For the design verification, we use the SPIN model checker [8]. Thanks to its
model language Promela, we can model the whole Topsy operating system, its
underlying hardware, and an illustrating user application. For our model, we
have chosen to implement a user application that makes use of all the services
implemented in our model: a multi-threaded echo-server. This user application
uses the thread creation and deletion services, the message passing facility, and
the services provided by the network server.

We also model some desired properties for the system, and among them the
task isolation [44]. The model benefits are to give a readable image of how
the system works, and also to test an application running together with its
environment. Another benefits is that we can test which parts of the system
must be proved correct.

Thanks to the model, we identify several parts of the code for which cor-
rectness is a necessary condition for the task isolation property. Among them,
we identified the memory allocator of Topsy (also known as the heap manager),
which is used by the kernel and the servers to allocate fresh blocks of memory.

1.3.2 Source Code Verification

To verify the Topsy source code, we implement the separation logic inside of
the Coq proof assistant [32]. On this base, we develop tactics to help for the
verification of C-like source code. Thanks to this library, we verify all the func-
tions of the Topsy memory allocator. An interesting output of our verification
is that we have found bugs, one of them leading to the lost of allocable memory.
This is an important problem, as it may freeze the system (no allocable memory
means that the system cannot performs most of its actions).

Another part of the code that we must verify is the context switching. This
code is written in assembly. As we previously have investigated the verification
of programs in the MIPS architecture in [42], we have chosen to focus on the
MIPS port of Topsy. We implement a library inside the Coq proof assistant
to deal with the verification of MIPS assembly source code. Thanks to this
implementation we verify the function that restores the threads context.

1.3.3 Verification Tools

We also have identified simple piece of code which correctness must be ensured.
For instance, the function that creates the threads. Although their verification
are important, such straightforward code may be cumbersome to prove inside
our implemented library. For such piece of code, we investigate a decidable
fragment of the separation logic, and provide an original verification algorithm
[45]. We implement it inside the Coq proof assistant, and mechanically prove its
soundness (which means that if the verifier says that the specification is correct,
then it is indeed the case). Thanks to the extraction mechanism of Coq, we are
able to extract a certified and stand-alone verifier in Ocaml.

So far, we have verified several piece of code in both C and assembly. Yet
these specifications are not directly compatible, because they do not consider
the same command language. Our next effort will focus on how to resolve such
an important issue: the composition of specifications. Indeed, when one builds
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a runnable image of Topsy, one has to compile all the source code and to link it
together. The problem is that we would like to reason about the specification
of the resulting program, using, if possible, already verified specifications of its
different components. We propose a translator from C-like to assembly lan-
guage, implemented and certified inside the Coq proof assistant. Thanks to its
correctness we show how one can reuse specifications, verified at both language
levels, in order to build the specification of the results of the translation.

1.4 Related Work

The delta-core project [46] aims at verifying a micro-kernel written in a C-
like language. Verification of properties of system calls have been specified
and verified in the PowerEpsilon proof assistant after source code translation.
The main difference from our work is that we focus on properties of memory
management, and that we prove both C and assembly source code. Moreover,
our verification includes a mechanical verification of the whole operating system
through model checking.

The VFiasco project [47] aims at verifying memory properties of a micro-
kernel. The approach is to automatically translate a subset of the C++ language
into the PVS proof assistant where a model of x86 processors has been imple-
mented. The translation process seems to be the current challenge this project
is facing. As far as we know, no illustration of formal verification of source code
inside a proof assistant has been yet released.

The FLINT group at Yale intends to build verification methods and tools
for constructing large-scale system software [51]. This project is composed of a
verification framework inside the Coq proof assistant, used for several verifica-
tion purposes: a memory allocator [15], a self-modifying code [52], and a context
switching code [41]. This project does not yet focus an automation of verifica-
tion, or certification of compilation. Moreover, they do not focus especially on
operating system, and hence does not propose approaches for their verification.

Singularity [53] aims to build a highly reliable OS based on a model of object
oriented applications. All code outside the kernel execute in an encapsulation,
called SIP: a closed object space. Singularity is developed using a type-safe
language (C#) and assembly code. The code composing the kernel is either
“verified” or “trusted”. “Verified” means that the compiler checks the type and
memory safety, while “trusted” refers to parts written in unsafe C#, assembly,
or C++. There exists several differences with our work. First, their is no effort
to consider the whole system, as we propose through our abstraction in the
SPIN model checker. Then, the verification of Singularity does not really on
mechanical proof, as we propose through our library for verifying source code,
using the Coq proof assistant.

The project Verisoft [54] aims to achieve the correctness of critical system
using computer-aided logical proofs. This project model the whole system, from
the hardware to the user application, and the operating system kernel. For this
purpose they used model-checker, theorem prover and proof assistant. For so
long, the project is in a planning process, particularly emphasizing in the con-
ception of the set of tools they will need to fulfill the verification of operating
systems. Our approach is different, as we choose to use already existing tools
(namely, the SPIN model-checker and the Coq proof assistant), and focus en-
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tirely on the verification of a realistic operating system.

1.5 Contributions

The main contributions of this thesis are libraries to build proof in separation
logic for both a subset of C and the MIPS assembly, implemented in the Coq
proof assistant. These libraries have proven useful to certify realistic code.

Another contribution of this thesis is an original algorithm for the automatic
verification of a decidable subset of the separation logic. This algorithm can
be experimentally shown to produce, in presence of pointer arithmetic, proofs
smaller than previous approaches. We implemented our algorithm on top of
our separation logic library in Coq, and proved its correctness. An interesting
output is a stand-alone and certified verifier for separation logic.

A last contribution, regarding verification of source code, is a translator from
a subset of C to a subset of an assembly language, that is proved to preserve
the semantics. This translator and its preservation properties are implemented
in Coq.

The model of Topsy inside the SPIN model-checker stands as another con-
tribution of our work. This model represent a clear image of the whole system.
It also allows to test the design of a user application, and to simulate its ex-
ecution inside in its running environment. Finally, this model can be a good
opportunity for a reimplementation of the operating system.

1.6 Dissertation Outline

This Ph.D. thesis is organized as follows. In Chap. 2, we introduce knowledges
that should help the reader not familiar with formal verification and operat-
ing systems. First we present the main theory and the tool that we used to
formally verify source code, namely the separation logic and the Coq proof as-
sistant. Then, we present the model of Topsy inside the SPIN model checker.
After describing the abstraction of the system, we present the formalization of
some desired properties, and among them the task isolation. We then identify
several parts of the code where correctness are necessary for this property. In
Chap. 3, we present a Coq library whose purpose is to model source code in C,
as well as the formal verification of the Topsy memory allocator. In Chap. 4, we
present a variant of the previous library, which deals with verification of MIPS
assembly source code. Using this implementation, we verify the source code
for the context restoring function of Topsy. In Chap. 5, we present a certified
verifier for a decidable fragment of separation logic, implemented and certified
sound inside the Coq proof assistant. In Chap. 6, we present a translator from
a C-like language to an assembly language, which has been proved preserving
the programs semantics. Through this translator we emphasize how one can
compose specifications of source code written in both C and assembly. Finally,
in Chap. 7, we conclude this Ph.D. thesis, by summarizing our work.
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Part I

Verification
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Chapter 2

Background

In this chapter, we provide to the reader the minimal knowledge to be comfort-
able with the material presented in the next chapters. Our main motivation is
to provide a self-contained document. However we obviously point to further
materials, for readers interested in the underlying researches that are used as
foundations for this work.

First, in Sect. 2.1, we describe the most important theoretical work on which
this thesis is based: the separation logic [1]. This is an extension of the Hoare-
logic with a native notion of heap and pointers. Then, in Sect. 2.2, is about
the Coq proof assistant. This tool was used to formalize the separation logic
framework and to build the proof of correctness for the source code (Chap. 3
and Chap. 4), as well as to develop a certified verifier (Chap. 5), and a certified
translator (Chap. 6). Finally, in Sect. 2.3.1, we present the Topsy operating
system, more precisely a model written in the SPIN model-checker. Through
this abstraction, we test several properties, and among them the task isolation.
These experiments allows us to identify which parts of the kernel play a key role
in this property.

2.1 The Separation Logic

The separation logic is an extension of the Hoare-logic with a native notion of
heap and pointers, introduced by John C. Reynolds in [1]. We start this section
by presenting the command language syntax and semantics. Then, we present
how the separation logic extends an assertion language through new logical
connectives. Finally we present the Reynolds axioms: a set of rules providing a
sound and complete proof system w.r.t. the semantics.

2.1.1 The Command Language

The command language of separation logic is an extension of the Hoare-logic
command language. Separation logic extends (1) the state with a heap, and
(2) the command language with new assignments to access the heap. These
extensions necessitate to take into account an error case in the semantics, which
may arise when a program tries to access a cell that is not present in the memory.
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nexpr ::= x, y, z, . . . (var)
. . . , −1, 0, 1, . . . (const)
nexpr + nexpr
nexpr − nexpr
nexpr ∗ nexpr
nexpr / nexpr

bexpr ::= true, false (const)
nexpr == nexpr
nexpr ≤ nexpr
nexpr < nexpr
nexpr ≥ nexpr
nexpr > nexpr
bexpr ∨ bexpr
bexpr ∧ bexpr
¬bexpr

Figure 2.1: Numerical and boolean expression languages.

States

A state of the separation logic language is a couple of a store and a heap. A
store is a function from variables to values. There exist an initial store where
all the variables are initialized to some value. For x a variable and s a store we
note JxKs for the evaluation of x through s. We note s[v/x] the store s where
the variable x is updated with the value v. A heap is a map from locations to
values. This is a partial function, as some location may not be present in the
heap domain. This implies some “option” value for the evaluation of the heap.
More formally we note the evaluation of a location l through a heap h as:

JlKh=

{
v if h maps l to v
none if l is not in the domain of h

We note ∅heap the heap which has an empty domain. We define disjointness
of two heaps h1 and h2 by the facts that the intersection of their domains is
empty, and we note it as: h1 ⊥ h2. We define the concatenation of two heaps
h1 and h2, as the union of their definitions, and we note it as: h1 ∪ h2. We
note h[v/l] the heap h where the location l is updated with the value v. Note
that an update (respectively a concatenation) is only valid if the location l is
already include in the domain of h (resp. if both heap domains are disjoint).

The Language Syntax

The command language of separation logic is similar to the original command
language for Hoare-logic. It contains two expression languages: the numerical
expression language and the boolean expression language. We defined these
languages formally in the figure 2.1.

cmd ::= skip
var <-- nexpr (assignment)
var <--* nexpr (lookup)
nexpr *<-- nexpr (mutation)
cmd; cmd (sequence)
if bexpr then cmd else cmd (conditional)
while bexpr do cmd (loop)

Figure 2.2: Command language.
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In figure 2.2, we formally define the separation logic command language. The
commands lookup and mutation are the extensions to the classical Hoare-logic
command language. These commands are respectively used to read and to write
values inside a heap. We use a variant of the original notation for command
proposed in [1].

The Language Semantics

The execution of the command language is described as a big-step operational
semantics in 2.3. In these rules, we use two extensions to the notation for the
evaluation function through stores: if e (respectively b) is a numerical expression
(resp. a boolean expression), then JeKs (resp. JbKs) stands for its evaluation
through s. More precisely, this is the evaluation of an expression when its
variables are evaluated through the store s.

Most of the semantics rules are well-known. The new rules concern the
mutation and the lookup. For both commands, the first rule represents a valid
execution, and the second rule represents an error in its execution, due to the
fact that the addressed location is not in the domain of the initial heap.

(s, h) == skip ==> (s, h)
skip

(s, h) == (x <-- e) ==> (s[JeKs/x], h)
assign

JeKs = l JlKh = v

(s, h) == (x <--* e) ==> (s[v/x], h)
lookup

JeKs = l JlKh =none

(s, h) == (x <--* e) ==> Abort
lookup_error

Je1Ks = l JlKh 6= none Je2Ks = v

(s, h) == (e1 *<-- e2) ==> (s, h[v/l])
mutation

Je1Ks = l JlKh =none

(s, h) == (e1 *<-- e2) ==> Abort
mutation_err

Abort == c ==> Abort
abort

JbKs = true (s, h) == c1 ==> (s′, h′)

(s, h) == (if b then c1 else c2) ==> (s′, h′)
if_true

JbKs = false (s, h) == c2 ==> (s′, h′)

(s, h) == (if b then c1 else c2) ==> (s′, h′)
if_false

JbKs = false

(s, h) == (while b do c) ==> (s, h)
while_false

JbKs = true (s, h) == c ==> (s′, h′) (s′, h′) == (while b do c) ==> (s′′, h′′)

(s, h) == (while b do c) ==> (s′′, h′′)
while_true

Figure 2.3: Big-step operational semantics of the command language

2.1.2 The Assertions Language

In this section we describe the connectives introduced by separation logic. In the
classical Hoare-logic, the assertion language can be any logic that allows to assert
properties over the values of the variables. Thus, for any predicate P of this
logic, we define the satisfiability relation by s |= P , for some store s. Separation
logic defines connectives to reason about the heaps. These connectives are used
to extends the assertion language, such that the satisfiability relation extends
over a couple of a store and a heap.
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Basic Assertions

The first new predicate defined by separation logic is emp. This predicate only
holds for an empty heap, more precisely for a heap which domain is the empty
set. We can formally defined it as:

∅heap |= emp ∧ ∀h, h 6= ∅heap → h 6 |=emp

Another predicate allows to describe a cell. We note l 7→ v the predicates
that holds for a heap h which (1) domain is a singleton {l}, and (2) such that
the image of the location l is v. More formally:

h |= (l 7→v) ⇐⇒ JlKh = v ∧ ∀l′, l 6= l′ → Jl′Kh=none

We can overweight the connective 7→ such that its satisfiability relation ex-
tends to a state:

(s, h) |= (e1 7→e2) ⇐⇒ h |= (Je1Ks 7→Je2Ks)

We note the implication between separation logic predicates as ⇒, and we
defined it formally as:

∀P,Q, P ⇒ Q ⇐⇒ ∀s, h, (s, h) |= P → (s, h) |= Q

Similarly we defined ⇔ as:

∀P,Q, P ⇔ Q ⇐⇒ P ⇒ Q ∧ Q ⇒ P

The Separating Conjunction

Separation logic defines a special conjunction for which each hand-side asser-
tions hold for disjoint parts of a heap. This connective allows to reason over
non-overlapping parts of a heap. We note this conjunction, named separating
conjunction, as P ? Q (for any predicates P and Q). Formally, this predicate
holds if a heap h can be split into two disjoint heaps h1 and h2 such that P
holds for the first one and Q holds for the other. More formally:

h |= P ? Q ⇐⇒ ∃h1,∃h2, (h = h1 ∪ h2) ∧ (h1 ⊥ h2) ∧ (h1 |= P ) ∧ (h2 |= Q)

Once again, we can derive easily a satisfiability relation over a couple of a
store and a heap. Here follows some examples:

(s, h) |= (x 7→x + 1 ? x + 1 7→0)

(s, h) 6|= (x 7→x ? x 7→y)

Here follows the lemmas asserting the commutativity and associativity of
the separating conjunction:

∀P,Q, P ? Q ⇔ Q ? P

∀P,Q,R, (P ? Q) ? R ⇔ P ? (Q ? P )
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The Separating Implication

Separation logic defines also a variant of the implication noted −? , namely the
separating implication. This connective allows to reason about concatenation of
a heap with a fresh heap for which the l.h.s. assertion holds. More formally:

h |= P −?Q ⇐⇒ ∀h′, (h ⊥ h′ ∧ h′ |= P ) → (h ∪ h′) |= Q

The separating implication, used with the separating conjunction, can be
used to represent a destructive update.

An interesting feature of the separation logic connectives is that they have
a modus-ponens-like rule:

∀P,Q, (P ? (P −? Q)) ⇒ Q

Data-structures Definitions

The separation logic has shown convenient to describe some of the most widely
used data-structures. Here we just define some of the most well-known.

We define the singly-linked list element as a couple of two contiguous cells,
where the first is used to store a data and a second is used as a link to the next
element. The corresponding separation logic predicate takes two arguments:
the first is the location of the initial element of the list, and the second is the
location of the last pointed element. Formally put:

(s, h) |= list(e1, e2) ⇐⇒ (Je1Ks = Je2Ks ∧ h |= emp)∨
(Je1Ks 6= Je2Ks ∧ ∃d, n, (s, h) |= (e1 7→d ? e1+1 7→n ? list(n, e2)))

The doubly-linked list is defined in a analogous way. This time each element
is composed of three contiguous cells, because we now need to keep information
about two links: one for the previous element and one for the next element.
The predicate describing doubly-linked list takes four arguments: the first and
the second are respectively the location of the first element and its previous
link, whereas the third and forth are the next pointer of the last element and
its location:

(s, h) |= dlist(e1, e2, e3, e4) ⇐⇒ (Je1Ks = Je3Ks ∧ Je2Ks = Je4Ks ∧ h |= emp)∨
(¬(Je1Ks = Je3Ks ∧ Je2Ks = Je4Ks)∧

∃d, n, (s, h) |= (e1 7→d ? e1+1 7→n ? e1+2 7→e2 ? dlist(n, e1, e3, e4)))

The trees are also widely used data-structures. The separating conjunction
is a convenient connective to define trees. Each element of the tree is defined by
three contiguous cells: the first for the data, and the two others for the children.
We define a value end, to capture that a link does not point to a child. The tree
predicate takes an unique argument: the location of the root element.

(s, h) |= tree(e1) ⇐⇒ (Je1Ks = end ∧ h |= emp)∨
(Je1Ks 6= end ∧ ∃d, n1, n2,

(s, h) |= (e1 7→d ? e1+1 7→n1 ? e1+2 7→n2 ? tree(n1) ? tree(n2)))
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2.1.3 The Separation Logic Triples

Similarly to Hoare-logic, the final purpose of separation logic is to abstract the
operational semantics, using pre/post-conditions instead of initial/final-states.
For this purpose the separation logic extends the Hoare proof systems with new
rules, namely the Reynolds’ axioms. They are represented by the rules lookup
and mutation in Fig.2.4. Both rules implements a backward reasoning, using the
separation logic connectives to model a destructive update in the pre-condition.

{Q} skip {Q}
skip

{Q[e/x]} (x <-- e) {Q}
assign

{∃v, (e 7→v) ? ((e 7→v) −? Q[v/x])} (x <--* e) {Q}
lookup

{∃v, (e1 7→v) ? ((e1 7→e2) −? Q)} (e1 *<-- e2) {Q}
mutation

{P ∧ JbK = true} (if b then c1 else c2) {Q} {P ∧ JbK = false} (if b then c1 else c2) {Q}

{P} (if b then c1 else c2) {Q}
ifte

{I ∧ JbK = true} c {I}

{I} (while b do c) {I ∧ JbK = false} while

P ⇒ P ′ {P ′} c {Q′} Q′ ⇒ Q

{P} c {Q}
impl

Figure 2.4: Axiomatic semantics for separation logic.

All the rules in the proof system Fig. 2.4 can be proved sound and complete
w.r.t. the operational semantics Fig. 2.3. Both properties are formally specified
as:
Soundness: ∀P, c, Q,
{P} c {Q′} →

∀s, h, (s, h) ` P →
∀s′, h′, (s, h) == c ==> (s′, h′) →

(s′, h′) ` Q

Completeness: ∀P, c, Q,
(∀s, h, (s, h) ` P →

∀s′, h′, (s, h) == c ==> (s′, h′) →
(s′, h′) ` Q) →
{P} c {Q′}

2.2 The Coq Proof Assistant Through an Exam-
ple: an Arithmetic Verification Procedure

In this section we provide to the reader an introduction to the Coq proof assis-
tant. Rather than focusing on its underlying theory, we prefer to give a practical
overview of the tool. The main motivation of this section is to help the reader
to read the excerpts of Coq code that illustrate this Ph.D. thesis.

Coq is a proof assistant, a tool that allows to build mathematical models, to
assert properties on them and to build their proofs. It uses the principle of the
Curry-Howard isomorphism: a lemma is a type, while a proof is a lambda term
of the corresponding type. For Coq, the underlying lambda calculus is named
the Predictive Calculus of CoInductive Constructions (abbreviate as pCic). In
this calculus all the terms have a type, even the types themselves. The pCic is
a formalization of the type theory, including inductive definitions. One of the
specificity of pCic is to define the types and the terms in the same syntactical
structure.
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The Coq proof assistant provides: a programming languages to build models
and to assert lemmas, a type checker to mechanically check that all terms are
well-type (which through the Curry-Howard isomorphism corresponds also to
mechanically check the correctness of a proofs), and finally a tactic language to
interactively build a term of a given type (i.e., to build a proof).

We introduce how one can use the Coq proof assistant for the implementation
of a provably sound arithmetic verification procedure. This decision procedure
implements variables elimination by application of the Fourier-Motzkin Lemma.
This verification procedure has been proved useful in the different implementa-
tions described in this thesis.

2.2.1 The Arithmetic Formulas

The formulas for arithmetic assertions are composed of two languages. First,
there is the numerical expression language, which terms are evaluated to a value
through a store (a map from variables to values). This expression language is a
component inside the boolean expression language, which terms are evaluated
to boolean values through a store. In this section, we describe the definitions of
both expression languages, their evaluations, and some of their properties.

The Numerical Expression Language

Before defining the design of the numerical language we need to choose how we
model the variables. We have chosen to model the variables as natural number,
through the alias fm_var. This allows to make a clear difference between the
natural number and the variables identifiers. We define a store (alias fm_store)
as a partial function from the variables to values (Here Z, the type for Coq
integers).

Definition fm_var := nat.
(* part_funct A B, is an alias for the type

A → option B *)
Definition fm_store := part_funct fm_var Z.

As Coq only provides total functions, we built a library that implements partial
functions, through the Coq option type:

Inductive option (A: Type) : Type :
| Some: A → option A
| None: option A.

This type is defined with the Inductive keyword, that allows to define inductive
types. The type Type is a base type of Coq (Together with Set and Prop, which
are included in Type). The type option takes as argument a term A of type
Type (and thus this may be a terms which type is Set or Prop), and returns a
term of type Type. It contains two constructors: (1) Some (of type A → option
A), that we use to model a value returned by a partial function, and (2) None
of type option A, that models the fact that the argument is not in the domain
of the partial function. The evaluation of the variable x through the partial
function f is simply written in Coq as (f x).

We define the numerical expression language as the fm_nexpr inductive type
of type Set (which will allow us to extract it as a data-structure in Ocaml). This
type constructors correspond in order to: a variable, a constant, the addition,
the subtraction and multiplication of two numerical expressions. For these later
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constructors we defined Coq notations, which allow to make the terms more
readable.

Inductive fm_nexpr : Set :=
| nfm_var : fm_var → fm_nexpr
| fm_ncons: Z → fm_nexpr
| fm_nplus: fm_nexpr → fm_nexpr → fm_nexpr
| fm_nminus: fm_nexpr → fm_nexpr → fm_nexpr
| fm_nmult: fm_nexpr → fm_nexpr → fm_nexpr.

Notation "e1 +e e2" := (fm_nplus e1 e2) (at level 78) : fm_scope.
Notation "e1 -e e2" := (fm_nminus e1 e2) (at level 78) : fm_scope.
Notation "e1 *e e2" := (fm_nmult e1 e2) (at level 78) : fm_scope.

We define the evaluation of numerical expressions through a store by the
recursive function fm_neval. A specificity of Coq is that all its functions must
finish (more precisely, the pCic is strongly normalizing). It implies that all
recursive functions must be proved to finish. Coq provides several ways to
assert this termination. In fm_neval, we use a structural recursion (struct)
over the numerical expression e, for which Coq verifies that we recursively call
the function on sub-terms (and thus automatically proves that the function will
finish). The evaluation of the numerical expression e is based on a case analysis
over the constructor. Please note that if a variable value is not defined by the
store we give it a default value (here 0).

Fixpoint fm_neval (e: fm_nexpr) (s: fm_store) {struct e} : Z :=
match e with
| nfm_var v ⇒ match (s v) with

| None ⇒ 0
| Some z ⇒ z

end
| fm_ncons z ⇒ z
| e1 +e e2 ⇒ (fm_neval e1 s) + (fm_neval e2 s)
| e1 -e e2 ⇒ (fm_neval e1 s) - (fm_neval e2 s)
| e1 *e e2 ⇒ (fm_neval e1 s) * (fm_neval e2 s)

end.

We define an alternative evaluation for the numerical expression, but without
any store this time. This evaluation only returns a value if there is no variable
in the expression. This behavior is modeled by the type option Z:

Fixpoint fm_nexpr_compute (e: fm_nexpr) {struct e} : option Z :=
match e with

nfm_var x ⇒ None
| fm_ncons x ⇒ Some x
| e1 +e e2 ⇒ match fm_nexpr_compute e1 with

None ⇒ None
| Some e1’ ⇒

match fm_nexpr_compute e2 with
None ⇒ None
| Some e2’ ⇒ Some (e1’ + e2’)

end
end

| e1 -e e2 ⇒ match fm_nexpr_compute e1 with
None ⇒ None
| Some e1’ ⇒

match fm_nexpr_compute e2 with
None ⇒ None
| Some e2’ ⇒ Some (e1’ - e2’)

end
end

| e1 *e e2 ⇒ match fm_nexpr_compute e1 with
None ⇒
match fm_nexpr_compute e2 with

None ⇒ None
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| Some e2’ ⇒ if Z_eq_dec e2’ 0 then Some 0 else None
end
| Some e1’ ⇒

if Z_eq_dec e1’ 0 then Some 0 else
match fm_nexpr_compute e2 with

None ⇒ None
| Some e2’ ⇒ Some (e1’ * e2’)

end
end

end.

We can capture the specification of this function property through the lemma
fm_nexpr_compute_correct. It asserts that if fm_nexpr_compute returns some
value, then the evaluation through any store will return this value. Here follows
the lemma:

Lemma fm_nexpr_compute_correct: ∀ s e z,
fm_nexpr_compute e = Some z →
fm_neval e s = z.

Lets now take a look at how one can build a proof for this lemma in Coq.
First, Coq presents an ongoing proof through a number of goals with their
hypothesizes. At the beginning, there is no hypothesizes, and just one goal: the
lemma to be proved.

1 subgoal

============================
forall (s : fm_store) (e : fm_nexpr) (z : Z),
fm_nexpr_compute e = Some z -> fm_neval e s = z

This proof can be proved by induction over the universally quantified term e, of
type fm_nexpr. A convenient feature of Coq is that it generates automatically an
induction principle through an inductive type definition. To use this induction
principle over e, we just have to call the induction e tactic, which generates
the following proof subgoals:

5 subgoals

s : fm_store
f : fm_var
============================
forall z : Z,
fm_nexpr_compute (nfm_var f) = Some z -> fm_neval (nfm_var f) s = z

subgoal 2 is:
forall z0 : Z,
fm_nexpr_compute (fm_ncons z) = Some z0 -> fm_neval (fm_ncons z) s = z0

subgoal 3 is:
forall z : Z,
fm_nexpr_compute (e1 +e e2) = Some z -> fm_neval (e1 +e e2) s = z

subgoal 4 is:
forall z : Z,
fm_nexpr_compute (e1 -e e2) = Some z -> fm_neval (e1 -e e2) s = z

subgoal 5 is:
forall z : Z,
fm_nexpr_compute (e1 *e e2) = Some z -> fm_neval (e1 *e e2) s = z

We remark that we have now five subgoals, one for each constructor of fm_nexpr
(the shown hypothesizes are related to the first subgoal). For the first subgoal,
we first introduce the hypothesizes by using the intros command, which trans-
forms the subgoal into:

s : fm_store
f : fm_var
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z : Z
H : fm_nexpr_compute (nfm_var f) = Some z
============================
fm_neval (nfm_var f) s = z

A simple look at the definition of fm_nexpr_compute informs us that it should
return None when its argument is a variable (which is the case in the hypothesis
H). We can compute this value by taping the command simpl fm_nexpr_compute
in H. The goal is now:

s : fm_store
f : fm_var
z : Z
H : None = Some z
============================
fm_neval (nfm_var f) s = z

By the definition of the inductive type option the hypothesis H is false, because
it asserts the equality of two different constructors. Coq can resolve such goal
through the discriminate command. The second subgoal (for a constant) is
trivial, we now focus on the subgoal for the nplus constructor:

s : fm_store
e1 : fm_nexpr
IHe1 : forall z : Z, fm_nexpr_compute e1 = Some z -> fm_neval e1 s = z
e2 : fm_nexpr
IHe2 : forall z : Z, fm_nexpr_compute e2 = Some z -> fm_neval e2 s = z
============================
forall z : Z,
fm_nexpr_compute (e1 +e e2) = Some z -> fm_neval (e1 +e e2) s = z

In this subgoal, additional hypothesizes have appeared (namely, IHe1 and IHe2):
the induction hypothesizes. They assert that the property we want to prove
holds for both subterms of the nplus constructor. After simplifying the goal,
and introducing the hypothesizes, we have the following goal:

s : fm_store
e1 : fm_nexpr
IHe1 : forall z : Z, fm_nexpr_compute e1 = Some z -> fm_neval e1 s = z
e2 : fm_nexpr
IHe2 : forall z : Z, fm_nexpr_compute e2 = Some z -> fm_neval e2 s = z
z : Z
H : match fm_nexpr_compute e1 with

| Some e1’ =>
match fm_nexpr_compute e2 with
| Some e2’ => Some (e1’ + e2’)
| None => None (A:=Z)
end

| None => None (A:=Z)
end = Some z

============================
fm_neval e1 s + fm_neval e2 s = z

Here, we will do a case analysis for each possible values of fm_nexpr_compute e1
and fm_nexpr_compute e2 (here either None, or option x, with x some fresh
Coq variable). We can remark that on both the None cases, the hypothesis
H is invalid. Coq allows to compose the proof commands with a semi-colon.
The r.h.s command will be applied to each subgoals generated by the l.h.s
command. Here we want all the possible cases for fm_nexpr_compute e1 and
fm_nexpr_compute e2 and try to solve the subgoals for which H is invalid. Thus
we enter the following command:

destruct (fm_nexpr_compute e1); destruct (fm_nexpr_compute e2); try discriminate.
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The goal becomes:

s : fm_store
e1 : fm_nexpr
z0 : Z
IHe1 : forall z : Z, Some z0 = Some z -> fm_neval e1 s = z
e2 : fm_nexpr
z1 : Z
IHe2 : forall z : Z, Some z1 = Some z -> fm_neval e2 s = z
z : Z
H : Some (z0 + z1) = Some z
============================
fm_neval e1 s + fm_neval e2 s = z

Now, we can rewrite the conclusion of IHe1 and IHe2 in the goal. For this we
need to give an element of Z, as well as a proof for the equality. This is done by
the following commands (where refl_equal is the only constructor for equality,
which corresponds to the reflexivity of the equality):

rewrite (IHe1 z0 (refl_equal (Some z0))).
rewrite (IHe2 z1 (refl_equal (Some z1))).

The resulting goal is:

s : fm_store
e1 : fm_nexpr
z0 : Z
IHe1 : forall z : Z, Some z0 = Some z -> fm_neval e1 s = z
e2 : fm_nexpr
z1 : Z
IHe2 : forall z : Z, Some z1 = Some z -> fm_neval e2 s = z
z : Z
H : Some (z0 + z1) = Some z
============================
z0 + z1 = z

We can deduce the goal from the hypothesis H. For this purpose, we use the
command injection. Our goal is simply resolved by the following command:

injection H; intro X; exact X.

The other subgoals of the induction are resolved in a similar way.
The function fm_nexpr_compute can be used to build a function that will

simplify (i.e., reduce the number of constructor if possible) a numerical expres-
sion:

Fixpoint simpl_fm_nexpr (e: fm_nexpr) : fm_nexpr :=
match e with

| nfm_var v ⇒ nfm_var v
| fm_ncons z ⇒ fm_ncons z
| e1 +e e2 ⇒

let e1’ := simpl_fm_nexpr e1 in (
let e2’ := simpl_fm_nexpr e2 in (

match (fm_nexpr_compute e1’, fm_nexpr_compute e2’) with
| (Some z1, Some z2) ⇒ fm_ncons (z1 + z2)
| (_ , Some z2) ⇒

if Z_eq_dec z2 0 then e1’ else e1’ +e (fm_ncons z2)
| (Some z1 , _) ⇒

if Z_eq_dec z1 0 then e2’ else (fm_ncons z1) +e e2’
| _ ⇒ e1’ +e e2’

end
)

)
| e1 -e e2 ⇒

let e1’ := simpl_fm_nexpr e1 in (
let e2’ := simpl_fm_nexpr e2 in (
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match (fm_nexpr_compute e1’, fm_nexpr_compute e2’) with
| (Some z1, Some z2) ⇒ fm_ncons (z1 - z2)
| (_ , Some z2) ⇒

if Z_eq_dec z2 0 then e1’ else e1’ -e (fm_ncons z2)
| (Some z1 , _) ⇒ (fm_ncons z1) -e e2’
| _ ⇒ e1’ -e e2’

end
)

)
| e1 *e e2 ⇒

let e1’ := simpl_fm_nexpr e1 in (
let e2’ := simpl_fm_nexpr e2 in (

match (fm_nexpr_compute e1’, fm_nexpr_compute e2’) with
| (Some z1, Some z2) ⇒ fm_ncons (z1 * z2)
| (_ , Some z2) ⇒

if Z_eq_dec z2 0 then (fm_ncons 0)
else (if Z_eq_dec z2 1 then

e1’ else e1’ *e (fm_ncons z2))
| (Some z1 , _) ⇒

if Z_eq_dec z1 0 then (fm_ncons 0)
else (if Z_eq_dec z1 1 then

e2’ else (fm_ncons z1) *e e2’)

| _ ⇒ e1’ *e e2’
end

)
)

end.

The correctness of the simplification is stated as the fact that for any store, an
expression and its simplification have the same evaluation. This lemma, which
is proved by induction over the numerical expressions, is defined below:

Lemma simpl_fm_nexpr_correct: ∀ s e,
fm_neval e s = fm_neval (simpl_fm_nexpr e) s.

As previously stated, our arithmetic verification procedure is based on variables
elimination. For this purpose we need to be able to factorize a variable in a
numerical expression. We implement the function fm_nexpr_fm_var_fact that
provides this feature.

Fixpoint fm_nexpr_fm_var_fact (e: fm_nexpr) (v: nat) struct e : (fm_nexpr * fm_nexpr) :=
match e with

| nfm_var x => if eq_nat_dec x v then (fm_ncons 1, fm_ncons 0) else (fm_ncons 0, nfm_var x)
| fm_ncons z => (fm_ncons 0, fm_ncons z)
| e1 +e e2 =>

match (fm_nexpr_fm_var_fact e1 v, fm_nexpr_fm_var_fact e2 v) with
| ((e11, e12 ), (e21, e22)) =>

(e11 +e e21, e12 +e e22)
end

| e1 -e e2 =>
match (fm_nexpr_fm_var_fact e1 v, fm_nexpr_fm_var_fact e2 v) with
| ((e11, e12 ), (e21, e22)) =>

(e11 -e e21, e12 -e e22)
end

| e1 *e e2 =>
match (fm_nexpr_fm_var_fact e1 v, fm_nexpr_fm_var_fact e2 v) with
| ((e11, e12 ), (e21, e22)) =>

(((e11 *e e22) +e (e21 *e e12)) +e ((nfm_var v) *e (e11 *e e21)), e12 *e e22)
end

end.

This function returns two numerical expressions: the first represents the factor
for the variable v, and the second corresponds to the rest of the numerical
expression (in which v does not appear). This specification is formally asserted
in the fm_nexpr_fm_var_fact_sem lemma:
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Lemma fm_nexpr_fm_var_fact_sem: forall s v e e1 e2,
fm_nexpr_fm_var_fact e v = (e1, e2) ->
fm_neval e s = fm_neval ((nfm_var v *e e1) +e e2) s.

We eventually build a function, named fm_nexpr_simpl_fm_var_fact, which
will simplifies both numerical expressions returned by fm_nexpr_fm_var_fact.

Definition fm_nexpr_simpl_fm_var_fact (n: fm_nexpr) (v: nat) :=
match (fm_nexpr_fm_var_fact n v) with

| (e1, e2) => (simpl_fm_nexpr e1, simpl_fm_nexpr e2)
end.

Lemma fm_nexpr_simpl_fm_var_fact_sem: forall s v e e1 e2,
fm_nexpr_simpl_fm_var_fact e v = (e1, e2) ->
fm_neval e s = fm_neval ((nfm_var v *e e1) +e e2) s.

The Boolean Expression Language

The boolean expression language is defined, like the numerical expression lan-
guage, as an inductive type:

Inductive fm_bexpr : Set :=
| fm_beq : fm_nexpr → fm_nexpr → fm_bexpr
| fm_blt : fm_nexpr → fm_nexpr → fm_bexpr
| fm_ble : fm_nexpr → fm_nexpr → fm_bexpr
| fm_bgt : fm_nexpr → fm_nexpr → fm_bexpr
| fm_bge : fm_nexpr → fm_nexpr → fm_bexpr
| fm_bneg : fm_bexpr → fm_bexpr
| fm_band: fm_bexpr → fm_bexpr → fm_bexpr
| fm_bor: fm_bexpr → fm_bexpr → fm_bexpr.

Notation "e1 == e2" := (fm_beq e1 e2) (at level 78) : fm_scope.
Notation "e1 << e2" := (fm_blt e1 e2) (at level 78) : fm_scope.
Notation "e1 <<= e2" := (fm_ble e1 e2) (at level 78) : fm_scope.
Notation "e1 >> e2" := (fm_bgt e1 e2) (at level 78) : fm_scope.
Notation "e1 >>= e2" := (fm_bge e1 e2) (at level 78) : fm_scope.
Notation "! e" := (fm_bneg e) (at level 78) : fm_scope.
Notation "e1 //\\ e2" := (fm_band e1 e2) (at level 78) : fm_scope.
Notation "e1 \\// e2" := (fm_bor e1 e2) (at level 78) : fm_scope.
Notation "e1 ==> e2" := (fm_bor (fm_bneg e1) e2) (at level 78) : fm_scope.

The function fm_beval, evaluates a boolean formula, through a store, as a term
of Prop: the type for logical propositions in Coq (~ is the Coq notation for the
negation).

Fixpoint fm_beval (b: fm_bexpr) (s: fm_store) struct b : Prop :=
match b with

| e1 == e2 ⇒ (fm_neval e1 s) = (fm_neval e2 s)
| e1 << e2 ⇒ (fm_neval e1 s) < (fm_neval e2 s)
| e1 <<= e2 ⇒ (fm_neval e1 s) <= (fm_neval e2 s)
| e1 >> e2 ⇒ (fm_neval e1 s) > (fm_neval e2 s)
| e1 >>= e2 ⇒ (fm_neval e1 s) >= (fm_neval e2 s)
| ! b1 ⇒ ~ (fm_beval b1 s)
| b1 //\\ b2 ⇒ (fm_beval b1 s) ∧ (fm_beval b2 s)
| b1 \\// b2 ⇒ (fm_beval b1 s) ∨ (fm_beval b2 s)

end.

One of the main specificity of this function is that it is decidable for a given
store. Coq provides a useful inductive type for this kind of assertion, sumbool:

Inductive sumbool (A : Prop) (B : Prop) : Set :=
| left : A → sumbool A B
| right : B → sumbool A B.

Notation "{ A } + { B }" := (sumbool A B).
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This inductive type can be used to define decidability of some predicate P (by
taking P for A and ~P for B). It has mainly two advantages. The first one occurs
when building a proof. Indeed, if an hypothesis as the type {P} + {~P}, it can
be destructed, creating two subgoals with as hypothesis a proof respectively of P
and of ~P. The other advantage is that Coq can automatically extract a decision
procedure from a decidability lemma (because the type of sumbool is Set). The
decidability for the evaluation of a boolean expression through a store is defined
as:

Lemma fm_beval_dec: forall s b,
{fm_beval b s} + {~ fm_beval b s}.

2.2.2 The Verification Procedure

The verification procedure is split into several steps. The first one consists in
propagating the negation as deep as possible (this kind of term is said to be
in negation normal form). As our formulas are quantifier free, it means that
we propagate negation until the atomic constructor of the boolean expressions.
The second step consists in transforming the formula into its disjunctive normal
form. A formula is said to be in disjunctive normal form if it is a disjunction of
conjunctions.

Negation Normal Form

In this step, we have decided to keep the boolean expression language bexpr to
represent the terms in negation normal form. Yet, all the terms of bexpr are
not in this form, so we define an inductive predicate that characterizes which
boolean expressions are in negation normal form (in the following the func-
tion (fm_bexpr_size e) computes the number of constructors of the boolean
expression e):

Inductive is_neg_propagate : fm_bexpr → Prop :=

(* atomic boolean expression are valid formulas *)
| fm_beq_is_neg_propagate: ∀ e1 e2, is_neg_propagate (e1 == e2)
| fm_bge_is_neg_propagate: ∀ e1 e2, is_neg_propagate (e1 >>= e2)
| fm_bgt_is_neg_propagate: ∀ e1 e2, is_neg_propagate (e1 >> e2)
| fm_ble_is_neg_propagate: ∀ e1 e2, is_neg_propagate (e1 <<= e2)
| fm_blt_is_neg_propagate: ∀ e1 e2, is_neg_propagate (e1 << e2)

(* if a boolean expression is negative, its size
must be 1, which means that it is an atomic formula*)
| fm_bneg_is_neg_propagate: ∀ e, (fm_bexpr_size e = 1)%nat → is_neg_propagate (! e)

(* formulas on both size of connectives must be valid
formulas *)
| fm_band_is_neg_propagate: ∀ e1 e2,
(is_neg_propagate e1) →
(is_neg_propagate e2) →
(is_neg_propagate (e1 //\\ e2))

| fm_bor_is_neg_propagate: ∀ e1 e2,
(is_neg_propagate e1) →
(is_neg_propagate e2) →
(is_neg_propagate (e1 \\// e2)).

We define the function neg_propagate that propagates the negations until the
atomic boolean expressions. We also prove a lemma that asserts the preservation
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of the evaluation, and a lemma asserting the correctness of the function: the
fact that all returned formulas are in the negation normal form:

Function neg_propagate (b: fm_bexpr) (n: bool) struct b : fm_bexpr := ...

Lemma neg_propagate_preserve: ∀ b n,
(∀ s, fm_beval (neg_propagate b n) s ↔ fm_beval (if n then (fm_bneg b) else b) s).

Lemma neg_propagate_correct: ∀ b n,
is_neg_propagate (neg_propagate b n).

Disjunctive Normal Form

For the transformation of a boolean formula in disjunctive normal form, we have
chosen to define a few new types:

Definition constraint := fm_nexpr.
Definition andlist := list constraint.
Definition orlist := list andlist.

There is mainly two reasons for such a design choice. First, these types define by
construction disjunctive normal form (a disjunction of conjunction), which avoid
the need for a predicate as the one used to characterized boolean expression
in negation normal form. Another reason is that the algorithms for variables
elimination are simpler to implement through list traversals. Together with
these new types definitions, we define their translation into boolean expression:

Definition constraint_semantic (c: constraint) : fm_bexpr := (fm_ncons 0) >>= c.

Fixpoint andlist_semantic (l: andlist) : fm_bexpr :=
match l with

nil ⇒ btrue
| hd::tl ⇒ (constraint_semantic hd) //\\ (andlist_semantic tl)

end.

Fixpoint orlist_semantic (l: orlist) : fm_bexpr :=
match l with

nil ⇒ ! btrue
| hd::tl ⇒ (andlist_semantic hd) \\// (orlist_semantic tl)

end.

Then, we define a function that transforms a boolean expression into its dis-
junctive normal form, and prove its evaluation preservation lemma:

Fixpoint disj_nf (b: fm_bexpr) : orlist := ...

Lemma disj_nf_preserve: ∀ b,
is_neg_propagate b →
(∀ s, fm_beval (orlist_semantic (disj_nf b)) s ↔ fm_beval b s).

Finally, we implement the function fm_neval_orlist, that tries to evaluate an
orlist, such that its evaluation does not depend on the store. The function
signature, and its correctness lemma are presented bellow:

Definition fm_neval_orlist (a: orlist) : option bool := ...

Lemma eval_orlist2orlist_semantic: ∀ a b,
fm_neval_orlist a = Some b →
(∀ s, fm_beval (if b then orlist_semantic a else ! (orlist_semantic a)) s).
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Variables Elimination

The main function that allows the elimination of variable is elim_fm_var_constraint.
This function tries to eliminate a variable by composing two constraints. The
function takes four numerical expressions, corresponding to the factorization of
the variable in both constraints. Then, it tests the sign of both factors of the
variable to know if it can use the Fourrier-Motzkin lemma:

Lemma fourier_motzkin_for_integers: ∀ a1 b1 a2 b2 x,
a1 < 0 →
0 < a2 →
0 >= x * a1 + b1 →
0 >= x * a2 + b2 →
a1 * b2 >= a2 * b1.

Here follows the function signature and its correctness lemma:

Definition elim_fm_var_constraint (e11 e12 e21 e22: nexpr): option constraint := ...

Lemma elim_fm_var_constraint_correct: ∀ e11 e12 e21 e22 v c2’,
elim_fm_var_constraint e11 e12 e21 e22 = Some c2’ →
∀ s,

fm_beval (constraint_semantic ((nfm_var v *e e11) +e e12)) s →
fm_beval (constraint_semantic ((nfm_var v *e e21) +e e22)) s →
fm_beval (constraint_semantic c2’) s.

We can note that the lemma implies that we have eliminated the variable
v, as the numerical expression in the goal does not contain occurrences of v.
This function is important as it is used to eliminate the variables in a andlist
(implemented in elim_allfm_var_andlist) and in a orlist (implemented in
elim_allfm_var_orlist):

Definition elim_allfm_var_andlist (l: andlist) : andlist := ...

Lemma elim_allfm_var_andlist_correct: ∀ s l,
fm_beval (andlist_semantic l) s →
fm_beval (andlist_semantic (elim_allfm_var_andlist l)) s.

Fixpoint elim_allfm_var_orlist (l: orlist) struct l: orlist := ...

Lemma elim_allfm_var_orlist_correct: ∀ s l,
fm_beval (orlist_semantic l) s →
fm_beval (orlist_semantic (elim_allfm_var_orlist l)) s.

2.2.3 Put It All Together

Thanks to all the previously described functions we are able to implement the
arithmetic verification procedure:

Definition fm_dp (b: fm_bexpr) : bool :=
match fm_neval_orlist (elim_allfm_var_orlist (disj_nf (neg_propagate true b))) with

| Some res ⇒ negb res
| _ ⇒ false

end.

This function computes the negation of a given boolean expression, computes its
disjunctive normal form, tries to eliminate all the variables, and finally computes
the evaluation over all possible stores. The validity of the original boolean
expression is hence the negation of this evaluation. We provide a soundness
lemma, asserting that if the verification procedure return true, then the boolean
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expression is valid for any store (this lemma is proved using all the preservation
and correctness lemmas previously presented):

Lemma fm_dp_correct: ∀ b,
fm_dp b = true →
∀ s,

fm_beval b s.

2.2.4 The Coq Tactic

Our verification procedure only reason over the fm_bexpr boolean expression
language. However, we would like to use it to solve Coq goals. Hence we need
to build a set of tactics that will transform a Coq assertion into a boolean
expression. More precisely, we build a boolean expression that is equivalent to
the goal, and prove that its evaluation (it translation into the Coq language)
implies the goal. Here follows the main tactic for proving a Coq arithmetic goal
using our verification procedure:

Ltac fm_dp_decision :=
match goal with

| |- ?G =>
let l := (Build_env G) in (
let x := (To_bexpr G l) in (
new_cut (fm_beval x (list2fm_store (rev l))); [

eapply fm_dp_correct; vm_compute; apply refl_equal
|
simpl; intuition

]
)

)
end.

The tactics Build_env builds a map that matches the Coq variables to variables
for numerical expression (more precisely, that matches the Coq variables to a
natural). The To_bexpr tactic translates the Coq arithmetic goal into a boolean
expression, using the previously constructed map. Then we assert that the eval-
uation of this boolean expression implies the Coq goals. This assertion produced
two subgoals. One is for the logical implication, and the other is for a proof that
the evaluation of the boolean expression is correct. To build this proof, we apply
the soundness lemma of our verification procedure (fm_dp_correct), transform-
ing the goal into the assertion that the function fm_dp, with for argument the
boolean expression (build by To_bexpr) evaluates to true.

Example

We therefore present an illustrating example of how work our tactic. Let con-
sider the following Coq goal:

============================
forall x y z res : Z,
res = x /\ x >= y /\ x >= z -> res >= x /\ res >= y /\ res >= z

We first introduce the variables as hypothesizes (using the command do 4
intro):

x : Z
y : Z
z : Z
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res : Z
============================
res = x /\ x >= y /\ x >= z -> res >= x /\ res >= y /\ res >= z

We propose to apply a customized version of our tactic, where the subgoals that
it generates are keep untouched (using the idtac command):

match goal with
| |- ?G =>

let l := (Build_env G) in (
let x := (To_expr_b G l) in (
new_cut (fm_beval x (list2fm_store (rev l))); [

idtac (* do nothing for this subgoal *)
|
idtac (* do nothing for this subgoal *)

]
)

)
end.

Applying this tactics generates the following Coq proof obligations:
x : Z
y : Z
z : Z
res : Z
============================
fm_beval

(((nfm_var 1%nat == nfm_var 3%nat) //\\
((nfm_var 3%nat >>= nfm_var 2%nat) //\\
(nfm_var 3%nat >>= nfm_var 0%nat))) ==>

((nfm_var 1%nat >>= nfm_var 3%nat) //\\
((nfm_var 1%nat >>= nfm_var 2%nat) //\\
(nfm_var 1%nat >>= nfm_var 0%nat))))

(list2fm_store (rev (z :: res :: y :: x :: nil)))

subgoal 2 is:
fm_beval
(((nfm_var 1%nat == nfm_var 3%nat) //\\

((nfm_var 3%nat >>= nfm_var 2%nat) //\\
(nfm_var 3%nat >>= nfm_var 0%nat))) ==>

((nfm_var 1%nat >>= nfm_var 3%nat) //\\
((nfm_var 1%nat >>= nfm_var 2%nat) //\\
(nfm_var 1%nat >>= nfm_var 0%nat))))

(list2fm_store (rev (z :: res :: y :: x :: nil))) ->
res = x /\ x >= y /\ x >= z -> res >= x /\ res >= y /\ res >= z

We therefore explain in details the resolutions of both subgoals.

First Subgoal If we apply the verification procedure soundness lemma we
obtain the following goal:

x : Z
y : Z
z : Z
res : Z
============================
fm_dp

(((nfm_var 1%nat == nfm_var 3%nat) //\\
((nfm_var 3%nat >>= nfm_var 2%nat) //\\
(nfm_var 3%nat >>= nfm_var 0%nat))) ==>

((nfm_var 1%nat >>= nfm_var 3%nat) //\\
((nfm_var 1%nat >>= nfm_var 2%nat) //\\
(nfm_var 1%nat >>= nfm_var 0%nat)))) = true

Here we just have to compute the result of the fm_dp function. This is achieved
by applying the compute command, which transforms the goal in the following
tautology:
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x : Z
y : Z
z : Z
res : Z
============================
true = true

Second Subgoal We can compute the result of the fm_eval by using the
simpl command:

x : Z
y : Z
z : Z
res : Z
============================
~ (res = x /\ x >= y /\ x >= z) \/ res >= x /\ res >= y /\ res >= z ->
res = x /\ x >= y /\ x >= z -> res >= x /\ res >= y /\ res >= z

This kind of first order goals is easily proved by the intuition tactic.

Related Work

We introduced the use of the Coq proof assistant through an illustrating ex-
ample: the implementation of a provable sound arithmetic verification proce-
dure. There exists several decision procedures for arithmetic in Coq. One of
them, named MicroMega [60], provides also a tactic implemented by reflection.
However this decision procedure does not deal with most of the propositional
operators (∧, ∨ and ˜). From version 8.1, Coq includes by default the tactic
romega [61]. The originality of this work is that it uses an external prover. This
program constructs a certificate, which is given back to a checker written and
proved correct in Coq. Hence, this tactic is fast (much of the computation is
external to Coq), yet generates small proof term (as the verification is the result
of the execution of the checker). The only limitation of this approach is that
one cannot extract a certified decision procedure in Ocaml, as it can be done
with our implementation. Finally, Coq provides a tactic to resolve arithmetic
subgoals over natural (named omega). Yet this tactics is not implemented by
reflection, but is instantiated by a collection of Coq tactics. The main issue
of this design choice is that the build proof terms are often huge. A different
decision procedure, namely the Cooper algorithm, has been proved sound and
complete by Amine Chaieb et al., inside the Isabelle proof assistant [30].

2.3 The Topsy Operating System Through its
Model

Model-checking has proved effective to verify low-level properties on isolated
parts of operating systems such as scheduling algorithms or implementations of
inter-process communications (IPCs) [5, 4, 6]. In such situations, the relevant
implementation is well-localized in the source code, and the modeling language
usually lends itself very well to formal paraphrase.

However, there are high-level properties of operating systems that require
modeling of various parts of the implementation. For example, task isolation,
the property that user threads cannot access kernel memory [7], requires mod-
eling of thread management, memory management, hardware protection mech-
anisms, etc. It is possible to break the verification of such high-level properties
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that span the whole source code into smaller verifications on well-localized parts
of the source code. However, this approach naturally augments the number of
specifications and it introduces the risk of making conflicting model assump-
tions. Ideally, one would prefer a single model, abstract enough to be refined at
will, and that would lend itself easily to verification of several, possibly orthog-
onal properties.

In this section, we show how to build in the Spin model-checker [8] a model
of the Topsy operating system [10] that covers most parts of the implementa-
tion, thus enabling verification of high-level properties such as task isolation.
The main difficulty of building such a global model is the trade-off between
exhaustivity and tractability: too fine-grained abstractions would irremediably
lead to state-space explosion. In our model, we provide abstractions to deal
with several aspects of operating systems, such as scheduling, IPCs, memory
management, hardware interface, and user applications. We show experimen-
tally that these abstractions enable verifications of several, both low-level and
high-level properties, such as memory protection and kernel-data consistencies
for scheduling and message passing.

This chapter is organized as follows. In Sect. 2.3.1, we describe the Topsy
operating system together with its Spin model. In Sect. 2.3.2, we discuss the
specification and verification of several properties, including task isolation. In
Sect. 2.3.3 we show how one can use the model to find which part of the kernel
are important for task isolation. Finally, in Sect. 2.3.4, we compare with related
work.

2.3.1 Model

We explain in detail our model in a modular way: multi-threading in Sect. 2.3.1,
scheduling in Sect. 2.3.1, hardware in Sect. 2.3.1, memory in Sect. 2.3.1, IPCs
and system calls in Sect. 2.3.1. For each part, we first give a general description
with possibly specificities for Topsy, then we describe their model in Spin.

Multi-threading

Definitions A thread is a control-flow implemented by a piece of code and
described by a data structure called thread descriptor. A thread descriptor
contains an id that identifies uniquely the thread, a set of levels of privileges (to
control resource access and scheduling), a context (the state of the thread, i.e.,
the values of the local variables and the last instruction executed), and status
information (for scheduling and communication).

A multi-threaded operating system is the control-flow resulting of the in-
terleaved execution of threads. A special thread, called the interrupt handler,
manages the scheduling and the interaction between threads; it is activated
in-between the execution of any other two threads.

Spin Model We model threads by Spin processes, whose interleaved execution
is provided natively by Spin. In this setting, each thread is given a unique Spin
process id, and its context is modeled by the state of the Spin process. A
thread descriptor is represented by a Spin data-structure composed of the Spin
id (and therefore the associated context), the execution privilege, scheduling
information and a message queue for communication:
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typedef Thread_desc {
byte contextPtr;
bool privilege;
SchedulerInfo schedInfo;
MessageQueue msgQueue;

};

In order to control the interleaving, we use the special Spin keyword provided,
that specifies a condition under which a process is executed or not. For example,
the kernel service of Topsy in charge of IOs is modeled as follows:

proctype ioThread()
provided (_curr_ctxt == _pid) ... ;

where _curr_ctxt is the Spin id of the currently running operating system
thread, and _pid is the Spin id of the currently executing Spin process (this
is a variable natively provided by Spin).

Although Spin has a native feature to spawn a process, it does not allow to
end it dynamically: a process must reach its last statement to terminate. In
order to model termination of user threads (kernel threads are never killed), we
add a clause to the provided condition that allows for a killed process to execute
to its end:

proctype uThread()
provided (_curr_ctxt==_pid || _killed[_pid])
... ;

Scheduling

Definitions Scheduling is the operation by which the interrupt handler chooses
the next thread to be run. This decision is based on priorities associated with
threads. There is a wide variety of algorithms for this purpose.

The Topsy kernel implements a priority-based round-robin scheduling, by
which the highest-priority ready-thread is always chosen. The scheduler uses
queues to store the threads according to their status (RUNNING, READY, or BLOCKED).
In addition, threads in the READY queue are sorted by their priority: “kernel” >
“user” > “idle” (for a special idle thread executed when no thread is ready).

Spin Model The algorithm implemented in the model obeys the same priority
rules as in Topsy. For this purpose, we use the scheduling status and priority
that are stored into the schedInfo field of thread descriptors. The scheduling
decision is stored in a global variable _curr_id that indexes a thread descriptor,
from which one can retrieve the corresponding context (a Spin id).

There is a small difference with the original algorithm: we use a traversal of
thread descriptors instead of queues, so that the scheduling is not fair anymore.
This is not a problem for the properties we verify in this paper, because they
are not related to the scheduling policy. However, in order to verify fairness
properties, one would need to re-implement the scheduler with queues.

Hardware

Definitions The hardware consists essentially of a processor that provides ex-
ecution of a single thread and accesses to resources such as segments of memory.
To control the accesses to resources, the processor provides privileges (usually,
operating systems privileges map the hardware privileges). In particular, the
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execution privilege level of the currently running process is always kept as a
part of the context (usually in a register).

To enable interleaving of executions, the processor provides interrupts: a
mechanism that puts a value into a special register and triggers switching of
threads. Usually, the hardware includes an internal clock that can be used by
the operating system to switch a thread after a predetermined execution period.

Spin Model To provide exclusive execution, we model the program-counter
register of the processor by the global variable _curr_ctxt, that contains the
Spin id of the current thread. In order to keep track of the current privilege
in our model, there is a global variable called CPU_MODE; it is set by the context
switch to the execution privilege level of the running thread.

To switch from one process to another, we use the provided clause: the
execution of a given thread is triggered by changing the value of _curr_ctxt to
the appropriate Spin id.

To model interrupts, we use a special channel to store the nature of the
interrupt before context switching. For example, any thread can raise a software
interrupt by sending a software interrupt message on this special channel and
switch the currently running process. In contrast, IOs interrupt are raised by
external Spin process (representing some piece of hardware). In particular, the
internal clock is model by a Spin process that non-deterministically sends a time
interrupt and makes the kernel process to be executed.

Memory

Definitions For security reasons, processors allow to partition memory into
independent regions associated with a memory access privilege level. When a
thread attempts a memory access, the processor compares its execution privilege
with the access privilege of the corresponding region. If the execution privilege is
equal or higher, the access is granted, otherwise the processor stops the execution
and raises an interrupt.

To use its memory efficiently, a kernel usually appeals to dynamic mem-
ory allocation. For example, dynamic memory allocation is used for dynamic
creation and destruction of threads. Typically, such an allocator maintains a
partition of free and allocated blocks inside the kernel data memory.

Since Topsy uses only one multi-threaded user application, the memory is
split in two regions to separate the kernel from the user application.

Spin Model We model the memory access mechanism by (1) an array that
associates each region with its privilege level and (2) a set of macros that models
memory accesses. At each memory access, these macros check the current mode
processor (CPU_MODE). If the access is allowed, the Spin assignments are executed,
otherwise a memory-fault interrupt is raised and the context is switched.

In order to model a memory allocator that manipulates several types of data
structures, we provide a macro that creates an instance of a specialized memory
allocator for a given data-structure:

#define HL(type,size,data,used,hmlock,
hmInit,hmAlloc,hmFree)
type data[size];
bool used[size];
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chan hmlock = lock;
inline hmInit(i) ... ;
inline hmAlloc(return) ... ;
inline hmFree(return) ... ;

For illustration, the memory allocator of the kernel is instantiated by:

HL(Thread_desc, MEMBLOCK_N, mem, used, hmlock,
hmInit, hmAlloc, hmFree)

The effect of the macro expansion above is to build an array mem of thread
descriptors, an array used to keep track of which thread descriptors are free or
allocated, and a set of functions hmInit, hmAlloc and hmFree. The initialization
function hmInit sets all the data-structures to Free. The allocation function
hmAlloc tries to find a free data-structure, declares it Allocated and returns its
index. The deallocation function hmFree sets a data-structure of a given index
to Free.

Kernel Services

IPCs

Definitions IPCs are a message passing mechanism that allows threads to
communicate with each other. To use this mechanism, a thread sets its register
to appropriate values (id of the receiver/sender, address of a buffer where the
body of the message is stored or have to be stored), and then raises a software
interrupt. This interrupt switches the context of the thread with the context
of the interrupt handler. The latter routes the message, makes a scheduling
decision and finally restores the running thread by switching the context.

Spin Model A global channel is used to pass arguments from a thread to the
interrupt handler, whereas the response is sent back to the thread through a
private channel whose pointer is passed as the reply argument of the message
receiving and sending functions:

inline recvmsg(from, smsg, reply) ... ;
inline sndmsg(to, smsg, reply) ... ;

These two functions make use of the msgQueue field of the thread descriptor to
store messages and communication status information. Let us explain in more
details their implementations.

When a thread wants to receive a message, the interrupt handler looks into
its message queue. If an adequate message is present, it is dequeued and sent
back to the thread, otherwise the thread is blocked and declared waiting for a
message, and the IPC arguments are saved. Concretely, the interrupt handler
sets the thread to a status called WAITING (msgPendingStatus field of msgQueue),
saves the expected sender id (threadIdPending field) and the pointer of the
channel where to send back the message (msgPendingPtr field).

When a thread wants to send a message, the interrupt handler tries to find
the receiver. If it is not an existing thread, the IPC fails, otherwise the interrupt
handler checks whether the receiving thread is waiting for this message. If this is
the case, the message is sent directly to the thread which is unblocked, otherwise
it is inserted into the thread message queue msgQueue.
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System Calls

Definitions In Topsy, system calls (such as threads creation and destruction)
are provided by kernel threads. More precisely, a thread makes a system call by
sending a request to the appropriate kernel threads via an IPC message, whose
body contains the name of the system call and its arguments. In the same way,
the result is sent back into a message.

Spin Model The kernel threads are defined as Spin processes, and therefore
are managed like the other threads. Yet, they belong to the kernel code and
hence can manipulate directly its data. These threads are implemented as infi-
nite loops which receive and parse a message, execute the system call code, and
send back a response.

Our model implements the thread manager (responsible for creation and
deletion of threads), the IO manager (that act as a directory for IO drivers),
and the network manager (network IO driver) but not the memory management
kernel thread (whose purpose is to manage pages of virtual memory, but Topsy
v2 uses a flat memory model and there is no therefore no implementation yet).

2.3.2 Experiments

We present several verifications done on the Topsy model described in the previ-
ous section: “status correctness” is a low-level property that only deals with the
scheduler, “status consistency” and ‘reply consistency” are high-level properties
that deal with both the scheduler and the IPCs, and “task isolation” is a high-
level property that deals with execution privilege and memory management.

A Generic Test Program

Verifications are done using a test program. This test program is an echo server
that is generic in the sense that it uses all the kernel services provided by the
model of the Topsy thread manager and IO manager (see Sect. 2.3.1).

The main thread of the echo server repeatedly does the following: it tries to
create a child-thread using the Topsy thread manager and waits for a message
by which the child-thread indicates it is about to terminate. The child-thread
does the following. When it starts, it tries to open a network connection by
sending a request to the Topsy IO manager; the response it gets is the id of a
kernel thread managing the network. Via this kernel thread, the child-thread
eventually receives a network packet, sends it back (the echo service), and sends
a closing message to the IO manager. Then, it sends a message to its father
indicating it will make an exit system-call.

Status Correctness

The status correctness property states that the kernel always restores the thread
that has been scheduled. Put formally, “whenever a thread is executing (threadrun
assertion below), its scheduling status is RUNNING (runningthreadcurr assertion)”:

#define threadrun
(_curr_ctxt == (mem[curr_id].contextPtr) &&
_syst_run)
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#define runningthreadcurr (used[curr_id] &&
mem[curr_id].schedInfo.status == RUNNING)

[](threadrun -> runningthreadcurr)

Status Consistency

This property states that a thread waiting for a message can never be scheduled.
Put formally, “if a thread is waiting for a message (waitingthread assertion
below), its scheduling status must be BLOCKED (blockedthread assertion)”:

#define waitingthread (used[ut_init_id] &&
mem[ut_init_id].msgQueue.msgPendingStatus ==
WAITING)

#define blockedthread (used[ut_init_id] &&
mem[ut_init_id].schedInfo.status == BLOCKED)

[]((waitingthread && threadrun) ->
blockedthread)

In this specification, threadrun ensures that this is not the interrupt handler
that is executing. This is essential to distinguish this situation because the
interrupt handler precisely may break this property when updating the thread
status.

The Topsy thread id of the user thread is hard-wired (ut_init_id variable).
This is not a limitation of our approach because in Spin it is always possible to
construct by hand a never-claim with an implicit quantification over a range of
thread ids. However, this is not directly expressible in LTL.

Reply Consistency

The reply consistency property states that the return channel for an IPC is not
changed until the thread is unblocked and the expected message is sent. Put
formally, “if a thread is waiting for a message, the value of its return channel
(field msgPendingPtr below) does not change until the thread is NOT_WAITING”:

#define notwaitingthread (used[ut_init_id] &&
mem[ut_init_id].msgQueue.msgPendingStatus ==
NOT_WAITING)

#define pendingPtrval (used[ut_init_id] &&
mem[ut_init_id].msgQueue.msgPendingPtr ==
_reply_chan[ut_init_id])

[](waitingthread ->
(pendingPtrval U notwaitingthread))

Task Isolation

The task isolation property is important for operating system verification be-
cause it implies that only the kernel can change its data. For a multi-threaded
OS such as Topsy (only one user application), the task isolation means that
whenever a user thread is running, it must not have a privilege level that grants
him access to the memory of the kernel. Put formally, “whenever a user thread
is running (userthreadrun assertion below), the current privilege does not allow
access to kernel memory (kernelaccess assertion)”:

#define kernelaccess
((CPU_MODE == segment[0]) || kernelmode)
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Figure 2.5: Time and Space consumption of SPIN verifications

#define userthreadrun
(_curr_ctxt == (mem[curr_id].contextPtr) &&
_user_thread[curr_id] && _syst_run)

[](userthreadrun -> !kernelaccess)

Results

Despite its completeness, the size of the model is reasonable: 770 lines of code for
Topsy and 80 lines for the echo server (the whole Spin development is available
online [11]).

We measure1 resource consumption in function of the number of child-
threads created by the echo server for the properties of the previous section.
We observe that, for all properties, the time consumption (Fig. 2.5) is linear,
but that the space consumption is logarithmic. This came from the fact that
all the child threads share the same behavior, leading SPIN to optimize the
memory usage.

1Experiments done on an Opteron (64-bit) 2.4GHz machine with 16GB of RAM.
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2.3.3 Discussion

Model checking is a tool useful to find problems in system design. In our model,
the fact that the task isolation property holds for the model does not prove that
it holds for the concrete operating system. In this condition, one can obviously
question the pertinence of this verification. We claim that this verification
on the abstraction model is interesting because it indicates that, at least, the
concrete code should have the same behavior as its abstraction. Although these
behaviors are not formally written as specifications, we can intuitively states
some of them, thanks to the model of Topsy that gives us a readable image of
the system. For instance, we could say that the memory allocation function
should return a fresh slot of memory.

However, the question that we can ask ourselves is: whatever if the memory
allocator does not fulfill its specification? Our model allows us to modify the
code of the memory allocator by injecting some bugs, for instance: a memory
allocation function that returns a random slot of memory. On this updated
model, we rerun the verification of the task isolation, which does not hold any-
more (SPIN gives back a trace that illustrates the corruption of the property).
Thus, we can conclude that the fact that memory allocation returns fresh mem-
ory is a necessary condition for the task isolation.

Finally, the model makes evident that the context switching may be a sen-
sible part of the system. Indeed, if the privilege is wrongly saved or restored,
the task isolation property does not hold anymore. Once again, a modification
of the model allows to prove that the correctness of the context switching is
necessary for the task isolation.

All this observations motivate the different verifications we have done in this
thesis. First, we implement inside the Coq proof assistant a library to prove
the specification of C-like source code. This implementation is used to prove
the correctness of the memory allocator. As the thread creation is also written
in C, we could also use this library to verify it. However, we can observe that
this snippet of code is straightforward. This motivates the implementation of a
certified verifier for such code. In order to verify the context switching, we have
implemented a variant of our library for an assembly language. Finally, the fact
that we verify both C-like and assembly code arises another question: how one
can compose the verification for snippets in both languages when they are all
linked together inside a program, as it is the case in operating systems. For this
purpose, we implement a certified translator, that transforms C-like language
programs into assembly programs, preserving the semantics. This translator
compiles and links snippets into machine level programs, and allows to reason
about their specifications.

2.3.4 Related Work

Contrary to our work, all Spin-based verification of operating systems focus
on only one property. In consequence, the proposed models are specification-
oriented and does not enable verification of high-level properties.

In [4], the inter-task communication facility of the RUBIS micro-kernel is
modeled to build test programs. Verifications check properties such as consis-
tency of flags or validity of the status, similarly to “status correctness” and
“status consistency” we checked in Sect. 2.3.2.
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In [5], the Fluke kernel is modeled by a set of macros and used in several test
programs. These programs are decorated with assertions checking the return
values of kernel functions. Although the model spans a wide part of the kernel,
it does not include any modeling of the hardware.

In [6], the VFiasco IPCs are modeled to verify the communication mechanism
of the kernel. The approach is to translate directly the source code in Spin.
The modeled scenario is composed of two communicating threads, modeled as
Spin processes. All the tests focus on the consistency of flags used by the
communication mechanism.
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Chapter 3

C-like Verification

Our goal is to verify that the implementation of the Topsy heap manager is
“correct”. By correct, we mean that the heap manager provides the intended
service: the allocation function allocates large-enough memory blocks, these
memory blocks are “fresh” (they do not overlap with previously allocated mem-
ory blocks), the deallocation function turns the status of blocks into free (except
for the terminal block), and the allocation and deallocation functions do not be-
have in unexpected ways (in particular, they do not modify neither previously
allocated memory blocks nor the rest of the memory). Guaranteeing the allo-
cation of fresh memory blocks and the non-modification of previously allocated
memory blocks is a necessary condition to ensure that the heap manager pre-
serves exclusive usage of allocated blocks.

Our approach is to use separation logic to formally specify and mechanically
verify the goal informally stated above. We choose separation logic for this
purpose because it provides a native notion of pointer and memory separation
that facilitates the specification of heap-lists. Another advantage of separation
logic is that it is close enough to the C language to enable systematic translation
from the original source code of Topsy.

The verification of the heap manager of an existing operating system is a
difficult task because it is usually written in a low-level language that makes use
of pointers, and it is usually not written with verification in mind. For these
reasons, the verification of dynamic memory allocation is sometimes considered
as a challenge for mechanical verification [23].

The chapter is organized as follows. In Sect. 3.1, we explain how we encode
it in Coq. In Sect. 3.2.1 we present an overview of the Topsy heap manager.
In Sect. 3.2.2, we formally specify and prove the properties of the underlying
data structure used by the heap manager, and we formally specify and explain
the verification of the functions of the heap manager. In Sect. 3.3, we discuss
practical aspects of the verification such as automation and translation from the
original C source code, as well as the output of our experiment: in particular,
issues and bugs found in the original source code of the heap manager. In
Sect. 3.4, we comment on related work.
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3.1 Separation Logic in Coq

3.1.1 Programming Language

The programming language of separation logic is imperative. The current state
of execution is represented by a pair of a store (that maps local variables to
values) and a heap (a finite map from locations to values). We have an ab-
stract type var.v for variables (ranged over by x, y), a type loc for locations
(ranged over by p, adr), and a type val for values (ranged over by v, w) with the
condition that all values can be seen as locations (so as to enable pointer arith-
metic). Our implementation is essentially abstracted over the choice of types,
yet, in our experiments, we have taken the native Coq types of naturals nat

and relative integers Z for loc and val so as to benefit from better automation.
Stores and heaps are implemented by two modules store and heap whose types
are (excerpts):

Module Type STORE.
Parameter s : Set. (* the abstract type of stores *)
Parameter lookup : var.v → s → val.
Parameter update : var.v → val → s → s.
End STORE.

Module Type HEAP.
Parameter l : Set. (* locations *)
Parameter v : Set. (* values *)
Parameter h : Set. (* the abstract type of heaps *)
Parameter emp : h. (* the empty heap *)
Parameter singleton : l → v → h. (* singleton heaps *)
Parameter lookup : l → h → option v.
Parameter update : l → v → h → h.
Parameter union : h → h → h. Notation "h1 ∪ h2" := (union h1 h2).
Parameter disjoint : h → h → Prop. Notation "h1 ⊥ h2" := (disjoint h1 h2).
End HEAP.

Definition state := prod store.s heap.h.

To paraphrase the implementation, (store.lookup x s) is the value of the vari-
able x in store s; (store.update x v s) is the store s in which the variable x

has been updated with the value v; (heap.singleton p v) is a heap composed
of a unique cell of location p, containing the value v; (heap.lookup p h) is the
contents (if any) of location p; (heap.update p v h) is the heap h in which the
location p has been mutated with the value v; h ∪ h’ is the disjoint union of h
and h’; and h ⊥ h’ holds when h and h’ have disjoint domains.

The programming language of separation logic manipulates arithmetic and
boolean expressions that are evaluated w.r.t. the store. They are encoded by
the inductive types expr and expr_b (the parts of the definitions which are not
essential to the understanding of this paper are abbreviated with “. . . ”):

Inductive expr : Set :=
var_e : var.v → expr
| int_e : val → expr
| add_e : expr → expr → expr Notation "e1 ’+e’ e2" := (add_e e1 e2).
...
Definition null := int_e 0%Z.
Definition nat_e x := int_e (Z_of_nat x).
Definition field x f := var_e x +e int_e f.
Notation "x ’-.>’ f " := (field x f).
Inductive expr_b : Set :=
eq_b : expr → expr → expr_b Notation "e == e’" := (eq_b e e’).
| neq_b : expr → expr → expr_b Notation "e =/= e’" := (neq_b e e’).
| and_b : expr_b → expr_b → expr_b Notation "e &&& e’" := (and_b e e’).
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| gt_b : expr → expr → expr_b Notation "e >> e’" := (gt_b e e’).
...

There is an evaluation function eval such that (eval e s) is the result of evalu-
ating the expression e w.r.t. the store s.

The commands of the programming language of separation logic are also
encoded by an inductive type:

Inductive cmd : Set :=
assign : var.v → expr → cmd Notation "x <- e" := (assign x e).
| lookup : var.v → expr → cmd Notation "x ’<-*’ e" := (lookup x e).
| mutation : expr → expr → cmd Notation "e ’*<-’ f" := (mutation e f).
| seq : cmd → cmd → cmd Notation "c ; d" := (seq c d).
| while : expr_b → cmd → cmd
| ifte : expr_b → cmd → cmd → cmd Notation "’ifte’ b ’thendo’ c ’elsedo’ c"
... := (ifte b c d).

From this presentation, we omit the memory allocation and deallocation com-
mands of separation logic, as they are not useful for our use-case precisely
because we verify the implementation of a memory allocation facility. Indeed,
such piece of software intend to implement allocation and deallocation not as
primitives, but as a set of functions.

The operational semantics of the programming language of separation logic
is defined by the following inductive type. An object of type (exec s c s’)

represents the execution of the command c from state s to state s’. Because
heaps are finite maps, lookup and mutation may fail; to take this possibility
into account, we use an option type.

Inductive exec : option state → cmd → option state → Prop :=
exec_assign : ∀ s h x e,
exec (Some (s, h)) (x <- e) (Some (store.update x (eval e s) s, h))
| exec_lookup : ∀ s h x e p v,
val2loc (eval e s) = p → heap.lookup p h = Some v →
exec (Some (s, h)) (x <-* e) (Some (store.update x v s, h))
| exec_lookup_err : ∀ s h x e p,
val2loc (eval e s) = p → heap.lookup p h = None →
exec (Some (s, h)) (x <-* e) None
| exec_mutation : ∀ s h e e’ p v,
val2loc (eval e s) = p → heap.lookup p h = Some v →
exec (Some (s, h)) (e *<- e’) (Some (s, heap.update p (eval e’ s) h))
| exec_mutation_err : ∀ s h e e’ p,
val2loc (eval e s) = p → heap.lookup p h = None →
exec (Some (s, h)) (e *<- e’) None
...

3.1.2 Assertions and Reynolds’ Axioms

Assertions of Hoare logic are predicate calculus formulas with the same expres-
sions as the programming language. In consequence, the validity of an assertion
depends on the current execution state of the program. There are mainly two
ways to encode the semantics of such assertions in a proof assistant:

1. Deep encoding : define a syntax for assertions and a satisfaction relation
between states and assertions.

2. Shallow encoding : identify formulas with functions from states to some
“boolean type”.

The advantage of shallow encoding over deep encoding is that deciding the va-
lidity of formulas becomes a function computation, for which the proof assistant
provides native facilities (for example, tactics to prove tautologies).
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We have developed a shallow encoding of separation logic in Coq. For this
purpose, we identify assertions of separation logic with functions from states to
Prop, the native type for predicate calculus formulas. For example, True:Prop

represents truth and ∧:Prop → Prop → Prop represents classical conjunction in
Coq. This gives rise to the type assert below. By way of example, we also show
the encoding of truth and conjunction in separation logic.

Definition assert := store.s → heap.h → Prop.
Definition TT : assert := fun s h => True.
Definition And (P Q:assert) : assert := fun s h => P s h ∧ Q s h.

Assertions of Separation Logic The assertion that holds for empty heaps
is defined by testing whether the heap is empty:

Definition emp : assert := fun s h => h = heap.emp.

e 7→ e’ is the formula that holds for a singleton heap whose only location is the
result of evaluating e and this location has for contents the result of evaluat-
ing e’:

Definition mapsto e e’ s h := ∃ p,
val2loc (eval e s) = p ∧ h = heap.singleton p (eval e’ s).

Notation "e1 7→ e2" := (mapsto e1 e2).

For example, (var_e x 7→ int_e 4) asserts that the variable x points to a cell
that contains the integer 4. The following derived definitions will prove useful
later: e 7→ _ asserts that the cell e has some undefined contents, and e Z⇒ l

asserts that there is a list l of contiguous cell contents starting from e.
The separating conjunction P ** Q holds for a heap that can be decomposed

into two disjoint heaps for which P and Q respectively hold:

Definition con (P Q:assert) : assert := fun s h =>
∃ h1, ∃ h2, h1 ⊥ h2 ∧ h = h1 ∪ h2 ∧ P s h1 ∧ Q s h2.

Notation "P ** Q" := (con P Q).

For example, (var_e x 7→ nat_e p) ** (nat_e p 7→ int_e 2) is the formal version
of the example given in the beginning of this section.

The separating implication P −* Q is less intuitive. It is used to represent
logically mutations. In particular, the idiom (e 7→ _ ** (e 7→ e’ −* P)) holds for
a heap such that the mutation of location e to contents e’ leads to a heap that
satisfies P. Section 3.2.2 gives a concrete example of such a formula together with
its utilization. For the time being, we limit ourselves to the formal definition:

Definition imp (P Q:assert) : assert := fun s h =>
∀ h’, h ⊥ h’ ∧ P s h’ → ∀ h’’, h’’ = h ∪ h’ → Q s h’’.

Notation "P −* Q" := (imp P Q).

Reynolds’ Axioms The axioms of separation logic are defined by the fol-
lowing inductive type. An object of type (semax P c Q) represents the fact that,
going from a state satisfying P, the execution of the command c leads to a state
satisfying Q:

Inductive semax : assert → cmd → assert → Prop :=
semax_assign : ∀ P x e,
semax (update_store2 x e P) (x <- e) P

| semax_lookup : ∀ P x e,
semax (lookup2 x e P) (x <-* e) P

| semax_mutation : ∀ P e e’,
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semax (update_heap2 e e’ P) (e *<- e’) P
| semax_seq : ∀ P Q R c d,

semax P c Q → semax Q d R → semax P (c ; d) R
...

Notation "{{ P }} c {{ Q }}" := (semax P c Q).

where update_store2, etc. are predicate transformers, for example:
Definition update_store2 (x:var.v) (e:expr) (P:assert) : assert :=

fun s h => P (store.update x (eval e s) s) h.

Using these definitions, we have implemented much of [1], including the
proofs of soundness and completeness of the axioms of separation logic (w.r.t.
the operational semantics), the “frame rule”, various axioms for backward rea-
soning, etc. For example, let us just give the axiom for backward reasoning used
in the example at the beginning of this section:
Lemma semax_mutation_backwards : ∀ P e e’,

{{ fun s h => ∃ e’’, (e 7→ e’’ ** (e 7→ e’ −* P)) s h }} e *<- e’ {{ P }}.

3.2 Verification of the Topsy Heap Manager

3.2.1 Heap Manager Overview

The heap manager of an operating system is the set of functions that provides
dynamic memory allocation. In Topsy, these functions and related variables
are defined in the files Memory/MMHeapMemory.{h,c}, with some macros in the file
Topsy/Configuration.h. We are dealing here with the heap manager of Topsy
version 2; a browsable source code is available online [9].

The heap is the area of memory reserved by Topsy for the heap manager.
The latter divides the heap into allocated and free memory blocks: allocated
blocks are memory blocks in use by programs, and free blocks form a pool of
memory available for new allocations. In order to make an optimal use of the
memory, allocated and free memory blocks form a partition of the heap. This is
achieved by implementing memory blocks as a simply-linked list of contiguous
blocks. In the following, we refer to this data structure as a heap-list.

In a heap-list, each block consists of a two-fields header and an array of
memory. The first field of the header gives information on the status of the
block (allocated or free, corresponding to the Alloc and Free flags); the second
field is a pointer to the next block, which starts just after the current block. For
example, here is a heap-list with one allocated block and one free block:
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allocated block
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allocated block
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n
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block size block size

Observe that the size of the arrays of memory associated to blocks can be
computed using the values of pointers. (In this paper, when we talk about the
size of a block, we talk about its “effective” size, that is the size of the array of
memory associated to it, this excludes the header.) The terminal block of the
heap-list always consists of a sole header, marked as allocated, and pointing to
null.

Initialization of the heap manager is provided by the following function:
Error hmInit(Address addr) ...
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Concretely, hmInit initializes the heap-list by building a heap-list with a single
free block that spans the whole heap. The argument is the starting location of
the heap. The size of the heap-list is defined by the macro KERNELHEAPSIZE. The
function always returns HM_INITOK.

Allocation is provided by the following function:

Error hmAlloc(Address* addressPtr, unsigned long int size) ...

The role of hmAlloc is to insert new blocks marked as allocated into the heap-list.
The first argument is a pointer provided by the user to get back the address of
the allocated block, the second argument is the desired size. In case of successful
allocation, the pointer contains the address of the newly allocated block and the
value HM_ALLOCOK is returned, otherwise the value HM_ALLOCFAILED is returned. In
order to limit fragmentation, hmAlloc performs compaction of contiguous free
blocks and splitting of free blocks.

Deallocation is provided by the following function:

Error hmFree(Address address) ...

Concretely, hmFree turns allocated blocks into free ones. The argument cor-
responds to the address of the allocated block to free. The function returns
HM_FREEOK if the block was successfully deallocated, or HM_FREEFAILED otherwise.

3.2.2 Heap Manager Specification and Verification

Heap-list

We define an assertion called Heap_List that holds for heaps that contain a
well-formed heap-list. Separation logic is very convenient for this purpose. In
particular, the property that blocks are disjoint can be expressed using the
separating conjunction. The fact the blocks are contiguous relies on pointer
arithmetic and this can also be expressed directly in separation logic.

Before defining the Heap_List assertion, we define an assertion to represent
arrays of memory, i.e. sets of contiguous locations. Array p sz holds for a heap
whose locations p, . . . , p+sz-1 have some contents:

Fixpoint Array (p:loc) (size:nat) struct size : assert :=
match size with
O => emp
| S n => (fun s h => ∃ y, (nat_e p 7→ int_e y) s h) ** Array (p+1) n
end.

We now come to the definition of heap-lists without terminal block (let us
call them pre-heap-lists for convenience). Intuitively, (hl p l) represents the set
of headers of a pre-heap-list whose first block starts at location p together with
the set of free blocks (the allocated blocks are left outside); information about
the blocks is captured by the parameter (l:list (nat*bool)): the list of sizes
and flags of the blocks (:: is the list constructor and nil is the empty list):

Inductive hl : loc → list (nat*bool) → assert :=
| hl_last: ∀ s p h,
emp s h → hl p nil s h
| hl_Free: ∀ s h p h1 h2 size tl,
h1 ⊥ h2 → h = h1 ∪ h2 →
((nat_e p Z⇒ Free::nat_e (p+2+size)::nil) ** (Array (p+2) size)) s h1 →
hl (p+2+size) tl s h2 →
hl p ((size,free)::tl) s h
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| hl_Allocated: ∀ s h p h1 h2 size tl,
h1 ⊥ h2 → h = h1 ∪ h2 →
(nat_e p Z⇒ Allocated::nat_e (p+2+size)::nil) s h1 →
hl (p+2+size) tl s h2 →
hl p ((size,alloc)::tl) s h.

where free and alloc are booleans. The first constructor specifies empty pre-
heap-lists. The second constructor specifies pre-heap-lists that start with a
free memory block (that is, a header marked as free and its associated block)
followed by a pre-heap-list. The third constructor specifies pre-heap-lists that
start with an allocated memory header (in this case, the associated block is left
outside). Observe that the definition above uses pointer arithmetic to guarantee
that there is no lost space between linked blocks.

Finally, we define heap-lists (with terminal block). This is simply the sepa-
rating conjunction of a pre-heap-list with a terminal block (an allocated block
pointing to null):

Definition Heap_List (l:list (nat*bool)) (p:nat) : assert :=
(hl p l) ** (nat_e (get_endl l p) Z⇒ Allocated::null::nil).

where (get_endl l p) returns the location at the end of the list l starting from
location p, i.e., the location of (the header of) the terminal block.

Properties of Heap-lists .
The heart of our verification of the Topsy heap manager consists of a few ba-

sic lemmas capturing the properties of operations such as compaction of blocks,
splitting of a block, changing the status of blocks, etc. Since these operations
rely on destructive updates, the properties in question are adequately expressed
using the separating implication.

For example, the following lemma expresses compaction of two contiguous
free blocks (++ is the list append function of Coq):

Lemma hl_compaction: ∀ l1 l2 size size’ p s h,
Heap_List (l1 ++ (size,free)::(size’,free)::nil ++ l2) p s h →
∃ y, (nat_e (get_endl l1 p + 1) 7→ y **
(nat_e (get_endl l1 p + 1) 7→ nat_e (get_endl l1 p + size + size’ + 4) −*
Heap_List (l1 ++ (size+size’+2,free)::nil ++ l2) p)) s h.

The left-hand side of the (classical) implication states the existence of two con-
tiguous free blocks (size,free) and (size’,free). The right-hand side repre-
sents the destructive update of the “next” field of the first block that is made
to point to the block following the second block. As a result, the first block sees
its size increased by the size of the second block. The function get_endl is used
to compute the starting location of a block.

We can use this lemma to verify that a destructive update really performs
compaction of blocks. Let us consider a concrete example:
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{ }
p + 1 *<- p + 22 8 + 2 + 10

In Coq, we input the following goal, that makes use of Heap_List assertions:

Goal ∀ p, Heap_List ((8,free)::(10,free)::nil) p
nat_e p +e int_e 1 *<- nat_e p +e int_e 22
Heap_List ((20,free)::nil) p .
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The application of the axiom for backward reasoning (seen in Sect. 3.1.2) leads
to:

p : nat
s : store.s
h : heap.h
H : Heap_List ((8, free) :: (10, free) :: nil) p s h
============================
∃ e’’ : expr,
((nat_e p +e int_e 1) 7→ e’’ **
((nat_e p +e int_e 1) 7→ (nat_e p +e int_e 22) −*
Heap_List ((20, free) :: nil) p)) s h

This new goal is precisely the conclusion of the lemma we gave above. Applica-
tion of this lemma terminates the proof.

HMInit

The initialization function hmInit transforms a given area of raw memory into an
initial heap-list that consists of a single free block. In the source code, this area
starts at location hmStart and has a fixed length KERNELHEAPSIZE. We formally
verify hmInit for the general case of any starting location and any size greater
than 4: the minimal space needed for two headers (the header of the free block
and the header of the terminal block):

Definition hmInit_specif := ∀ p size, size ≥ 4 →
Array p size hmInit p size Heap_List ((size-4,free)::nil) p .

The size of the array of memory corresponding to the free block is the size of
the whole area of memory minus the size of the two headers. The verification
of this triple is done almost automatically using a tactic provided by our Coq
implementation. The non-automatic part is due to the translation of the asser-
tions Array and Heap_List into the fragment of separation logic handled by this
tactic. See Sect. 3.3.1 for more details.

Despite its apparent simplicity, this function turns out to be buggy, as we
explain in Sect. 3.3.3.

HMAlloc

The allocation function hmAlloc searches for a large-enough free block in the
heap-list, possibly performing compaction of free blocks if needed. If an ade-
quate block is found, it is split into an allocated block (whose location is re-
turned) and a free block (available for further allocations); otherwise, an error
is returned.

We introduce new assertions to simplify specifications. Under the hypoth-
esis that (Heap_List lst p0) holds, the assertion (In_hl lst (p,size,flag) p0)

means that the block starting at location p has size size and flag flag. The
assertion (s |= b) holds when b is true in the store s.

As informally stated, the specification of the allocation function consists in
checking that (1) newly allocated blocks have at least the requested size, (2)
they do not overlap with already allocated memory blocks (they are “fresh”),
and (3) neither previously allocated memory blocks nor the rest of the memory
is modified.

The formal specification of hmAlloc follows. In the pre-condition, we isolate
some already allocated block (x,sizex,alloc). In the post-condition, we ensure
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that (1) the newly allocated block (y,size’’,alloc) has an appropriate size
(i.e., greater than the requested size), (2) this newly allocated block does not
overlap with previously allocated blocks (more precisely, the newly allocated
block is built out of free blocks since (Heap_List l adr ** Array (y+2) size’’),
and it cannot be the previously allocated block x since x 6= y), and (3) previously
allocated memory blocks and the rest of the memory are not modified (because
these areas are left outside of the area described by the Heap_List assertion).
The second disjunction in the post-condition applies when allocation fails.

Definition hmAlloc_specif := ∀ adr x sizex size, adr > 0 → size > 0 →
{{ fun s h => ∃ l, Heap_List l adr s h ∧ In_hl l (x,sizex,alloc) adr ∧
(s |= var_e hmStart == nat_e adr) }}
hmAlloc result size entry cptr fnd stts nptr sz
{{ fun s h => (∃ l, ∃ y, y > 0 ∧ (s |= var_e result == nat_e (y+2)) ∧
∃ size’’, size’’ ≥ size ∧ (Heap_List l adr ** Array (y+2) size’’) s h ∧
In_hl l (x,sizex,alloc) adr ∧ In_hl l (y,size’’,alloc) adr ∧ x 6= y)
∨
(∃ l, (s |= var_e result == nat_e 0) ∧
Heap_List l adr s h ∧ In_hl l (x,sizex,alloc) adr) }}.

Other assertions are essentially technical. The equality about the variable
hmStart and the location adr is necessary because the variable hmStart is actu-
ally global and written explicitly in the original C source code of the allocation
function. The inequality about the location adr is necessary because the func-
tion implicitly assumes that there is no block starting at the null location. The
inequality about the requested size is not necessary, it is just to emphasize that
null-allocation is a special case (see Sect. 3.3.3 for a discussion).

The allocation function relies on three functions to do (heap-)list traversals,
compaction of free blocks, and eventually splitting of free blocks. In the rest of
this section, we briefly comment on the verification of these three functions.

Traversal The function findFree traverses the heap-list in order to find a
large-enough free block. It takes as parameters the requested size and a return
variable entry to be filled with the location of an appropriate block if any:

Definition findFree_specif := ∀ adr x sizex size, size > 0 → adr > 0 →
{{ fun s h => ∃ l, Heap_List l adr s h ∧ In_hl l (x,sizex,alloc) adr ∧
(s |= (var_e hmStart == nat_e adr) &&& (var_e result == null)) }}
findFree size entry fnd sz stts
{{ fun s h => ∃ l, Heap_List l adr s h ∧ In_hl l (x,sizex,alloc) adr ∧
(s |= (var_e hmStart == nat_e adr) &&& (var_e result == null)) ∧
((∃ y, ∃ size’’, size’’ ≥ size ∧ In_hl l (y,size’’,free) adr ∧
(s |= (var_e entry == nat_e y) &&& (nat_e y >> null)))
∨
s |= var_e entry == null) }}.

The post-condition asserts that the search succeeds and the return value cor-
responds to the starting location of a large-enough free block, or the search
fails and the return value is null. The whole formal verification of findfree is
summarized in Fig. B.2.

Compaction The function compact is invoked when traversal fails. Its role is
to merge all the contiguous free blocks of the heap-list, so that a new traversal
can take place and hopefully succeeds:

Definition compact_specif:= ∀ adr size sizex x, size > 0 → adr > 0 →
{{ fun s h => ∃ l, Heap_List l adr s h ∧ In_hl l (x,sizex,alloc) adr ∧
(s |= (var_e hmStart == nat_e adr) &&& (var_e result == null) &&&
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(var_e cptr == nat_e adr)) }}
compact cptr nptr stts
{{ fun s h => ∃ l, Heap_List l adr s h ∧ In_hl l (x,sizex,alloc) adr ∧
(s |= (var_e hmStart == nat_e adr) &&& (var_e result == null)) }}.

The formal specification of compact asserts that it preserves the heap-list struc-
ture. Its verification is technically involved because it features two nested loops
and therefore large invariants. The heart of this verification is the applica-
tion of the compaction lemma already given in Sect. 3.2.2. The whole formal
verification of compact is summarized in Fig. B.3.

Splitting The function split splits the candidate free block into an allocated
block of appropriate size and a new free block:

Definition split_specif := ∀ adr size sizex x, size > 0 → adr > 0 →
{{ fun s h => ∃ l, Heap_List l adr s h ∧ In_hl l (x,sizex,alloc) adr ∧
(s |= (var_e hmStart == nat_e adr) &&& (var_e result == null)) ∧
(∃ y, ∃ size’’, size’’ ≥ size ∧ In_hl l (y,size’’,free) adr ∧
(s |= var_e entry == nat_e y) ∧ y > 0 ∧ y 6= x) }}
split entry size cptr sz
{{ fun s h => ∃ l, In_hl l (x,sizex,alloc) adr ∧
(∃ y, y > 0 ∧ (s |= var_e entry == int_e y) ∧
(∃ size’’, size’’ ≥ size ∧
(Heap_List l adr ** Array (y+2) size’’) s h ∧
In_hl l (y,size’’,alloc) adr ∧ y 6= x)) }}.

The pre-condition asserts that there is a free block of size greater than size

starting at the location pointed by entry (this is the block found by the previous
list traversal). The post-condition asserts the existence of an allocated block of
size greater than size (that is in general smaller than the original free block
used to be). The whole formal verification of split is summarized in Fig. B.4.

HMFree

The deallocation function hmFree does a list traversal; if it runs into the location
passed to it, it frees the corresponding block, and fails otherwise. Besides the
fact that an allocated block becomes free, we must also ensure that hmFree does
not modify previously allocated blocks nor the rest of the memory; here again,
this is taken into account by the definition of Heap_List:

Definition hmFree_specif := ∀ p x sizex y sizey statusy, p > 0 →
{{ fun s h => ∃ l, (Heap_List l p ** Array (x+2) sizex) s h ∧
In_hl l (x,sizex,alloc) p ∧ In_hl l (y,sizey,statusy) p ∧
x 6= y ∧ s |= var_e hmStart == nat_e p }}
hmFree (x+2) entry cptr nptr result
{{ fun s h => ∃ l, Heap_List l p s h ∧
In_hl l (x,sizex,free) p ∧ In_hl l (y,sizey,statusy) p ∧
s |= var_e result == HM_FREEOK }}.

The main difficulty of this verification was to identify a bug that allows for
deallocation of the terminal block, as we explain in Sect 3.3.3.

3.3 Discussion

3.3.1 About Automation

Since our specifications take into account many details of the actual implemen-
tation, a number of Coq tactics needed to be written to make them tractable.
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Tactics to decide disjointness and equality for heaps turned out to be very
important. In practice, proofs of disjointness and equality of heaps are ubiqui-
tous, but tedious because one always needs to prove disjointness to make unions
of heaps commute; this situation rapidly leads to intricate proofs. For example,
the proof of the lemma hl_compaction given in Sect. 3.2.2 leads to the creation
of 15 sub-heaps, and 14 hypotheses of equality and disjointness. With these
hypotheses, we need to prove several goals of disjointness and equality. Fortu-
nately, the tactic language of Coq provides us with a means to automate such
reasoning.

We also developed a certified tactic to verify automatically programs whose
specifications belong to a fragment of separation logic without the separating
implication (to compare with related work, this is the fragment of [17] without
inductively defined datatypes).

We used this tactic to verify the hmInit function, leading to a proof script
three times smaller than the corresponding interactive proof we made (58 lines/167
lines). Although the code in this case is straight-line, the verification is not fully
automatic because our tactic does not deal directly with assertions such as Array
and Heap_List.

Let us briefly comment on the implementation of this tactic. The target
fragment is defined by the inductive type assrt. The tactic relies on a weakest-
precondition generator wp_frag whose outputs are captured by another inductive
type L_assrt. Using this weakest-precondition generator, a Hoare triple whose
pre/post-conditions fall into the type assrt is amenable to a goal of the form
assrt → L_assrt → Prop. Given a proof system LWP for such entailments, one
can use the following lemma to automatically verify Hoare triples:

Lemma LWP_use: ∀ c P Q R,
wp_frag (Some (L_elt Q)) c = Some R →
LWP P R →
{{ assrt_interp P }} c {{ assrt_interp Q }}.

—The function assrt_interp projects objects of type assrt (a deep encoding)
into the type assert (the shallow encoding introduced in this paper).
Goals of the form assrt → L_assrt → Prop can in general be solved automati-
cally because the weakest-precondition generator returns goals that are inside
the range of Presburger arithmetic (pointers are rarely multiplied between each
other) for which Coq provides a native tactic (namely, the Omega test).

3.3.2 Translation from C Source Code

The programming language of separation logic is close enough to the subset
of the C language used in the Topsy heap manager to enable a translation
that preserves a syntactic correspondence. Thanks to this correspondence, it
is immediate to identify a bug found during verification with its origin in the
C source code. Below, we explain the main ideas behind the translation in
question. Though it is systematic enough to be automated, we defer its certified
implementation to future work and do it by hand for the time being.

The main difficulty in translating the original C source code is the lack
of function calls and labelled jumps (in particular, the break instruction) in
separation logic. To deal with function calls, we add global variables to serve as
local variables and to carry the return value. To deal with the break instruction,
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static void compact(HmEntry at) {
HmEntry atNext;

while (at != NULL) {
atNext = at->next;

while ((at->status == HM_FREED) &&
(atNext != NULL)) {

if (atNext->status != HM_FREED)
break;

at->next = atNext->next;

atNext = atNext->next;
}
at = at->next;}
}

Definition compact (at
atNext
brk tmp cstts nstts:var.v) :=
while (var_e at =/= null) (
atNext <-* (at -.> next);
brk <- nat_e 1 ;
cstts <-* (at -.> status);
while ((var_e cstts == Free) &&&
(var_e atNext =/= null) &&&
(var_e brk == nat_e 1)) (
nstts <-* (atNext -.> status);
ifte (var_e nstts =/= Free) thendo (
brk <- nat_e 0
) elsedo (
tmp <-* atNext -.> next;
at -.> next *<- var_e tmp;
atNext <-* atNext -.> next
));
at <-* (at -.> next)
).

Figure 3.1: Code Translation from C to Coq—Example

we add a global variable and a conditional branching to force exiting where loops
can break.

Another minor point is that we need to add temporary variables to make
up for the restricted set of expressions and commands of separation logic. For
example, the evaluation of an expression in separation logic never returns a lo-
cation, only values, thus we need beforehand to load a location into variable
to be able to use it in a boolean expression; also, there is no command to
lookup and mutate memory at the same time. We overcome these restrictions
by decomposing complex expressions and commands, and using temporary vari-
ables. These temporary variables correspond to the parameters written without
vowels in our specifications.

By way of example, Fig. 4.1 displays side-by-side the original compact func-
tion and its Coq counterpart.

The tables below summarize the whole Coq implementation:

Script files Contents (lines)

util.v Non-standard lemmas about integers, lists, etc. (825)

heap.v Modules for locations, values, and heaps (2388)

bipl.v Separation logic connectives (with tactics) (1579)

axiomatic.v Separation logic triples, frame rule (1080)

vc.v Weakest-precondition generator (196)

contrib.v Various lemmas (arrays, etc.) (1077)

contrib tactics.v Various tactics (Omega extensions, etc.) (324)

examples.v Small examples (411)

example reverse list.v Reverse-list example (383)

frag.v Tactic for a fragment of separation logic (1972)

frag examples.v Examples for the tactic above (176)

total: 10411 lines
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Script files Contents (lines)
topsy hm.v Heap-list definition and properties (1015)
topsy hmInit.v Initialization code, specification, and verification (313)
topsy hmAlloc.v Allocation code, specifications, and verifications (2762)
topsy hmFree.v Deallocation code, specification, and verification (536)
hmAlloc example.v Example of Sect. 3.3.3 (130)

total: 4756 lines

3.3.3 Benefits of Formal Verification

The main output of our experiment is that we have found several issues and
bugs in the original source code of the Topsy heap manager. Another output is
the Coq implementation of separation logic, that is readily available for other
experiments. In particular, the verification of the Topsy heap manager in itself
can actually be used for other verifications.

Issues and Bugs found in the Original Source Code

Out of Range Initialization When verifying the initialization function of
the heap manager (Sect. 3.2.2), we found that the header of the terminal block
was actually written outside of the memory area reserved for the heap manager.
This illegal destructive update made the Heap_List assertion unprovable because
the latter holds for a fixed area of memory. We corrected this bug by changing a
single arithmetic operation, suggesting a programming miss. In all fairness, we
must say that this bug was corrected in versions of Topsy posterior to version
2 (that we are using for verification).

Optimizations of Allocation When verifying the allocation function (Sect. 3.2.2),
we found several useless operations that suggested immediate optimizations.

One such useless operation is the possibility to allocate a non-empty memory
block (that is, a header and a non-empty array of memory) when performing a
null-size allocation. Since null-size allocations are not filtered out, the alignment
calculation is applied anyway, resulting in a non-empty allocation (in addition
to the header). This was highlighted when writing assertions. We improved the
implementation by forcing failure for null-size allocation.

Among other optimizations, there were useless assignments (to dead vari-
ables) and useless tests. For example, there were two identical variables assign-
ments before calling and at the beginning of the findFree function; this was
highlighted when writing the loop invariant in findFree. More interestingly,
there was a useless test in the compact function. The second conjunct of the
test of the inner loop (see Fig. 4.1) is useless because only the terminal block
marked as allocated can point to null. Such an optimization cannot be done
by an ordinary compilers, contrary to the former one.

Deallocation of the Terminal Block When verifying the deallocation func-
tion (Sect. 3.2.2), we found that it was possible to suppress allocable space
without performing any allocation. This is because it is possible to deallocate
the terminal block of the heap-list to trick compaction. The problem is better
explained by the following scenario:
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In this scenario, the terminal block is preceded by a free block. If we deallo-
cate the terminal block and try to allocate a too-large block, this will trigger
compaction and cause the leading free block to point to null. This problem is
easily identified by the Heap_List assertion that enforces the terminal block to
be marked as allocated. We fixed this problem by adding a test on the “next”
field of the block to be deallocated in the deallocation function.

Using the Verification Result to Verify Other Code

Our verification of the Topsy heap manager provides us with new separation
logic axioms that can be used for dynamic memory allocation without resorting
to the native malloc/free commands of separation logic. In other words, we can
use the specifications of hmAlloc and hmFree as triples to verify programs. For
example, let us consider the following program:

Definition hmAlloc_example result entry cptr fnd stts nptr sz v :=
hmAlloc result 1 entry cptr fnd stts nptr sz;
ifte (var_e result =/= nat_e 0) thendo (
(var_e result *<- int_e v)
) elsedo ( skip ).

This program allocates a new block using hmAlloc, stores its location into the
variable result, and stores some value v into this block. Using the specification
of hmAlloc proved in Sect. 3.2.2, we can prove the following specification:

Definition hmAlloc_example_specif := ∀ v x e p, p > 0 →
{{ (nat_e x 7→ int_e e) **

(fun s h => ∃ l, (s |= var_e hmStart == nat_e p) ∧
Heap_List l p s h ∧ In_hl l (x,1,alloc) p) }}

hmAlloc_example result entry cptr fnd stts nptr sz v
{{ fun s h => s |= var_e result =/= nat_e 0 →

((nat_e x 7→ int_e e) ** (var_e result 7→ int_e v) ** TT **
(fun s h => ∃ l, Heap_List l p s h ∧ In_hl l (x,1,alloc) p)) s h }}.

The post-condition asserts that, in case of successful allocation, the newly allo-
cated block is separated from any previously allocated block.

3.4 Related Work

Our use case is reminiscent of work by Yu et al. that propose an assembly
language for proof-carrying code and apply it to certification of dynamic storage
allocation [15]. The main difference is that we deal with existing C code, whose
verification is more involved because it has not been written with verification in
mind. In particular, the heap-list data structure has been designed to optimize
space usage; this leads to trickier manipulations (e.g., nested loop in compact),
longer source code, and ultimately bugs, as we saw in Sect. 3.3.3. Also both
allocators differ: the Topsy heap manager is a real allocation facility in the
sense that the allocation function is self-contained (the allocator of Yu et al.
relies on a pre-existing allocator) and that the deallocation function deallocated
only valid blocks (the deallocator of Yu et al. can deallocate partial blocks).
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The implementation of separation logic we did in the Coq proof assistant
improves the work by Weber in the Isabelle proof assistant [16]. We think
that our implementation is richer since it benefits from a substantial use case.
In particular, we have developed several practical lemmas and tactics. Both
implementations also differ in the way they implement heaps: we use an abstract
data type implemented by means of modules for the heap whereas Weber uses
partial functions.

Mehta and Nipkow developed modeling and reasoning methods for impera-
tive programs with pointers in Isabelle [20]. The key idea of their approach is
to model each heap-based data structure as a mapping from locations to values
together with a relation, from which one derives required lemmas such as sepa-
ration lemmas. The combination of this approach with Isabelle leads to compact
proofs, as exemplified by the verification of the Schorr-Waite algorithm. In con-
trast, separation logic provides native notions of heap and separation, making it
easier to model, for example, a heap containing different data structures (as it is
the case for the hmInit function). The downside of separation logic is its special
connectives that call for more implementation work regarding automation.

Tuch and Klein extended the ideas of Mehta and Nipkow to accommo-
date multiple datatypes in the heap by adding a mapping from locations to
types [21, 58]. Thanks to this extension, the authors certified an abstraction
of the virtual mapping mechanism in the L4 kernel from which they generate
verified C code. Obviously, such a refinement strategy is not directly applica-
ble to the verification of existing code such as the Topsy heap manager. More
importantly, the authors point that the verification of the implementation of
malloc/free primitives is not possible in their setting because they “break the
abstraction barrier” (Sect. 6 of [21]).

Schirmer also developed a framework for Hoare logic-style verification inside
Isabelle [19]. The encoded programming language is very rich, including in
particular procedure calls, and heap-based data structures can be modeled using
the same techniques as Mehta and Nipkow. Thanks to the encoding of procedure
calls, it becomes easier to model existing source code (by avoiding, for example,
the numerous variables we needed to add to translate the source code of the
Topsy heap manager into our encoding of separation logic). However, it is
not clear whether this richer encoding scales well for verification of non-trivial
examples.

Caduceus [22] is a tool that takes a C program annotated with assertions
and generates verification conditions that can be validated with various theorem
provers and proof assistants. It has been used to verify several non-trivial C
programs including the Schorr-Waite algorithm [23]. The verification of the
Topsy heap manager could have been done equally well using a combination of
Caduceus and Coq. However, Caduceus does support separation logic. Also,
we needed a verification tool for assembly code in Topsy; for this purpose, a
large part of our implementation for separation logic is readily reusable (this is
actually work in progress). Last, we wanted to certify automation inside Coq
instead of relying on a external verification condition generator.

Berdine, Calcagno and O’Hearn have developed Smallfoot, a tool for check-
ing separation logic specifications [18]. It uses symbolic execution to produce
verification conditions, and a decision procedure to prove them. Although Small-
foot is automatic (even for recursive and concurrent procedures), the assertions
only describe the shape of data structures without pointer arithmetic. Such a
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limitation excludes its use for data structures such as heap-lists.
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Chapter 4

MIPS Assembly
Verification

In Chap. 3 we present a library that has proved to be efficient for the specifica-
tion and the verification of C-like source code. However, low-level software, such
as operating system, customary contains source code written in assembly code,
for sake of optimization or for parts that are highly dependant on the architec-
ture specificity. For instance, in operating systems, the code that manages the
switching of context must be written in assembly. Indeed, this code loads and
saves the value of the registers of the underlying processor for each threads. As
emphasized in Chap. 2.3, such assembly code correctness is important for the
task isolation.

In our effort of verification of the Topsy operating system, we have imple-
mented a library to specify and verify source code written in MIPS assembly
language [40]. Beyond the fact that the command language is different from the
library presented in Chap. 3, this work also relies on deepest technical details.
Whereas we have used unbound integers for our verification of the Topsy heap
manager (because we modeled variables), the fact that we now manipulate reg-
isters binds us to use finite integers. Another specificity of assembly languages
is that they do not provide structured control-flow (like loops and branches),
but instead, jump instructions.

All these differences with our previous work justify the implementation of a
new verification library. However, both implementations share some parts, for
example the module that implements heaps.

This chapter is organized as follows. In Sect. 4.1 we describe our model of
the MIPS architecture inside the Coq proof assistant, in Sect. 4.2 we present
the verification of the function that loads the context of a thread, in Sect. 4.3
we discuss some facts about our verification, and finally, in Sect. 4.4 we present
the related work.
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4.1 MIPS Assembly Language in Coq

4.1.1 Machine-Integers Arithmetic

Formal verification of arithmetic functions is usually done w.r.t. high-level math-
ematical specifications. However, at the level of assembly code, many arithmetic
properties of instructions depend on the finiteness of registers and on the phys-
ical representation of data. For example, the (signed) integer “−1” appears to
be larger than any unsigned (and therefore positive) integer; some instructions
trap on integer overflow while others do not, etc. Overlooking such problems
often leads to security breaches, most famously integer-overflow bugs (see [38]
for illustrations). It is therefore important to provide formal means to define the
semantics of instructions together with lemmas that capture their properties in
terms of mathematical (i.e., unbounded) integers.

Our approach to encode machine-integers arithmetic is to closely model the
hardware circuitry using lists of bits (booleans) to represent the contents of
registers and recursive functions to represent the operations on registers. We
choose this approach because it is easy to extend with new, specialized instruc-
tions, compared to encoding machine integers with, say, sign-magnitude integers
modulo.
Example: Hardware Arithmetic Operations We model the hardware addition as
a recursive function that does bitwise comparisons and carry propagation:

Inductive bit : Set := o : bit | i : bit.
(* addition with LSB first *)
Fixpoint add_lst’ (a b:list bit) (carry:bit) : list bit :=
match (a, b) with
(o :: a’, o :: b’) => carry :: add_lst’ a’ b’ o
| (i :: a’, i :: b’) => carry :: add_lst’ a’ b’ i
| (_ :: a’, _ :: b’) => match carry with
o => i :: add_lst’ a’ b’ o | i => o :: add_lst’ a’ b’ i end
| _ => nil
end.
(* addition with MSB first *)
Definition add_lst a b carry := rev (add_lst’ (rev a) (rev b) carry).

Most computers distinguish between unsigned integers and signed integers in
two’s complement notation. The negation of a signed integer is defined using
ones’ complement and addition:

Definition cplt b := match b with i => o | o => i end.

Fixpoint cplt1 (lst:list bit) : list bit :=
match lst with nil => nil | hd :: tl => cplt hd :: cplt1 tl end.

Definition cplt2 lst :=
add_lst (cplt1 lst) (zero_extend_lst (length lst - 1) (i::nil)) o.

Using the addition, we further modeled the unsigned multiplication; using two’s
complement, we further modeled the signed multiplication, and so on.

Physical constraints and implementation choices make hardware arithmetic
operations peculiar. Because of the finiteness of registers, they actually imple-
ment arithmetic modulo. A list of bits (an::...::a0) is interpreted as (an . . . a0)2,
the encoding in base 2 of a mathematical integer; but depending on the con-
text, this integer is unsigned, in which case its decimal value is an2n + . . . + a0,
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or signed in two’s complement notation, in which case its decimal value is
−an2n + an−12n−1 + . . . + a0. It is customary for assembly code to rely on
properties of arithmetic modulo (e.g., to detect overflows) and to freely mix un-
signed and signed integers (e.g., to access memory). Precise characterization of
the properties of the hardware arithmetic operations w.r.t. their mathematical
counterpart is therefore a must-have for formal verification of assembly code.
Example: Overflow Properties of Addition Let us note [[ lst ]]u (resp. [[ lst ]]s)
the decimal value of the list of bits lst seen as an unsigned (resp. signed) integer.
In Coq, these notations are implemented as recursive functions from lists of bits
to mathematical integers. The hardware addition behaves like the mathematical
addition only when non-overflow conditions are met:

Lemma add_lst_nat : ∀ n a b, length a = n → length b = n →
O ≤ [[a]]u + [[b]]u < 2^^n → [[add_lst a b o]]u = [[a]]u + [[b]]u.

Lemma add_lst_Z : forall n a b, length a = S n → length b = S n →
-2^^n ≤ [[a]]s + [[b]]s < 2^^n → [[add_lst a b o]]s = [[a]]s + [[b]]s.

We proved further lemmas that capture the overflow properties of the hardware
addition when overflow conditions are not met, the correctness of subtraction
and multiplications, the relations between unsigned and signed integers, etc.

Because a processor usually manipulates machine integers of different sizes
(e.g., to represent constants or contents of special registers such as accumula-
tors), it is cumbersome to use directly lists of bits: the conditions about their
lengths clutter formal verification. To simplify our development, we encapsulate
all the functions modeling the hardware circuitry and the lemmas capturing their
properties in a Coq module that provides an abstract type for machine integers.
This abstract type is parameterized by the length of the underlying list of bits:
Parameter int : nat → Set. This makes the relation between the lengths of the
input and the output of operations explicit in the type of hardware operations.

Technically, this abstract type is implemented using dependent pairs: a ma-
chine integer of length n is a dependent pair whose first projection is a list of
bits lst and whose second projection is the proof that its length is equal to n:
Inductive int (n:nat) : Set := mk_int : ∀ (lst:list bit), length lst = n → int n.

An excerpt of the interface of the resulting module is given below:

Parameter add : ∀ n, int n → int n → int n.
Notation "a ⊕ b" := (add a b).
Parameter u2Z : ∀ n, int n → Z. (* lists of bits as unsigned *)
Parameter s2Z : ∀ n, int n → Z. (* lists of bits as signed *)
Parameter add_u2Z : ∀ n (a b:int n), u2Z a + u2Z b < 2^^n →
u2Z (a ⊕ b) = u2Z a + u2Z b.
Parameter add_s2Z : ∀ n (a b:int (S n)), -2^^n ≤ s2Z a + s2Z b < 2^^n →
s2Z (a ⊕ b) = s2Z a + s2Z b.
Parameter Z2u : ∀ n, Z → int n.
Parameter Z2s : ∀ n, Z → int n.

Z2u n z (resp. Z2s n z) builds an unsigned (resp. a signed) machine integer of
decimal value z and length n (if possible). These two constructors are used to
defined constants, such as: Definition four32 := Z2u 32 4.

4.1.2 States

The state of a SmartMIPS processor is modeled as a tuple of a store of general-
purpose registers, a store of control registers, an integer multiplier, and a heap
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(the mutable memory):
Definition state := gpr.store * cp0.store * multiplier.m * heap.h.

The module gpr is a store (in other words a map) from the type gp_reg of
general-purpose registers to (32-bit) words, the module cp0 is a map from the
type cp0_reg of control registers, and heap is a map from natural numbers to
words. We restrict ourselves to a word-addressable heap because it is all we need
for arithmetic functions. The module for heap is implemented using a module
for finite maps presented in Sect. 3.1.1. Let us comment more in detail on the
implementation of the multiplier module, that makes an extensive use of our
module for machine integers.

The SmartMIPS multiplier is a set of registers called ACX, HI, and LO
that has been designed to enhance cryptographic computations. HI and LO
are 32 bits long; ACX is only known to be at least 8 bits long. We implement
the multiplier as an abstract data type m with three lookup functions acx, hi,
and lo that return respectively a machine integer of length at least 8 bits and
machine integers of length 32. Here follows the corresponding excerpt of the
module interface:

Parameter acx_size : nat.
Parameter acx_size_min : 8 ≤ acx_size.
Parameter m : Set.
Parameter acx : m → int acx_size.
Parameter lo : m → int 32.
Parameter hi : m → int 32.
Parameter utoZ : m → Z. (* multiplier as an unsigned *)

The SmartMIPS instruction set features special instructions to take advantage
of the SmartMIPS multiplier. For illustration, let us explain the encoding of
the mflhxu instruction, that is often used in arithmetic functions: it performs
a division of the multiplier by β=232, whose remainder is put in a general-
purpose register and whose quotient is left in the multiplier. The corresponding
hardware circuitry is essentially a shift: it puts the contents of LO into some
general-purpose register, puts the contents of HI into LO, and zeroes ACX. Here
is how we model this operation:

Definition mflhxu_op m := let (acx’, hi’) := (acx m, hi m) in
(Z2u acx_size 0, (zero_extend 24 acx’, hi’)).

What is important for verification is the properties of mflhxu w.r.t. the decimal
value of the multiplier. Such properties can be derived as lemmas from the
definition of mflhxu_op. For example, the decimal values of the multiplier before
and after mflhxu are related as follows (Zbeta n stands for βn=232n):
Lemma mflhxu_utoZ : ∀ m, utoZ m = utoZ (mflhxu_op m) * Zbeta 1 + u2Z (lo m).

4.1.3 The Mips Assembly Language

The syntax of MIPS is defined in the inductive type cmd. Except for control-
flow commands (seq , jr ,), the type constructors have the same names as their
SmartMIPS counterparts. We define a block as a couple of a command and its
starting memory address (the type pc). Formally in Coq:

Definition immediate := int 16.
Definition address := int 32.
Definition word := int 32.
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Inductive cmd : Set :=
| lw : gp_reg -> immediate (*index*) -> gp_reg (*base*) -> cmd
| sw : gp_reg -> immediate (*index*) -> gp_reg (*base*) -> cmd
| la : gp_reg -> address -> cmd
| li : gp_reg -> word -> cmd
| mfhi : gp_reg -> cmd
| mflo : gp_reg -> cmd
| mtlo : gp_reg -> cmd
| mthi : gp_reg -> cmd
| mfc0 : gp_reg -> cp0_reg -> cmd
| mtc0 : gp_reg -> cp0_reg -> cmd
| move : gp_reg -> gp_reg -> cmd
| jr : gp_reg -> cmd
| nop : cmd
| seq: cmd -> cmd -> cmd.

Definition pc := int 32.
Definition block := pc * cmd.

We define the operational semantics in a manner similar to [2]. This approach
allows us to describe an command language with jumps (here the command jr),
with a big-step operational semantics. Details about this approach are discussed
in details in Chap. 6. Formally in Coq, the semantics is encoded as an inductive
type of signature:

Inductive cmd_semop: option (pc * state) →
(pc * cmd) → option (pc * state) → Prop := ...

The main difference with the operational semantics presented in Sect. 3.1.1,
is that the initial and the final states are respectively coupled with a starting
and an ending address. This is due to the fact that the assembly language
is unstructured, more precisely that its instructions can be refereed by their
addresses through jumps instructions.

4.1.4 Hoare-Triples

We use an instance of the separation logic assertion language for assembly (c.f.,
2.1). Assertions are encoded as truth-functions from states to Prop, the type of
predicates in Coq (this technique of encoding is called shallow embedding):
Definition assert := gpr.store → cp0.store → multiplier.m → heap.h → Prop.

Using this type, one can easily encode any first-order predicate. For example,
the predicate that is true when variables x and y have the same contents is
encoded as follows (lookup is a function provided by the interface of stores):

Definition x_EQ_y (x y : gp_reg) : assert :=
fun s _ _ _ => gpr.lookup x s = gpr.lookup y s.

To encode separating connectives, we use a module for heaps. In the follow-
ing, we omit the definitions of heap-related functions: their names and notations
are self-explanatory and details can be found in Chap. 3. First, we introduce a
language for expressions used in separating connectives:

Inductive expr : Set :=
var_e : gp_reg→ expr | int_e : int 32→ expr | add_e : expr→ expr→ expr | ...

In this language, variables are registers and constants are (32-bit) words. Given
an expression e and a store s, the function eval returns the value of the expres-
sion e in store s.
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The mapsto connective e1 7→ e2 holds in a state with a store s and a singleton
heap with address eval e1 s and contents eval e2 s :

Definition mapsto (e e’:expr) : assert := fun s _ _ h =>
∃ p, u2Z (eval e s) = 4 * p ∧ h = heap.singleton p (eval e’ s).
Notation "e1 7→ e2" := (mapsto e1 e2).

The separating conjunction P ** Q holds in a state whose heap can be divided
into two disjoint heaps such that P and Q hold:

Definition sep_con (P Q:assert) : assert := fun s s’ m h =>
∃ h1, ∃ h2, h1 ⊥ h2 ∧ h = h1 ∪ h2 ∧ P s s’ m h1 ∧ Q s s’ m h2.
Notation "P ? Q" := (sep_con P Q).

In practice, the separating conjunction provides a concise way to express that
two data structures reside in disjoint parts of the heap.

Using the separating conjunction, the mapsto connective can be generalized
to arrays of words: (e Z⇒ a::b::...) holds in a state whose heap contains a list
of contiguous words a, b, . . . starting at address eval e s :

Fixpoint mapstos (e:expr) (lst:list (int 32)) : assert :=
match lst with
| nil => empty_heap
| hd::tl => (e 7→ int_e hd) ? (mapstos (add_e e (int_e four32)) tl)
end.
Notation "e Z⇒ lst" := (mapstos e lst).

Seaparation logic triples are encoded through their semantics. More formally,
in Coq:

Definition semax_sem (P: assert) (C: pc * cmd) (Q: assert) : Prop :=
let (lc, c) := C in (

∀ s1 s2 m h,
P s1 s2 m h →
∃ s1’,

∃ s2’,
∃ m’,

∃ h’,
cmd_semop (Some (lc, (s1, s2, m, h)))

(lc, c)
(Some (lc (+) Z2u _ (cmd_size c * 4), (s1’, s2’, m’, h’))) /\

Q s1’ s2’ m’ h’
).

Notation "[[ P ]] c [[ Q ]]" := (semax_sem P c Q) (at level 82, no associativity).

Informally, the semantics of separation logic is: if we start the execution of the
first instruction of the block C (which is the command c starting at the address
lc) in a state for which the assertion P holds, then the execution will reach the
address next to the last instruction of c in a state for which Q holds. These
kind of triples are said to be of total correctness, because they assert that the
execution will reach a final state.

For the verification of triples, we provide a set of lemmas, implementing the
Reynolds axioms. This approach differs in the one chose in Sect. 3.1.2, where
we build a set of rules, and proved there soundness and correctness w.r.t the
triples semantics. For instance, the lemmas for the triples of the la instruction
is:

Lemma la_semax: ∀ lc rt a P,
u2Z lc < 2 ^^ 32 - 4 →
[[ fun s s’ m h => (P (gpr.update rt a s) s’ m h) ]] (lc, la rt a) [[ P ]].
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4.2 Verification of the Topsy Context Switching:
restoreContext

In operating systems, the context switching code is responsible for saving and
loading the context of a thread. This context corresponds to the set of the
processor registers value (including the code pointer). Topsy uses an array,
named contexPtr, to save the threads state . The function saveContext
saves the current registers values inside this data-structure, while the function
restoreContext restores the registers values from it.

Intuitively, the specifications of these functions make a comparison between
the contextPtr and the values of the restored/saved registers. Thus, in order
to build these specifications, we need two assertions: one models the contextPr
data-structure which is resident in the memory (which is the thread_context_mem
separation logic assertion bellow), and one that represents the processor register
values (which is the thread_context separation logic assertion bellow):

Definition thread_context_mem (at_ v0 v1 a0 a1 a2 a3 t0 t1 t2 t3 t4 t5 t6 t7
t8 t9 s0 s1 s2 s3 s4 s5 s6 s7 gp sp fp ra hi lo status pc l: int 32) : assert :=
(add_e (int_e l) (int_e (sign_extend_16_32 RETURNVALUE0_OFFSET)) 7→int_e v0) **
(add_e (int_e l) (int_e (sign_extend_16_32 RETURNVALUE1_OFFSET)) 7→int_e v1) **
(add_e (int_e l) (int_e (sign_extend_16_32 ARGUMENT0_OFFSET)) 7→int_e a0) **
...

Definition thread_context (at_ v0 v1 a0 a1 a2 a3 t0 t1 t2 t3 t4 t5 t6 t7
t8 t9 s0 s1 s2 s3 s4 s5 s6 s7 gp sp fp ra hi lo status: int 32) : assert :=
fun s s’ m h =>
emp s s’ m h /\
gpr.lookup gpr_at s = at_ /\
gpr.lookup gpr_v0 s = v0 /\
gpr.lookup gpr_v1 s = v1 /\
gpr.lookup gpr_a0 s = a0 /\
...

In Fig. 4.1, we present both the original MIPS source code and the Coq
model of the function restoreContext. As we can see, the translation is rather
straightforward, and both codes are close.

We now take a closer look at how this function is working. In the starting
states, the register a0 points to the contextPtr to be restored. The first instruc-
tion makes the register k1 to point to this data-structure. Then, one by one,
the function restores the registers from a0 to ra. Finally, the function restores
three specials registers: hi and lo, which are the registers of the multiplier, and
status, which contains the privilege of the restored thread.

The formal specification of rectoreContext, in Coq, is:

Lemma restoreContextVerif:
∀ lc,

u2Z lc + cmd_size restoreContext * 4 < 2 ^^ 32 ->
[[

fun s s’ m h =>
(thread_context_mem at_ v0 v1 a0 a1 a2 a3 t0 t1 t2 t3 t4 t5 t6 t7

t8 t9 s0 s1 s2 s3 s4 s5 s6 s7 gp sp fp ra hi lo status pc (gpr.lookup gpr_a0 s)) s s’ m h
]]
(lc, restoreContext)
[[

fun s s’ m h =>
(thread_context_mem at_ v0 v1 a0 a1 a2 a3 t0 t1 t2 t3 t4 t5 t6

t7 t8 t9 s0 s1 s2 s3 s4 s5 s6 s7 gp sp fp ra hi lo status pc (gpr.lookup gpr_k1 s)) s s’ m h /\
(thread_context at_ v0 v1 a0 a1 a2 a3 t0 t1 t2 t3 t4 t5 t6 t7

t8 t9 s0 s1 s2 s3 s4 s5 s6 s7 gp sp fp ra hi lo status) s s’ m heap.emp
]].
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move k1, a0
lw a0, ARGUMENT0_OFFSET(k1)
lw a1, ARGUMENT1_OFFSET(k1)
lw a2, ARGUMENT2_OFFSET(k1)
lw a3, ARGUMENT3_OFFSET(k1)
lw v0, RETURNVALUE0_OFFSET(k1)
lw v1, RETURNVALUE1_OFFSET(k1)
lw AT, AT_OFFSET(k1)
lw t0, CALLERSAVED0_OFFSET(k1)
lw t1, CALLERSAVED1_OFFSET(k1)
lw t2, CALLERSAVED2_OFFSET(k1)
lw t3, CALLERSAVED3_OFFSET(k1)
lw t4, CALLERSAVED4_OFFSET(k1)
lw t5, CALLERSAVED5_OFFSET(k1)
lw t6, CALLERSAVED6_OFFSET(k1)
lw t7, CALLERSAVED7_OFFSET(k1)
lw t8, CALLERSAVED8_OFFSET(k1)
lw t9, CALLERSAVED9_OFFSET(k1)
lw s0, CALLEESAVED0_OFFSET(k1)
lw s1, CALLEESAVED1_OFFSET(k1)
lw s2, CALLEESAVED2_OFFSET(k1)
lw s3, CALLEESAVED3_OFFSET(k1)
lw s4, CALLEESAVED4_OFFSET(k1)
lw s5, CALLEESAVED5_OFFSET(k1)
lw s6, CALLEESAVED6_OFFSET(k1)
lw s7, CALLEESAVED7_OFFSET(k1)
lw gp, GLOBALPOINTER_OFFSET(k1)
lw sp, STACKPOINTER_OFFSET(k1)
lw fp, FRAMEPOINTER_OFFSET(k1)
lw ra, RETURNADDRESS_OFFSET(k1)

lw k0, HI_OFFSET(k1)
nop
mthi k0
lw k0, LO_OFFSET(k1)
nop
mtlo k0
lw k0, STATUSREGISTER_OFFSET(k1)
nop
mtc0 k0, c0_status

move gpr_k1 gpr_a0;
lw gpr_a0 ARGUMENT0_OFFSET gpr_k1;
lw gpr_a1 ARGUMENT1_OFFSET gpr_k1;
lw gpr_a2 ARGUMENT2_OFFSET gpr_k1;
lw gpr_a3 ARGUMENT3_OFFSET gpr_k1;
lw gpr_v0 RETURNVALUE0_OFFSET gpr_k1;
lw gpr_v1 RETURNVALUE1_OFFSET gpr_k1;
lw gpr_at AT_OFFSET gpr_k1;
lw gpr_t0 CALLERSAVED0_OFFSET gpr_k1;
lw gpr_t1 CALLERSAVED1_OFFSET gpr_k1;
lw gpr_t2 CALLERSAVED2_OFFSET gpr_k1;
lw gpr_t3 CALLERSAVED3_OFFSET gpr_k1;
lw gpr_t4 CALLERSAVED4_OFFSET gpr_k1;
lw gpr_t5 CALLERSAVED5_OFFSET gpr_k1;
lw gpr_t6 CALLERSAVED6_OFFSET gpr_k1;
lw gpr_t7 CALLERSAVED7_OFFSET gpr_k1;
lw gpr_t8 CALLERSAVED8_OFFSET gpr_k1;
lw gpr_t9 CALLERSAVED9_OFFSET gpr_k1;
lw gpr_s0 CALLEESAVED0_OFFSET gpr_k1;
lw gpr_s1 CALLEESAVED1_OFFSET gpr_k1;
lw gpr_s2 CALLEESAVED2_OFFSET gpr_k1;
lw gpr_s3 CALLEESAVED3_OFFSET gpr_k1;
lw gpr_s4 CALLEESAVED4_OFFSET gpr_k1;
lw gpr_s5 CALLEESAVED5_OFFSET gpr_k1;
lw gpr_s6 CALLEESAVED6_OFFSET gpr_k1;
lw gpr_s7 CALLEESAVED7_OFFSET gpr_k1;
lw gpr_gp GLOBALPOINTER_OFFSET gpr_k1;
lw gpr_sp GLOBALPOINTER_OFFSET gpr_k1;
lw gpr_fp FRAMEPOINTER_OFFSET gpr_k1;
lw gpr_ra RETURNADDRESS_OFFSET gpr_k1;

lw gpr_k0 HI_OFFSET gpr_k1;
mthi gpr_k0;

lw gpr_k0 LO_OFFSET gpr_k1;
mtlo gpr_k0;

lw gpr_k0 STATUSREGISTER_OFFSET gpr_k1;
mtc0 gpr_k0 cp0_status.

Figure 4.1: Code Translation from MIPS assembly to Coq

The precondition asserts that there is a contextPtr pointed by the a0 register.
The first part of the post-condition asserts that the contextPtr did not change,
and that it is pointed by the register k1. The second part asserts that the
registers contains the same values as the contextPtr. The most important, in
regards of the task isolation property, is that the status register is restored
with the proper value.

4.3 Discussion

In order to verify the function of Topsy which is responsible for the thread con-
text loading, we implemented a set of lemmas directly using the semantics of the
separation logic in total correctness. The main motivation is that such triples
semantics are closed to the one presented in Sect. 6.1.3. We have also inves-
tigated the use of a Hoare-triples proof system similar to the one presented in
[2]. We encoded its assertion language, proof system, and proved its soundness.
However, it has shown to be difficult to use for the verification of the Topsy
context switching code. Moreover, this proof system was originally designed for

67



partial correctness triples (which is not compatible with our work in Chap. 6).
We met different issues in our verification, particularly we faced a huge re-

source consumption by Coq. This seemed to come from mainly three kind of
subgoals: the equality and disjointness of heaps, and the finite integer arith-
metic.

For this later, as we always face the same pattern of assertions, we build an
ad-hoc decision procedure by reflection. If this code has proved useful compared
to a pure Coq tactic (which sometimes, never finishes), it is not general enough to
be used for other proof on finite integers arithmetic. An interesting future work
should be the implementation of an efficient decision procedure for finite-integer
arithmetic. We think that this decision procedure should be implemented on
the same model as the Coq tactic romega: an external prover that gives a
certificate to a checker implemented by reflection inside Coq. Such approach
should allows to use elaborate algorithm (like the one presented in [38]) which
may be too difficult to implement in Coq, and yet to generate small proof terms
(due to the reflexive checker). For the issues about the heap (here also the tactics
sometimes never finish), we advocate that it should be possible to implement
a decision procedures entirely by reflexion (for both equality and disjointness),
and that it could be a not so difficult, yet interesting, future work.

4.4 Related Work

Much work about formal encoding of assembly languages in proof assistants has
been done with application to proof-carrying code (PCC) in mind [35, 36, 37].
Although the encoded semantics often allows for programs with arbitrary jumps,
details such as machine integers are usually not treated. This makes it difficult to
reuse existing implementations of PCC frameworks to formally verify arithmetic
functions, whose algorithms require bit-level specifications.

There exist other encodings of machine integers in Coq. Leroy has encoded
such a library for integers modulo 232 as part of the development of a certified
compiler [3]. His encoding uses the relative integers of Coq (the Z type) instead of
lists of bits. We found it difficult to reuse directly his implementation because
the length of integers (32) is hard-wired and we needed a similar library for
several lengths. Chlipala has encoded a library similar to ours but based on
dependent vectors [39]. We think that our implementation based on an abstract
type is more flexible than dependent vectors because it separates the issues of
formal proofs and dependent types.

Our use case is reminiscent of work by Ni et al. that proposed the verification
for context switching code for x86 processors[41]. Beyond this underlying archi-
tecture difference, the code we verified was extracted from an existing operating
system.
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Chapter 5

A Certified Verifier

There exist several implementations of verifiers for separation logic [18, 31, 33],
but they all share a common weak point: they are not themselves verified.

It makes little doubt that a verifier for separation logic can be verified us-
ing, say, a proof assistant. The real question is: At which price? Indeed, such
verifiers are non-trivial pieces of software. They require manipulation of con-
cepts such as fresh variables, that are notoriously hard to get right in a proof
assistant. They also rely on decision procedures for arithmetic that are not
necessarily available in a suitable form. This means at least a non-negligible
implementation work.

The basic design idea of our verifier is to turn separation logic triples into
logical implications between assertions to be proved automatically. Similarly to
related work [18, 33], this is implemented in three successive phases:
1. Verification conditions generator: The input triple is cut into a list of loop-free
triples.
2. Triple transformation: Every loop-free triple is turned into logical implications
between assertions.
3. Entailment: Every implication derived from the previous phase is proved
valid.
Besides formal verification of these three phases, another originality of our work
is the triple transformation phase in itself: we appeal to a new proof system that
mixes backward and forward reasoning whereas related work [18, 33] essentially
relies on forward reasoning (the advantages of our approach are discussed in
detail in Sect. 5.6.1).

This chapter is organized as follows. First, we present the fragment of the
separation logic our verifier deals with in Sect. 5.1. Then we explain for each
phase of our verifier what it does and how we prove it correct: the entailment
phase in Sect. 5.2, the triple transformation phase in Sect. 5.3, and the verifica-
tion conditions generator in Sect. 5.4. The resulting verifier amounts to a simple
combination of these three phases, as summarized in Sect. 5.5. In Sect. 5.6, we
comment on practical aspects: the size of generated proof-terms, performance
benchmarks for the derived stand-alone OCaml verifier, and examples of separa-
tion logic triples verifications. Sect. 5.7 is dedicated to comparison with related
work.
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5.1 Target Fragment of Separation Logic

In this section, we present the fragment of the assertion language of separation
logic that our verifier deals with. This is basically the same fragment as [17],
where it was chosen as a good candidate for automation because entailment
(classical implication of assertions) is decidable. We extend this fragment with
Presburger arithmetic to handle pointer arithmetic. Since programs never mul-
tiply pointers between each other, we think that this extension suffices to enable
most verifications; the same extension is done in [33]. The only datatype we
deal with is singly-linked lists. We think that the ideas we develop in this paper
for lists extend to other recursive datatypes such as trees, along the same lines
as [18].

5.1.1 Syntax and Informal Semantics

Formulas of our fragment represent states symbolically. To represent a store
symbolically, we use the language of boolean expressions expr_b introduced in
Sect. 3.1.1. This gives us enough expressiveness to write pointer arithmetic
formulas. To represent a heap symbolically, we use the following fragment Sigma
of the assertion language of separation logic:

Inductive Sigma : Set :=
| emp : Sigma
| singl : expr → expr → Sigma
| cell : expr → Sigma
| star : Sigma → Sigma → Sigma
| lst : expr → expr → Sigma.

Simply put, this syntax represents the connectives defined in Sect. 3.1.2: emp

represents the empty heap like the homonym connective defined by shallow en-
coding; singl is syntax for mapsto; cell e represents a singleton heap whose
contents is unknown; star h h’ is the syntactic separating conjunction (Coq
notation: h ? h′; this is the same notation as the “semantic” separating con-
junction in Sect. 3.1.2; in informal arguments, we will write ? for the separating
conjunction). Note that Sigma does not contain the separating implication of
separation logic. Compared to the shallow encoding of Sect. 3.1.2, we add the
formula lst e e’ that represents a heap that contains a singly-linked list whose
head has location e and whose last element points to e’, as illustrated below:

e’

e

To summarize, the syntax of our assertion language assrt is defined as a
product of expr_b and Sigma:

Definition Pi := expr_b.
Definition assrt := Pi * Sigma.

In informal arguments, we will write 〈π, σ〉 for assertions.

5.1.2 Formal Semantics

In the previous section, we have defined the syntax of formulas in Coq. Their
semantics has already been defined in Sect. 3.1.2 by a shallow encoding. In
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this section, we make the relation between both with a satisfiability relation.
This technique of encoding is called deep encoding and is typical of tactics by
reflection. Indeed, the latter needs to “parse” the assertion language to prove
the validity of formulas, which is difficult to do when the syntax is not an
inductive type.

The formal semantics of Sigma formulas is a satisfiability relation between
(syntactic) formulas and states. It is defined by a function Sigma_interp of
type Sigma -> store.s -> heap.h -> Prop where store.s -> heap.h -> Prop is precisely
the type assert of formulas in our shallow encoding:

Fixpoint Sigma_interp (a : Sigma) : assert :=
match a with

| emp => sep.emp
| singl e1 e2 => fun s h =>
(e1 7→e2) s h ∧ eval e1 s 6= 0

| cell e => fun s h =>
(∃ v, (e 7→int_e v) s h) ∧ eval e s 6= 0

| s1 ** s2 =>
Sigma_interp s1 ** Sigma_interp s2

| lst e1 e2 => Lst e1 e2
end.

(the formulas from Sect. 3.1.2 are encapsutaled in a module sep to avoid naming
conflicts) where Lst is an inductive type of the appropriate type defining singly-
linked lists:

Inductive Lst : expr → expr → assert :=
| Lst_end: ∀ e e’ s h,

eval e s = eval e’ s → sep.emp s h →
Lst e e’ s h

| Lst_next: ∀ e e’ e’’ data s h h1 h2,
h1 # h2 → h = h1 +++ h2 →
eval e s 6= eval e’ s →
eval e s 6= 0 →
eval (e +e nat_e 1) s 6= 0 →
(e 7→e’’ ** (e +e nat_e 1 7→data)) s h1 →
Lst e’’ e’ s h2 →
Lst e e’ s h.

The semantics of our fragment is finally defined as the conjunction of the
satisfiability relations of its two components (expr_pi is syntactically equal to
expr_b, and eval_pi is syntactically equal to eval_b):

Definition assrt_interp (a : assrt) : assert :=
match a with
| (pi, sigm) => fun s h =>

eval_pi pi s = true ∧ Sigma_interp sigm s h
end.

5.1.3 Disjunctions of Assertions

In fact, we further need to extend our assertion language to represent disjunc-
tions of assertions. Intuitively, this is because loop invariants are usually written
as disjunctions. In informal arguments, we will write 〈π1, σ1〉 ∨ . . . ∨ 〈πn, σn〉
for disjunctions of assertions. Adding this disjunction on top of the fragment
allows to handle disjunction for the separation logic part, without multiplying
the set of rules necessary to prove entailment and without loss of expressivity.
Indeed, all formulas belonging to a fragment with disjunction inside Sigma have
a counterpart in our fragment. For instance, 〈π, σ1 ? (σ2 ∨ σ3) ? σ4〉 would have
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〈π1, σ2 ? σ1〉 ` 〈π, σ〉
〈π1, σ1 ? σ2〉 ` 〈π, σ〉

coml
〈π1 ∧ e1 6= 0, σ1 ? e1 7→ e2〉 ` 〈π2, σ2〉

〈π1, σ1 ? e1 7→ e2〉 ` 〈π2, σ2〉
singl_not_null

π1 → π2

〈π1, emp〉 ` 〈π2, emp〉
tauto

〈π1 ∧ e1 6= e3, σ1 ? e1 7→ e2 ? e3 7→ e4〉 ` 〈π2, σ2〉
〈π1, σ1 ? e1 7→ e2 ? e3 7→ e4〉 ` 〈π2, σ2〉

star_neq

¬ π1

〈π1, emp〉 ` 〈π2, emp〉
incons

π1→e1 =e3 π2→e2 =e4 〈π1, σ1〉 ` 〈π2, σ2〉
〈π1, σ1 ? lst e1 e2〉 ` 〈π2, σ2 ? lst e3 e4〉

lstsamelst

π1→e1 =e3 π1→e2 =e4 〈π1, σ1〉 ` 〈π2, σ2〉
〈π1, σ1 ? e1 7→e2〉 ` 〈π2, σ2 ? e3 7→e4〉

star_elim
π1→e1 =e3 〈π1, σ1〉 ` 〈π2, σ2〉

〈π1, σ1 ? cell e1〉 ` 〈π2, σ2 ? cell e3〉
star_elim’’

π1→e1 =e3

〈π1, σ1 ? cell e4〉 ` 〈π2, σ2 ? lst e2 e4〉
〈π1, σ1 ? cell e4 ? lst e1 e2〉 ` 〈π2, σ2 ? lst e3 e4〉

lstelim

π1→e1 =e3 e1 6=e4 e1 6=0
〈π1, σ1〉 ` 〈π2, σ2 ? cell e1+1 ? lst e2 e4〉
〈π1, σ1 ? e1 7→e2〉 ` 〈π2, σ2 ? lst e3 e4〉

lstelim’’’

Figure 5.1: Excerpt of the entail Proof System

the same semantics as 〈π, σ1 ?σ2 ?σ4〉∨〈π, σ1 ?σ3 ?σ4〉. We encode disjunctions
of assertions by lists:

Definition Assrt := list assrt.

Like for assrt, the semantics of Assrt is defined as a satisfiability relation, that
is simply the disjunction of the satisfiability relations of the assrt disjuncts
(function Assrt_interp, of type Assrt -> assert).

5.2 Entailment

In this section, we present a proof system for entailments of assertions defined
in the previous section. Using this proof system, we implement a Coq tactic and
a function to prove validity for entailment between two formulas of type assrt

(files frag_list_entail.v and expr_b_dp.v in [11]).

5.2.1 Entailment Proof System

Our proof system enables derivation of entailments of type assrt -> assrt -> Prop

such that the left hand side (lhs) semantically implies the right hand side (rhs).
In Coq, this proof system takes the form of an inductive predicate entail.
An excerpt in informal notation is displayed in Fig. 5.1. Most rules are fairly
intuitive. For example, we can take a look at the rule coml, that captures the
fact that the separating conjunction is commutative on the left of implication.

We have implemented a tactic (Entail, which cannot be extract in Ocaml)
that iteratively applies the rules of entail to solve entailments. Here follows an
example of such a goal (see Fig. 5.2 for an informal account of the proof built
underneath):

Goal entail
(true_b, list e e’ ** e’ 7→e’’ ** cell (e’+1) ** list e’’ 0)
(true_b, list e 0).

unfold e, e’, e’’; Entail.
Qed.
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true_b → true_b

〈true_b, emp〉 ` 〈true_b, emp〉
tauto

〈true_b, lst e’’ 0〉 ` 〈true_b, lst e’’ 0〉 lstsamelst

〈true_b, cell e’+1 ** lst e’’ 0〉 ` 〈true_b, cell e’+1 ** lst e’’ 0〉
star_elim’’

〈true_b, e’ 7→e’’ ** cell e’+1 ** lst e’’ 0〉 ` 〈true_b, lst e’ 0〉 lstelim’’’

〈true_b, lst e e’ ** e’ 7→e’’ ** cell e’+1 ** lst e’’ 0〉 ` 〈true_b, lst e 0〉 lstelim

Figure 5.2: Example of Entailment: List Composition

We have proved formally that the entail proof system is correct, i.e., that
only valid entailments can be derived:

Lemma entail_soundness : ∀ P Q, entail P Q →
assrt_interp P ==> assrt_interp Q.

We think that the entail proof system is also complete because it contains
the rules of the proof system of [17], which is complete. An important point
for this proof system to be complete is that it makes explicit the arithmetic
constraints that are deducible from the Sigma formulas. There are two kinds
of such constraints: (1) by definition of cell and singl, all cells locations are
strictly positive integers (e.g., rule singl_not_null), and (2) cells on both sides
of star have pairwise different locations (e.g., rule star_neq).

5.2.2 Entailment Verification Procedure

In this section, we explain the Coq function entail_fun that proves entailments.
Because we verify it, this function can be used as a tactic by reflection. It im-
plements a reasoning similar to the entail proof system but this is no redun-
dant work: we will actually use the Entail tactic to prove the correctness of
entail_fun.

Implication Between Heaps

The first building block of the entail_fun function is a function Sigma_impl

that proves the validity of implications between two abstract heaps. This func-
tion iteratively calls the function elim_common_subheap (Fig. 5.3), which tries
to eliminate, subheap by subheap, the lhs sig1 ** remainder from the rhs sig2.
This elimination is performed by the function elim_common_cell (Fig. 5.3), which
tries to remove the subheap sig from both sig ** remainder and sig’. It is essen-
tially a case-analysis on both heaps leading to the application of an entail rule.
For example, Fig. 5.3 shows the case for which the rule lstelim’’’ of the
entail proof system applies.

In fact, Fig. 5.2 also provides an illustration of what is achieved by the func-
tion Sigma_impl. The intermediate abstract heaps happen to be the successive
results of elimination of common subheaps by elim_common_cell. For example,
here is the result of the third call:

elim_common_cell true_b (cell e’+1)
(lst e’’ 0) (cell e’+1 ** lst e’’0) =
Some (lst e’’ 0, lst e’’ 0)
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Fixpoint elim_common_subheap
(pi : Pi) (sig1 sig2 remainder : Sigma)

: option (Sigma * Sigma) :=
match sig1 with
| sig11 ** sig12 =>

match elim_common_subheap pi sig11 sig2
(sig12 ** remainder) with
| None => None
| Some (sig11’, sig12’) =>

Some (remove_empty_heap pi
(sig11’ ** sig12), sig12’)

end
| _ => elim_common_cell pi sig1 remainder sig2

end.

Fixpoint elim_common_cell
(pi : Pi) (sig remainder sig’ : Sigma)

: option (Sigma * Sigma) :=
match sig’ with

...
| _ => ...
match (sig, sig’) with
...
(* this case corresponds to the application
of the rule lstelim’’’ *)
| (singl e1 e2, lst e3 e4) =>
if andb (expr_b_dp (pi =b> (e1 == e3)))

(andb (expr_b_dp (pi =b> (e1 =/= e4)))
(expr_b_dp (pi =b> (e1 =/= nat_e 0))))

then Some
(emp, (cell (e1 +e nat_e 1)) ** (lst e2 e4))

else None
...
end

end.

Figure 5.3: Elimination of Common Subheaps

Entailments Between Assertions

Above, we explained a function Sigma_impl to prove the validity of the implica-
tion between two abstract heaps. Here, we explain how to use this function to
verify entailments of assertions.

There are two ways of proving entailments between assertions (type assrt).
The first way is to prove that the lhs is contradictory (i.e., it implies False); this
corresponds to the application of the rule incons of the entail proof system.
The second way is to prove the implication between the abstract heaps on both
hand sides (using Sigma_impl) and to prove the implication between the abstract
stores; this corresponds to the application of the rule tauto of the entail proof
system. In order to prove the implication between abstract stores, we need a
function to decide Presburger arithmetic; for this purpose, we have certified in
Coq a decision procedure based on Fourier-Motzkin variable elimination (this
is actually the function expr_b_dp that already appears in Fig. 5.3).

This reasoning is implemented by the function assrt_entail_fun that ex-
tends beforehand the lhs of the entailment with arithmetic constraints, as de-
scribed at the end of Sect. 5.2.1.

Entailments Between Disjunctions

Above, we explained a function assrt_entail_fun to verify entailments of asser-
tions (type assrt). Here, we explain how to use this function to verify entail-
ments of disjunctions of assertions (type Assrt).
Elimination of Disjunctions in the Lhs To eliminate disjunctions in the lhs
of the entailment we use the rule elim_lhs_disj (Fig. 5.4, function Assrt_entail_Assrt_fun

in file frag_list_entail.v). Thanks to this rule, we can decompose an entail-
ment between Assrt formulas into a list of entailments between an assrt formula
(on the lhs) and an Assrt formula (on the rhs).
Elimination of Disjunctions in the Rhs The elimination of disjunctions
in the rhs of the entailment is more subtle. It is possible to use the rule
elim_rhs_disj1 (Fig. 5.4, function orassrt_impl_Assrt1 in file frag_list_entail.v).
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Figure 5.4: Entailment of Disjunctions of Assertions

But this rule is not sufficient, as illustrated by the following counter-example:

〈true_b, σ〉 ` 〈y = 0, σ〉 ∨ 〈y 6= 0, σ〉

Such rhs are however important because they are typical of loop invariants. In-
deed, a loop invariant usually consists of a disjunction of all possible outcomes of
the loop condition, and each disjunct can only be proved under some hypothesis
about this outcome. To handle these situations, we use the rule elim_rhs_disj2

(Fig. 5.4, functions orpi and orassrt_impl_Assrt2 in file frag_list_entail.v).
We are now equipped to explain the function entail_fun, that proves the

validity of entailments. It takes as input an assrt and an Assrt, uses the
rules from Fig. 5.4 to eliminate the disjunctions in the rhs, and finally calls
assrt_entail_fun:

Definition entail_fun
(a:assrt) (A:Assrt) (l:list (assrt * assrt))

: result (list (assrt * assrt)) := ...

It returns an option type (constructor Good if everything is proved). The proof
of correctness of entail_fun boils down to the following lemma:

Lemma entail_fun_correct: ∀ A a l,
entail_fun a A l = Good →
assrt_interp a ==> Assrt_interp A.

We do not think that the entail_fun function is a complete decision procedure
because of the rules for entailments between disjunctions. However, it is already
useful in practice, as illustrated by the various non-trivial examples in Sect. 5.6.

5.3 Triple Transformation

In the previous section, we saw how to solve entailments of assertions of sepa-
ration logic. In this section, we explain how to transform a loop-free triple into
such an entailment (file frag_list_triple.v in [11]).

5.3.1 Language for Weakest-preconditions

Before explaining the triple transformation, we need to introduce the type
wpAssrt. This type represents the weakest precondition of a program with re-
spect to its postcondition:
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Inductive wpAssrt : Set :=
| wpElt: Assrt → wpAssrt
| wpSubst: list (var.v * expr)→ wpAssrt→ wpAssrt
| wpLookup: var.v → expr → wpAssrt → wpAssrt
| wpMutation: expr → expr → wpAssrt → wpAssrt
| wpIf: Pi → wpAssrt → wpAssrt → wpAssrt.

The constructor wpElt represents a postcondition with no program. The wpSubst

constructor represents the weakest precondition of a sequence of assignments
whose postcondition is itself some weakest precondition, etc.

The interpretation of this language is computed by a weakest precondition
generator using backward separation logic axioms from [1]:

Fixpoint wpAssrt_interp (a: wpAssrt) : assert :=
match a with

| wpElt a1 => Assrt_interp a1
| wpSubst l L =>
subst_lst2update_store l (wpAssrt_interp L)

| wpLookup x e L => (fun s h => ∃ e0,
(e 7→e0 ** (e 7→e0 -*
update_store2 x e 0 (wpAssrt_interp L))) s h)

| wpMutation e1 e2 L => (fun s h => ∃ e0,
(e1 7→e0 ∗∗ (e1 7→e2 -* wpAssrt_interp L)) s h)

| wpIf b L1 L2 => (fun s h =>
(eval_pi b s = true → wpAssrt_interp L1 s h) ∧
(eval_b b s = false → wpAssrt_interp L2 s h))

end.

5.3.2 Triple Transformation Proof System

Now that we have explained wpAssrt, we can explain the role of the tritra

proof system. It has type assrt -> wpAssrt -> Prop. Intuitively, the two param-
eters form a triple of separation logic: the first parameter is an assertion of
separation logic (a precondition) and the second parameter is a weakest precon-
dition, or equivalently a program with a postcondition. The constructors of the
tritra proof system represent elementary triple transformations. An excerpt in
informal notation is displayed in Fig. 5.5.

The two rules lookup and mutation are intuitive because the lookup (resp.
mutation) is the leading command of the program. When lookups and mutations
are preceded by assignments, the transformation rules must take care of captures
of variables, as exemplified by the rule subst_lookup. Despite these technical
difficulties (in particular, the usage of fresh variables), we managed to prove the
soundness of this proof system inside Coq:

Lemma tritra_soundness : ∀ P Q, tritra P Q →
assrt_interp P ==> wpAssrt_interp Q.

5.3.3 Triple Transformation Procedure

Equipped with the tritra proof system, we can transform any valid triple
{P}c{Q} into a couple (P,Q′) where Q′ is a wpAssrt of the form wpElt. The
implication P →Q′ (or equivalently the entailment P `Q′) can then be solved
by entail_fun. This operation is implemented by the function tritra_step of
type Pi -> Sigma -> wpAssrt -> option (list ((Pi * Sigma) * wpAssrt)) that tries to
apply tritra rules (at the price of some rewriting of the precondition) so as to
return a list of subgoals.
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〈π1, σ1〉 ` 〈π2[vn/xn] · · · [v1/x1], σ2[vn/xn] · · · [v1/x1]〉
{π1, σ1}x1 <-- v1; · · · ; xn <-- vn{π2, σ2}

subst

π1→v1 =e1 {π1, σ1 ? e1 7→e2}x1 <-- e2; c{π2, σ2}
{π1, σ1 ? e1 7→e2}x1 <--* v1; c{π2, σ2}

lookup

{π1, σ1 ? e1 7→e2}x′ <-- e2; x1 <-- v1; · · · ; xn <-- vn; x <-- x′; c{π2, σ2}
π1→e1 =e[vn/xn] · · · [v1/x1] fresh x′

{π1, σ1 ? e1 7→e2}x1 <-- v1; · · · ; xn <-- vn; x <--* e; c{π2, σ2}
subst_lookup

π1→v1 =e1 {π1, σ1 ? e1 7→v2}c{π2, σ2}
{π1, σ1 ? e1 7→e2}v1 *<-- v2; c{π2, σ2}

mutation

{π1, σ1}e[vn/xn] · · · [v1/x1] *<-- e′[vn/xn] · · · [v1/x1]; x1 <-- v1; · · · ; xn <-- vn; c{π2, σ2}
{π1, σ1}x1 <-- v1; · · · ; xn <-- vn; e *<-- e′; c{π2, σ2}

subst_mutation

{π1 ∧ b, σ1}c1{π2, σ2} {π1 ∧ ¬b, σ1}c2{π2, σ2}
{π1, σ1}if b then c1 else c2{π2, σ2}

if

{π1, σ1}if b[vn/xn] · · · [v1/x1] then x1 <-- v1; · · · ; xn <-- vn; c1 else x1 <-- v1; · · · ; xn <-- vn; c2{π2, σ2}
{π1, σ1}x1 <-- v1; · · · ; xn <-- vn; if b then c1 else c2{π2, σ2}

subst_if

Figure 5.5: Excerpt of the tritra Proof System

The function that implements the whole triple transformation phase is triple_transformation:
it recursively calls tritra_step and then entail_fun on resulting subgoals:

Fixpoint triple_transformation
(P : Assrt) (Q : wpAssrt) { struct P }
: option (list ((Pi * Sigma) * wpAssrt)) := ...

Lemma triple_transformation_correct: ∀ P Q,
triple_transformation P Q = Some nil ->
Assrt_interp P ==> wpAssrt_interp Q.

The triple transformation is complete (in the sense that every valid triples can
be transformed into an entailment) as long as the intermediate arithmetic goals
it generates fall into Presburger arithmetic, which is likely in practice because
pointers are never multiplied between each other. The fact that the triple trans-
formation is complete simply comes from the fact the rules of the tritra proof
system cover all possible programs.

5.4 Verification Conditions Generator

In the previous section, we explained how to prove loop-free separation logic
triples. In this section, we explain how to turn a separation logic triple whose
loops are annotated with invariants into a list of loop-free triples (file frag_list_vcg.v
in [11]).

The generation of loop-free triples from a separation logic triple is the role
of the verification conditions generator. The main idea of this operation can be
explained as follows. Suppose we are given a triple {P}c1; whileI b do c; c2{Q}
where I is an invariant. To prove this triple, it is sufficient to prove the three
triples {P}c1{I}, {I∧b}c{I}, and {I∧¬b}c2{Q}. Applying this idea repeatedly
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turns a separation logic triple into a set of loop-free triples, as implemented by
the following function:

Fixpoint vcg (c:cmd’) (Q:wpAssrt) { struct c }
: option (wpAssrt * (list (Assrt * wpAssrt))) := ...

In addition to a list of subgoals, vcg returns the weakest precondition of the
program (this is the first projection of the return value in the type above).

The verification of vcg amounts to check that, under the hypothesis that
subgoals can be verified, the returned condition is indeed a weakest precondition.
Recall from Sect. 3.1.2 that separation logic triples are noted {{ · }} · {{ · }};
Assrt_interp and wpAssrt_interp were defined respectively in Sections 5.1.3
and 5.3.1:

Lemma vcg_correct : ∀ c Q Q’ l,
vcg c Q = Some (Q’, l) →
(∀ A L, In (A, L) l →
Assrt_interp A ==> wpAssrt_interp L) →

{{ wpAssrt_interp Q’ }}
proj_cmd c

{{ wpAssrt_interp Q }}.

The verification condition generator is complete, as it consists in applying the
Reynolds axioms for sequence and loop, which have been proved complete for-
mally inside of Coq (see Sect. 3.1.2).

5.5 Put It All Together

The resulting verification procedure is a Coq function that takes as input a
command c (annotated with loop invariants), a precondition P, and a postcon-
dition Q. First, it calls vcg to compute a set of sufficient subgoals. Then, it
calls triple_transformation for all these subgoals. If all of them can be proved,
it returns Some nil. Otherwise, it returns the list of unsolved subgoals for in-
formation:

Definition bigtoe_fun (c: cmd’) (P Q: Assrt): option (list ((Pi * Sigma) * wpAssrt)) :=
match vcg c (wpElt Q) with

| None => None
| Some (Q’, l) =>

match triple_transformation P Q’ with
| Some l’ =>

match triple_transformations l with
| Some l’’ => Some (l’ ++ l’’)
| None => None

end
| None => None

end
end.

The correctness of this tactic amounts to prove that, if it returns Some nil,
then the corresponding separation logic triple holds:

Lemma bigtoe_fun_correct: ∀ P Q c,
bigtoe_fun c P Q = Some nil →
{{ Assrt_interp P }}

proj_cmd c
{{ Assrt_interp Q }}.

Now, in our formal proofs of Hoare triples, we can apply this lemma to
delegate the proof to the computation of the function bigtoe_fun.
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〈true_b, x 7→vy**y 7→vx〉 ` 〈true_b, x 7→vy**y 7→vx〉
{〈true_b, x 7→vy**y 7→vx〉}t2’ <- vy; t1 <- vx; t2 <- t2’{〈true_b, x 7→vy**y 7→vx〉}

subst_elt

{〈true_b, x 7→vy**y 7→vy〉}y *<- vx; t2’ <- vy; t1 <- vx; t2 <- t2’{〈true_b, x 7→vy**y 7→vx〉}
mutation

{〈true_b, x 7→vy**y 7→vy〉}t2’ <- vy; t1 <- vx; t2 <- t2’; y *<- t1{〈true_b, x 7→vy**y 7→vx〉}
subst_mutation

{〈true_b, x 7→vx**y 7→vy〉}x *<- vy; t2’ <- vy; t1 <- vx; t2 <- t2’; y *<- t1{〈true_b, x 7→vy**y 7→vx〉}
mutation

{〈true_b, x 7→vx**y 7→vy〉}t2’ <- vy; t1 <- vx; t2 <- t2’; x *<- t2; y *<- t1{〈true_b, x 7→vy**y 7→vx〉}
subst_mutation

{〈true_b, x 7→vx**y 7→vy〉}t1 <- vx; t2 <-* y; x *<- t2; y *<- t1{〈true_b, x 7→vy**y 7→vx〉}
subst_lookup

{〈true_b, x 7→vx**y 7→vy〉}t1 <-* x; t2 <-* y; x *<- t2; y *<- t1{〈true_b, x 7→vy**y 7→vx〉}
lookup

Figure 5.6: Swap of Cells using our Proof System

〈t1 = vx∧t2 = vy, x 7→t2**y 7→t1〉 ` 〈true_b, x 7→vy**y 7→vx〉
{〈t1 = vx∧t2 = vy, x 7→t2**y 7→vy〉}y *<- t1{〈true_b, x 7→vy**y 7→vx〉}

{〈t1 = vx∧t2 = vy, x 7→vx**y 7→vy〉}x *<- t2; y *<- t1{〈true_b, x 7→vy**y 7→vx〉}
{〈t1 = vx, x 7→vx**y 7→vy〉}t2 <-* y; x *<- t2; y *<- t1{〈true_b, x 7→vy**y 7→vx〉}

{〈true_b, x 7→vx**y 7→vy〉}t1 <-* x; t2 <-* y; x *<- t2; y *<- t1{〈true_b, x 7→vy**y 7→vx〉}

Figure 5.7: Swap of Cells using Forward Reasoning

5.6 Experimental Measurements

In this section, we present a comparison between our approach and backward/forward
reasoning, as well as a benchmark for our verifier.

5.6.1 Comparison With Backward and Forward Reason-
ing

All previous work on automatic verification of separation logic triples use for-
ward reasoning [18, 31, 33]. The main reason is that backward reasoning (using a
standard weakest precondition generator for separation logic) produces postcon-
ditions with separating implications for which there exists no automatic prover
(as pointed out in [18]). Although decidability results exist [27, 29, 28], the sep-
arating implication is actually seldom used in specifications of algorithms (one
notable exception is [26]). However, forward reasoning has the disadvantage of
adding, for each variable modification, a conjunctive clause with possibly a fresh
variable, as it uses the Floyd rule for assignment. This is not desirable in prac-
tice because decision procedures for Presburger arithmetic have an exponential
complexity w.r.t. the number of clauses and variables. Our approach based on
the proof system tritra can be shown experimentally to produce less clauses.

In Fig. 5.6, we illustrate transformation steps for a program swapping the
values of two cells, using our approach. The transformations produced by for-
ward and backward reasoning are displayed in Figures 5.7 and 5.8. We can
observe that tritra does not add new connectives or variables, contrary to both
backward and forward reasoning. (For the latter, no fresh variables have been
introduced, because the variables modified by the program do not appear in the
precondition.)

In order to measure more precisely differences between our approach and
forward reasoning, we have implemented, inside of Coq, a proof system similar
to [18] extended with pointer arithmetic (file LSF.v in [11]). We proved inter-
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〈true_b, x 7→vx**y 7→vy〉 ` ∃v4, x 7→v4**(x 7→v4−*(∃v3, y 7→v3**(y 7→v3−*(∃v2, . . .))))
{〈true_b, x 7→vx**y 7→vy〉}t1 <-* x{∃v3, y 7→v3**(y 7→v3−*(∃v2, x 7→v2**(x 7→t1−*(∃v1, . . .))))}

{〈true_b, x 7→vx**y 7→vy〉}t1 <-* x; t2 <-* y{∃v2, x 7→v2**(x 7→t2−*(∃v1, . . .))}
{〈true_b, x 7→vx**y 7→vy〉}t1 <-* x; t2 <-* y; x *<- t2{∃v1, y 7→v1**(y 7→t1−*〈true_b, x 7→vy**y 7→vx〉)}

{〈true_b, x 7→vx**y 7→vy〉}t1 <-* x; t2 <-* y; x *<- t2; y *<- t1{〈true_b, x 7→vy**y 7→vx〉}

Figure 5.8: Swap of Cells using Backward Reasoning

Program tritra forward reasoning
swap 16 20 (+19%)
init (5) 46 69 (+33%)
init (10) 138 225 (+38%)
init (15) 195 320 (+39%)
max3 9.0 7.9 (−14%)

Table 5.1: Size of Proof-terms files in kbytes

actively several separation logic triples, and compared the size of the compiled
proofs terms produced by both approaches. This comparison was done on three
different programs. swap is the separation logic triple whose transformation is
illustrated in Fig. 5.6. The init(n) program is a loop that initializes a given field
for n contiguous occurrences of a data-structure. This program makes use of
pointer arithmetic, as the loop iteratively increments the value of the pointer to
the current data-structure, while the data-structures locations are specified by
a multiple of the data-structure’s size in the pre/postconditions1. Finally, max3
is a program that returns the maximum value of three variables. The results
are presented in Table 5.1, where the percentages correspond to the overhead
of forward reasoning. We can conclude that our approach produces smaller
proof-terms, because the underlying arithmetic decision procedure (here, the
Coq omega) applies less lemmas to prove the goals.

5.6.2 The Extracted OCaml Verifier

Thanks to the extraction facility of Coq, we can extract the verification func-
tion bigtoe_fun (and its underlying functions and data structures) in the OCaml
language. The certified verifier is in file extracted.ml in [11]. We use OCaml-
yacc to parse the input language (files lexer.mll and grammar.mly). The re-
sulting verifier can handle three kind of goals: (1) arithmetic formulas (for
which all variables are universally quantified), (2) entailments between asser-
tions of Assrt, and (3) separation logic triples. As the verification functions
return a list of unsolved subgoals, the verifier is able to print these subgoals to
help for the debugging of program specifications.

We measure the performance of the OCaml verifier. The first version uses
a decision procedure for arithmetic based on variable elimination using the
Fourier-Motzkin theorems (FMVE). This is a decision procedure by reflection

1As there is no universal quantification in our assertion language, the behavior of init(n)
is specified for only one arbitrary value, and the programs and pre/postconditions are com-
puted by Coq functions.
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Program FMVE Cooper
Reverse list 0.240 s 0.111 s
List traversal 0.160 s 0.085 s
List append 147.593 s 0.660 s
Insert head 0.009 s 0.108 s
Insert tail unknown 2.580 s

Table 5.2: Execution Time

that we have implemented for our verifier (the omega tactic of Coq cannot be used
because it is not implemented by reflection). Of course, this decision procedure
has also been verified in Coq (file expr_b_dp.v in [11]). The second version uses
a non-certified decision procedure based on the Cooper algorithm [34]. The
reason why we provide this second version is that our decision procedure for
arithmetic, though necessary for use inside of Coq, is not optimized enough to
solve large arithmetic subgoals. A certified implementation of a more efficient
decision procedure (such as the Cooper algorithm) is among our future work
(Chaieb and Nipkow already did this work in the Isabelle proof assistant [30]).
Table 5.2 summarizes the measurements (hardware: Pentium IV 2.4GHz with
1GB of RAM).

Here follows a brief description of the benchmark programs: Reverse list

is an in-place reversal of a list as the one described in [1], List traversal is a
program that iteratively explores each element of a list, List append appends
two lists, and Insert head (resp. Insert tail) inserts an element at the head
(resp. tail) of a list.

The extracted verifier using the Cooper algorithm is available for download
and testing through a Web interface, see [11].

5.6.3 Code Verification

Beyond the programs verified for benchmarks, we also applied our verifier on
more concrete examples. Mostly two experiences were run: an implementation
and verification of several singly-linked list functions which mimics the Topsy
list library functions, and a simplified version of the Topsy function that initial-
izes the thread data-structure. We present these experiences in the following
sections (please note that the illustrating triples are in ascii, and that they
exactly correspond to the input for our verifier).

A List Library

Originally the list library of Topsy makes use of a doubly-linked list data-
structure and memory allocations. However, our verifier currently deals with
only a singly-linked list data-structure, and does not provide command for mem-
ory allocation. Thus, rather than a straightforward verification of Topsy list li-
brary, we present the verification for an adaptation of the library to our verifier.
Yet, both codes share the same principles.

Topsy defines a data-structure, named ListDesc, that describes a list through
three pointers: first points to the first element of the list, current points to
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some elements of the list on which the system is focusing, and finally last
points to the last element of the list. As previously stated, the list managed by
Topsy are doubly-linked, which means that elements have three fields: one for
the data of the element, and two pointers for, respectively, the previous and the
next elements. For our verifications, we will keep the notion of list descriptors,
but we will considers only elements that point to their next element (because
our verifier handles singly-linked lists).

Topsy provides several functions to remove or to add elements in a list, as
well as a set a functions that allow to get the data of the first or the current
elements (pointed by current). We propose to illustrate the use of bigtoe for
some of these functions. In addition of the Topsy functions, we propose the
verification of a search function to illustrate a specification containing a loop
invariant.

listAddAtEnd The Topsy function, listAddAtEnd, originally inserts an el-
ement with a given data at the end of some list. This new element is created
using the memory allocator of Topsy. For the verification of the function, we
take as hypothesis (captured by the precondition), that there is a free element,
or more precisely two contiguous cells, inside the memory (here pointed by
elem). Bigtoe specification triple for the listAddAtEnd is:

{first <> 0 /\ current <> 0 /\ last <> 0 |
(lst |-> first) ** (lst+1 |-> current) ** (lst+2 |-> last) **
(list first current) ** (list current last) ** (last |-> 0) ** (last+1 |-> data) **
(elem |->_) ** (elem+1 |->_)

}

if (lst == 0) then {
skip

} else {
tmp <-* lst;
if (tmp == 0) then {

first *<- elem;
first *<- last;
elem *<- 0

} else {
last *<- elem;
(elem + 1) *<- data2;
elem *<- 0;
(lst + 2) *<- elem

}
}

{first <> 0 /\ current <> 0 /\ last <> 0 |
(lst |-> first) ** (lst+1 |-> current) ** (lst+2 |-> elem) **
(list first current) ** (list current elem) ** (elem |-> 0) ** (elem+1 |-> data2)

}

Both pre/post-conditions are composed of two parts separated with the symbol
|. The l.h.s. correspond to arithmetic constraints over the variables (more in-
formally, an assertion over the store), and the r.h.s is a separation logic assertion
over the heap. The precondition asserts that there is a list descriptor pointed by
lst. The list starts from the location pointed by first and stops at a location
pointed by last, passing through an element pointed by current. The last
element of the list points to a null pointer and contains some data. A fresh list
element, pointed by elem, is also present in the list. The arithmetic constraints
assert that both lists are not empty. The listAddAtEnd function makes the last
element to point to the fresh element, makes this fresh element to point to a
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null pointer and updates it with a given data (data2), and finally updates the
list descriptor such that it last element field in up-to-date. Please remark that
due to our precondition, the verification will only consider the second branch
of both if-then-else control-flow. Bigtoe verifies this specification in around 9
seconds.

listGetNext This function makes use of the list descriptor to return the cur-
rent element data and to update the current element field with the next element.
Here follows the bigtoe specification:

{ hd <> null |
lst -.> 0 |-> hd ** lst -.> 1 |-> current ** lst -.> 2 |-> lastcell **
list hd current **
current -.> 0 |-> nxt ** current -.> 1 |-> elt **
list nxt 0

}

if (lst == 0) then {
return <- LISTERROR

} else {
tmp <-* (lst -.> 1);
if (tmp == 0) then {

itemPtr <- 0
} else {

itemPtr <-* (tmp -.> 1);
tmp <-* (tmp -.> 0);
(lst -.> 1) *<- tmp

};
return <- LISTOK

}

{return == LISTOK /\ itemPtr == elt |
lst -.> 0 |-> hd ** lst -.> 1 |-> nxt ** lst -.> 2 |-> lastcell **
list hd current **
current -.> 0 |-> nxt ** current -.> 1 |-> elt **
list nxt 0
}

In the precondition we asserts that there exists a list in the memory, from hd to
current, a list from next to a null pointer, and in-between them the list element
pointed by current. This is the current element of the list. The post-condition
assert that the variable itemPtr contains the data of this element, and that the
current element is now nxt, pointed by the second field of the list descriptor.
Bigtoe verifies this specification in around 2 seconds.

listSearch The original library of Topsy does not include the search of an
element, yet most of storage libraries include one. We present the specification of
such a search function for the list data-structure. This allows us to highlight how
to write a specification with a loop invariant inside bigtoe. In the precondition,
we asserts that there is a list descriptor, pointed by lst, and a list pointed by
hd. The program tries to find the pointer of the first element which data is
elt. The if-then-else command allows to takes in account the case of an empty
list, and the while loops performs a list traversal that stops either if an element
containing the data elt is found (in which case it is pointed by found), or that
the end of the list is reached (in this case found is the null pointer). The post-
condition asserts that: if an element has been found then its data is indeed elt,
and if no element has been found then the memory did not change in shape.
The bigtoe specification is:

84



{TT |
lst -.> 0 |-> hd ** lst -.> 1 |-> cur ** lst -.> 2 |-> lastcell **
list hd 0

}

lstElem <-* (lst -.> 0);
found <- 0;
if (lstElem == 0) then {

tmp <- 0
} else {

tmp <-* (lstElem -.> 1);
nxt <-* (lstElem -.> 0)

};
while (lstElem <> 0 /\ tmp <> elt) [

(lstElem <> 0 |
lst -.> 0 |-> hd ** lst -.> 1 |-> cur ** lst -.> 2 |-> lastcell **
list hd lstElem ** lstElem -.> 0 |-> nxt **
lstElem -.> 1 |-> tmp ** list nxt 0) \/
(lstElem == 0 /\ tmp == 0 |
lst -.> 0 |-> hd ** lst -.> 1 |-> cur ** lst -.> 2 |-> lastcell **
list hd lstElem)

]{
lstElem <-* (lstElem -.> 0);
if (lstElem == 0) then {
tmp <- 0

} else {
tmp <-* (lstElem -.> 1);
nxt <-* (lstElem -.> 0)

}
};
found <- lstElem

{
(found <> 0 |
lst -.> 0 |-> hd ** lst -.> 1 |-> cur ** lst -.> 2 |-> lastcell **
list hd found ** found -.> 0 |-> nxt ** found -.> 1 |-> elt ** list nxt 0) \/
(found == 0 |
lst -.> 0 |-> hd ** lst -.> 1 |-> cur ** lst -.> 2 |-> lastcell **
list hd 0)

}

The interesting element of this specification is the loop invariant. It asserts that
either we are investigating an element of the list, or that we have reached the
end (in this case lstElem is null). Bigtoe takes around 14 seconds to verify such
non-trivial triple.

Topsy Thread Creation

The function that initializes the field of the thread descriptor is named threadBuild.
Although it initializes all the fields, our experiences over the SPIN informs us
that we are mostly interested in one of the thread attributes: the thread priv-
ilege. In Topsy source code, this information is stored inside a data-structure
that is part of the thread descriptor. We restrict the verification of threadBuild
to the part of its code that is responsible for the privilege initialization. The
bigtoe specification for this snippet is:

{TT |
threadPtr -.> contextPtr |->_ **
acontextPtr -.> status |->_

}

if (space == USER) then {
mode <- USER

} else {
mode <- KERNEL
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};
(threadPtr -.> contextPtr) *<- acontextPtr;
k <-* threadPtr -.> contextPtr);
(k -.> status) *<- mode

{
(space == USER |
threadPtr -.> contextPtr |-> acontextPtr **
acontextPtr -.> status |-> USER
) \/
(space <> USER |
threadPtr -.> contextPtr |-> acontextPtr **
acontextPtr -.> status |-> KERNEL
)

}

The function first tests the variable space, that is set to the value USER in case
we initialize an user thread. Depending on this variable value, the mode variable
is set either to USER or to KERNEL. Then, the function attaches to the thread
descriptor a previously allocated contextPtr data-structure (which store all
architecture dependant attributes of a thread) . Finally, the function initializes
this data-structure, notably the field status that corresponds to the thread
privilege. The bigtoe specification asserts that if we create a user thread, then
its privilege is USER. Although this snippet of code is simple, its verification is
important. Bigtoe allows to verify automatically such code, which verification
by hand may be cumbersome, due to the fact that it requires all the intermediate
assertions.

5.7 Related Work

Our main contribution w.r.t. related work is to provide a certified automatic
verifier for separation logic triples.

Berdine et al. have developed Smallfoot, a tool for checking separation logic
specifications [18]. It uses symbolic, forward execution to produce verification
conditions, and a decision procedure to prove them. Although Smallfoot is
automatic (even for recursive and concurrent procedures), the assertion language
does not allow to deal with pointer arithmetic.

Calcagno et al. have proposed an extension of Smallfoot to verify auto-
matically memory allocators [31]. More precisely, the assertion language is
extended with: arithmetic, advanced data-structures (lists with variable-size
arrays), and abstract interpretation, allowing to compute automatically loop
invariants. A prototype has been developed and used on several examples, such
as the Kernighan allocator.

A verifier for separation logic with user-defined data-structure has been pro-
posed in [33]. This verifier uses folding/unfolding of data-structures definitions
to prove entailments. A prototype has been developed and used for verification
of several functions with advanced invariants.

We believe that the algorithms implemented in these last two work are so
complex that verification in Coq would be an order of magnitude harder than
the work presented in this paper.
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Chapter 6

A Certified Translator

In Chap. 3 and Chap. 4 we have shown how to build verification for C and
assembly source code. Now, we may ask ourselves how these verifications can
be composed. This is an important issue when we deal with heterogeneous
source code, like operating system kernel code. Indeed, through the process of
compilation and linking, all the source code is lifted to the machine code level.
In this chapter we investigate how one can reused the previously verified Hoare-
triples and composed them into a Hoare-triples for the whole compiled code.
Our approach is to lift the triples from C-like code to the level of the assembly
code triples, in an automatic way. To achieve this goal, we build a translator
from C-like to assembly and prove that the translation preserves the semantics
of the source program, and by extension preserves the Hoare-triples.

This chapter is organized as follows. In Sect. 6.1 we present the transla-
tor. First, we present the languages it manipulates in Sect. 6.1.1. Then we
describe the translation stages in Sect. 6.1.2, and finally how they are composed
in Sect. 6.1.2. We present the preservation for Hoare-triples in Sect. 6.1.3. In
Sect. 6.1.4, we present a method to compose the Hoare-triples of programs writ-
ten with different languages. In Sect. 6.2, we discuss several technical points
of the implementation of a certified translator inside the Coq proof assistant.
Finally, we present the related work in Sect. 6.3

6.1 The Translator

In this section, we present a certified translator from a structured C-like lan-
guage (the source language) to an assembly language (the target language). This
translator is basically an implementation of the work describe in [2], extended
with function calls. The main purpose of this translator is to allow the com-
position of Hoare-triples given by verification of the C-like and assembly source
code. The different ways to compose the verification are captured by lemmas
formally proved inside the Coq proof assistant.

A specificity of our implementation is the effort to provide a translator as
generic as possible. Indeed the translator mainly expands the control-flow,
translating a program written in a structured language (with loops and branches)
into a program written in an unstructured language (with jumps). This implies
that the translator only focus on the commands that implement control-flow.
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Thus, the instructions that modify the states are irrelevant in the translation
process. To emphasizes this fact we factorize the translator by the state-
modifying instruction language, in such a way that one can specialize it for
several instruction sets (for example the separation-logic, c.f. Sect. 2.1).

In a first step, we present the three languages that are used by the transla-
tor through there syntax, semantics, purposes and implementations. Then, we
present the two translation steps that our translator implements. Finally, we
present the main lemmas that captures the composition of Hoare-triples.

6.1.1 Translator Languages

Our translator manipulates three different languages: the source, the interme-
diate and the target languages. The source and target languages correspond
respectively to the format of the input and output of the translator. The inter-
mediate language is used to split the translation process into two stages, which
allow to simplify the design of the translator.

As explained in Sect. 6.1, these languages are factorized by a state-modifying
instruction language. This languages is shared by all the translator stages.
More precisely, the translator is parameterized by the following sets: (1) state
represents the data-structure that the programs use to store information, (2)
bexpr is a language of boolean expression language that are evaluated, by the
function beval, through a state, and (3) insn is the language of the state
modifying instructions, which semantics is defined by insn_semop. This later is
defined as a relation between a starting state, an element of insn and a final
state (which may be an error state). In a more formal way, the semantics has
the following Coq definition:

Variable insn_semop: state → insn → option state → Prop.

Informally, we note this semantics relation as st −− i −−> st′. We use the same
notation for evaluation of boolean expressions through states as in Sect. 2.1
(J K ).

Source Language

The source language is the input language of the translator. This is basically a
Hoare-style command language. Its syntax is presented in a formal shape (more
precisely in Coq) in Fig. 6.1. Please note that we extend the classical Hoare
command language with a new command: the function call. This function call
does not uses arguments and does not return a value. The callee rather directly
uses the state to get its parameters and to return values.

The semantics of the source language is described informally (respectively
formally in Coq) in Fig. 6.2 (resp. Fig. A.1). This semantics includes a function
environment: a partial map from functions names to commands. This environ-
ment is essential to define a semantics for the call command. In Coq, this
map in encoded as a list of couples of functions names and functions bodies
(the type fenv1). The function get_cmd1_f is used to retrieve the body of a
function which names is given as an argument.
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Inductive cmd1: Set :=
| skip1: cmd1
| mutate1: insn → cmd1
| seq1: cmd1 → cmd1 → cmd1 (* Notation: c1; c2 *)
| ifte1: bexpr → cmd1 → cmd1 → cmd1 (* Notation: if b then c1 else c2 *)
| while1: bexpr → cmd1 → cmd1 (* Notation: while b do c *)
| call1: string → cmd1. (* Notation: call s *)

Definition fenv1 := list (string * cmd1).

Fixpoint get_cmd1_f (f: fenv1) (s: string) struct f : option cmd1 :=
match f with

| nil ⇒ None
| (hd1, hd2)::tl ⇒
if (string_dec hd1 s) then (Some hd2) else (get_cmd1_f tl s)

end.

Figure 6.1: Coq definition of source language commands and function environ-
ment.

Target Language

The target language corresponds to the output of our translator. It describes a
set of raw and stand-alone programs (also known as statically linked programs).
It has an unstructured control-flow (with jump commands) and address-oriented
function calls: the callee is characterized by its starting address inside the whole
program. We present the syntax of the target language formally in Coq in
Fig. 6.3. The set of instructions is defined by the inductive type insn3, while
cmd3 defines a program of the target language as a list of instructions.

The target language is described by a small-step operational semantics: a
relation that characterized the execution of one instruction, through an initial
and a final state. The states of the target language are triples containing: (1)
the current instruction (also referred as the code pointer), (2) a state, and (3) a
stack that keeps track of the return address of function calls. A call instruction
modifies the code pointer to the callee and pushes the return address (captured
by the rule call in 6.4, and call3_semop in A.2), while a ret pops the top of
the stack as the new code pointer.

In the Coq definition of the semantics, we use the function get_insn3 to find
an instruction inside a program. The function takes as parameters (in order):
(1) a target language program, (2) its starting address, and (3) the address of
the searched instruction. This function returns an option type (of instruction),
to capture the fact that no instruction is located at the specified address.

Given this small-step operational semantics, we build a big-step operational
semantics (as in the source language) through a reflexive and transitive closure,
implemented by the Coq inductive type cmd3_closure. For sake of readabil-
ity we present an informal version of the small-step operational semantics in
Fig. 6.4. In this definition, we note the stack as a list, with :: as the cons
operator.

Intermediate Language

The intermediate language is an unstructured control-flow language (similarly
to the target language), where functions are stored in a function environment
(similarly to the source language). This in-between nature allows to split the
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f ` Abort == c ==> Abort
abort

f ` st == (skip) ==> st
skip

st −− i −−> st′

f ` st == i ==> st′
mutate

st −− i −−> Abort

f ` st == i ==> Abort
mutate_error

JbKst = true st == c1 ==> st′

st == (if b then c1 else c2) ==> st′
if_true

JbKst = false st == c2 ==> st′

st == (if b then c1 else c2) ==> st′
if_false

JbKst = false

st == (while b do c) ==> st′
while_false

JbKst = true st == c ==> st′ st′ == (while b do c) ==> st′′

st == (while b do c) ==> st′′
while_true

JfctKf = c f ` st == c ==> st′

f ` st == (call fct) ==> st′
call

JfctKf = none

f ` st == (call fct) ==> Abort
call_err

Figure 6.2: Informal source language semantics.

Inductive insn3: Set :=
| skip3: insn3
| mutate3: insn → insn3
| jmp3: Z → insn3
| ifnjmp3: bexpr → Z → insn3
| call3: Z → insn3
| ret3: insn3.

(** Definition of a target language command: a list of instruction*)

Definition cmd3 := (list insn3).

Figure 6.3: Informal target language definition.

translation process into two stages: first, we expand the loops and branches into
unstructured control-flow through jumps, and secondly, we link all functions
into a raw program. Such a design focuses on several desired properties: (1)
an easy way to build an intermediate program through control-flow expansion
of a source language program, (2) an easy way to link all the functions of
an intermediate language program into a target language program, and (3) a
semantics smart enough to ease the proof of both translation steps semantics
preservation lemmas.

This last point motives us to choose a semantics similar to the one of SGoto,
presented in [2]. Its particularity is to give a big-step operational semantics to an
unstructured language. The main reason for this is that the proof of correctness
of the second translation step of the translator consists in an induction over the
intermediate language semantics. Technically, such proofs by induction over
closure (needed when dealing with small-step operational semantics) present
delicate issues. The most difficult point is to deal with the subgoal related
to the transitive closure. In this case an intermediate state is created in the
hypothesizes. Unfortunately, this state generally lacks hypothesis about its
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(l, st, stk) == (skip) ==> (l, st, stk)
skip

st −− i −−> st′

(l, st, stk) == i ==> (l + 1, st′, stk)
mutate

st −− i −−> Abort

(l, st, stk) == i ==> Abort
mutate_error

(l, st, stk) == (jmp l′) ==> (l′, st, stk)
jmp

JbKst = true

(l, st, stk) == (ifnjmp b l′) ==> (l + 1, st, stk)
ifnjmp_true

JbKst = false

(l, st, stk) == (ifnjmp b l′) ==> (l′, st, stk)
ifnjmp_false

(l, st, stk) == (call l′) ==> (l′, st, (l + 1)::stk)
call

(l, st, l′::stk) == (ret) ==> (l′, st, stk)
ret

Figure 6.4: Informal target language semantics.

properties.
We present formally the syntax of the intermediate language in Fig. 6.5.

Similarly to the target language, this language includes jump instructions. Yet,
similarly to the source language, the syntax also includes a sequence instruction.
Another similar feature is that functions bodies (here defined as block2) are
stored inside a function environment (the fenv2 type).

As stated previously, the intermediate language is described by a big-step
operational semantics. We informally (respectively formally) present its defini-
tion in Fig. 6.6 (resp. in Fig. A.3). The rules for atomic instructions are similar
to the ones for the target language. The specificity of this semantics are located
in the rules for the sequence, and the reflective closure. These rules make use
of a notion of size for command. This measure corresponds to the number of
atomic instructions that compose a command.

Let us explain in more details the sequence rules. Through the starting
state, we can find on which side of the sequence is the current instruction (this
condition correspond to the first premise in both rules). So we just have to focus
on the execution of this subcommand (which is given through to the second
premise). Finally, it may be possible that through jump, the next instruction
is located in the other side of the sequence, and thus we have to execute over
the whole sequence as a continuation (captured by the third premise). The
reflexive closure is used to close the semantics tree branch where the command
does not contain the current instruction. This is mainly used for two purposes:
(1) in case of a sequence of sequence, and (2) as an implicit return at the end
of the execution of a function. We illustrate the first case in Fig. 6.7. The
second case may be simply understood by watching the call rule. The second
premise corresponds to the execution of the body c of the callee fct. When
this function finishes, the label of the current instruction is “outside” of c, thus
the refl_closure rule closes the semantics tree branch, finalizing the execution
with the ending state of the function execution.
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Inductive cmd2: Set :=
| skip2: cmd2
| mutate2: insn → cmd2
| jmp2: Z → cmd2
| ifnjmp2: bexpr → Z → cmd2
| seq2: cmd2 → cmd2 → cmd2 (* Notation: c1; c2 *)
| call2: string → cmd2.

(** #A block is a couple of a command and its starting label# *)

Definition block2 := prod Z cmd2.

Fixpoint cmd2_size (c: cmd2): Z :=
match c with
| skip2 ⇒ 1
| mutate2 i ⇒ 1
| jmp2 l ⇒ 1
| ifnjmp2 b l ⇒ 1
| c1; c2 ⇒ (cmd2_size c1) + (cmd2_size c2)
| call2 l ⇒ 1

end.

Definition fenv2 := list (prod string block2).

Fixpoint get_cmd2_f (f: fenv2) (s: string) struct f : option block2 :=
match f with
| nil ⇒ None
| (hd1, hd2)::tl ⇒ if (string_dec hd1 s) then (Some hd2) else (get_cmd2_f tl s)

end.

Figure 6.5: Informal target language definition.

6.1.2 Translation Stages

We previously explained that the translation is split into two stages: (1) an
expansion of the control-flow (from loops and branches to jump), and (2) a
linking of all functions bodies. In this section we present these transformations,
which go respectively from the source language to the intermediate language,
and from the intermediate language to the target language.

From the Source Language to the Intermediate Language

The first translator step goal is to expand the control-flow from loops and
branches to jumps. This transformation is illustrated informally in Fig. 6.8.
The corresponding function is named translate12 in the Coq source, and its
code is shown in Fig. 6.9. An important argument for this function is the starting
address (the parameter l) of the translated block. This information is used to
compute the addresses for the jumping instructions. The function translate12
returns a couple composed of the translated command (the second projection)
and the address next to its last instruction (the first projection). This address is
equal to the starting address plus the size of the translated command, as stated
by the lemma translate12_end. The translate12 function is used to translate
all the functions body inside the function environment. This is implemented in
the function translate_fenv1_to_fenv2.

The main result of this first translation stage is the semantics-preservation
lemma preservation12, presented in Fig. 6.10. This lemma asserts that if a
source language program (consisting of a command c and a function environ-
ment f) executes from the state st to the state st’, then its translation will
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f ` (l, st) == (l, skip) ==> (l + 1, st)
skip

st −− i −−> st′

f ` (l, st) == (l, i) ==> (l + 1, st′)
mutate

st −− i −−> Abort

f ` (l, st) == (l, i) ==> Abort
mutate_error

f ` (l, st) == (l, jmp l′) ==> (l′, st)
jmp

JbKst = true

f ` (l, st) == (l, ifnjmp b l′) ==> (l + 1, st)
ifnjmp_true

JbKst = false

f ` (l, st) == (l, ifnjmp b l′) ==> (l′, st)
ifnjmp_false

JfctKf = (lc, c) f ` (lc, st) == (lc, c) ==> (l′, st′)

f ` (l, st) == (l, call fct) ==> (l + 1, st′)
call

JfctKf = (lc, c) f ` (lc, st) == (lc, c) ==> Abort

f ` (l, st) == (l, call fct) ==> Abort
call_error’

JfctKf = none

f ` (l, st) == (l, call fct) ==> Abort
call_error

lc ≤ l < (lc + size of(c1)) f ` (l, st) == (l, c1) ==> (l′, st′)

f ` (l, st) == (lc, c1; c2) ==> (l′, st′)
seq_left

(lc + size of(c1)) ≤ l < (lc + size of(c1; c2)) f ` (l, st) == (l, c2) ==> (l′, st′)

f ` (l, st) == (lc, c1; c2) ==> (l′, st′)
seq_right

l < lc ∨ (lc + size of(c1; c2)) <= l

f ` (l, st) == (lc, c) ==> (l, st)
refl_closure

Figure 6.6: Informal intermediate language semantics.

behave in a similar way, or more precisely, it will have the same initial and final
states.

From the Intermediate Language to the Target Language

The second stage of our translator takes a main command and a function envi-
ronment of the intermediate language and translates them into a target language
program. This translation is split into several steps.

The first step consists in changing the addresses of the main commands
and of the functions bodies such that their labels do not overlap. Indeed, the
semantics of the intermediate language allows these commands to share the
same address space. This came from the inductive premise of the call rule
in Fig. 6.6, where only the function body is considered. In comparison, the
call rule of the target language semantics (Fig. 6.4) only changes the current
instruction address. As target language programs are lists of instructions, and
thus the addresses of the functions does not overlapped. In Coq we implement
a function, named cmd2_chg_labels, presented in Fig. 6.12. This function
takes as arguments an intermediate language command c, and a relative number
delta, and shift the command labels by this relative offset. This transformation
preserves the semantics, changing only the starting address of the command
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f ` (0, st) == (0, jmp 3) ==> (3, st)

3 ≥ 0 + 2

f ` (3, st) == (0, (jmp 3; skip)) ==> (3, st)

` f == (0, st) ==> (0, (jmp 3; skip))(3, st)

3 ≥ 2 + 1

f ` (3, st) == (2, skip) ==> (3, st)
. . .

f ` (0, st) == (0, (jmp 3; skip); skip) ==> (3, st)

Figure 6.7: Illustration of the reflexive closure for a sequence of sequence.

s
while b

c

{
l

=

ifnjmp b (l + 1 + size of(JcK) + 1);JcKl+1;
jmp l

uwwv
if b then

c1
else

c2

}��~
l

=

ifnjmp b (l + 1 + size of(Jc1K) + 1);Jc1Kl+1;
jmp (l + 1 + size of(Jc1K) + 1 + size of(Jc2K + 1));Jc2Kl+1+size of(Jc1K)+1;

s
c1;
c2

{
l

=
Jc1Kl;Jc2Kl+size of(Jc1K);

Figure 6.8: Control-flow expansion.

and the addresses for both the initial and the final states. This is captured by
the lemma cmd2_chg_labels_preserv_exec. Thanks to this function we can
“align” all the functions bodies that are stored in an environment in such a way
that they do not overlap. This is the role of the function fenv2_chg_labels,
which takes as argument a function environment f, and a label l. The function
changes the functions bodies starting labels as follows: all functions will be
shifted such that their starting address is the final label of the previous function
plus one (this implies a “hole” between functions, which will be used in a next
step), and the first function is shifted such that it begins at label l.

The next step consists in translating an intermediate language command
into a target language command. The main issue of this step concerns the
translation for the call instructions. Indeed, whereas it takes a function names
in the intermediate language, it takes an address in the target language. The
approach is similar as the one used in classical compilers: we build a map from
names to addresses. The function build_fun_name_map takes a function envi-
ronment and build its names map, while the function get_fun_label3 allows to
consult the map for a given function name. Such a map is used in the function
compile_block, which transforms an intermediate language command into a
target language command, to translate to call instructions.

In the final step, all the functions translated by the previous step are merged
into a single target language command. The issue for this step consists in con-
catenates a return instruction (ret) at the end of each of this functions. Indeed,
a main difference between the intermediate and the target language is the way
how the function returns are managed. Whereas in the intermediate language
the function return is implicit (is it implemented through the refl_closure
rule), in the target language the function return is explicit (implemented by
the ret instruction and its semantics rule). In the source language, the func-
tions execute until the ends, which by the preservation lemma preservation12
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Fixpoint translate12 (l: Z) (c: cmd1) struct c : Z * cmd2 :=
match c with
| skip1 ⇒ (l + 1, skip2)
| mutate1 i ⇒ (l + 1, mutate2 i)
| seq1 c1 c2 ⇒

match (translate12 l c1) with
| (l1, c1’) ⇒

match (translate12 l1 c2) with
| (l2, c2’) ⇒ (l2, c1’; c2’)

end
end

| ifte1 b c1 c2 ⇒
match (translate12 (l + 1) c1) with

| (l1, c1’) ⇒
match (translate12 (l1 + 1) c2) with

| (l2, c2’) ⇒
(l2, ifnjmp2 b (l1 + 1); c1’; jmp2 l2; c2’)

end
end

| while1 b c1 ⇒
match (translate12 (l + 1) c1) with

| (l1, c1’) ⇒
(l1 + 1, ifnjmp2 b (l1 + 1); c1’; jmp2 l)

end
| call1 s ⇒

(l + 1, call2 s)
end.

Lemma translate12_end: ∀ c l l’ c’,
translate12 l c = (l’, c’) →
l’ = l + cmd2_size c’.

Fixpoint translate_fenv1_to_fenv2 (f: fenv1) struct f : fenv2 :=
match f with
| nil ⇒ nil
| (s,c)::tl ⇒

match (translate12 0 c) with
| (l, hd’) ⇒

(s,(0, hd’)) :: (translate_fenv1_to_fenv2 tl)
end

end.

Figure 6.9: The translation functions, and some lemmas in Coq.

means that their intermediate language translation will execute until the label
next to the final instruction. Thus, by appending a ret instruction at the end
of each command, we makes all the function to return after their executions.
This append is implemented by the function add_ret3. This instruction will
be placed in the hole that we have introduced in the first step. Finally, we
append all the translated functions bodies as well as the main command into
the final target command. The function translate_fenv2_to_cmd3 translates
and appends the functions bodies, while the function translate23 implements
the whole translation and appending. All the translation steps are illustrated
in the Fig. 6.13.

The main result for the translation second stage is the semantics preserva-
tion lemma preservation23, presented in Fig. 6.14. This lemma asserts that
the translated target language command behave in the same way as the origi-
nal intermediate language command. More formally, both executions have the
same initial and final labels and states. The main issue of this proof is that
the lemma is not general enough to be directly proved by induction over the
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Lemma preservation12: ∀ c f st st’,
cmd1_semop f (Some st) c (Some st’) →
∀ l l’ c’,
translate12 l c = (l’, c’) →
∀ f’,

translate_fenv1_to_fenv2 f = f’ →
cmd2_semop f’ (Some (l,st)) (l, c’) (Some (l’,st’)).

Figure 6.10: The semantics preservation lemma in Coq.

Fixpoint cmd2_chg_labels (delta: Z) (c: cmd2) struct c : cmd2 :=
match c with
| skip2 ⇒ skip2
| mutate2 i ⇒ mutate2 i
| jmp2 l ⇒ jmp2 (l + delta)
| ifnjmp2 b l ⇒ ifnjmp2 b (l + delta)
| seq2 c1 c2 ⇒ seq2 (cmd2_chg_labels delta c1) (cmd2_chg_labels delta c2)
| call2 l ⇒ call2 l

end.

Lemma cmd2_chg_labels_preserv_exec: ∀ f ST C ST’,
cmd2_semop f ST C ST’ →
∀ l c,
C = (l, c) →
∀ li st,

ST = Some (li, st) →
∀ lf st’,

ST’ = Some (lf, st’) →
∀ delta,

cmd2_semop f
(Some (li + delta, st))
(l + delta, cmd2_chg_labels delta c)
(Some (lf + delta, st’)).

Fixpoint fenv2_chg_labels (f: fenv2) (l: Z) struct f : fenv2 :=
match f with
| nil ⇒ nil
| (s, (l’, hd))::tl ⇒

(s, (l, (cmd2_chg_labels (l - l’) hd)))::(fenv2_chg_labels tl (l + cmd2_size hd + 1))
end.

Figure 6.11: Coq function to modify the address space of an intermediate lan-
guage command.

intermediate language semantics. To achieve the proof, we propose the more
generalized lemma preservation23’. This generalization embedded the fact
that the translation of the original command is a subcommand of the trans-
lated command. This generalization is due to the fact that the translation
merges all the functions and the main command into a target language com-
mand. More technically, this generalization is needed for the subgoal that deals
with the function call case.

Put it all together

We have presented the two steps of our translator. We now present how they
are composed and how to derive the main semantics preservation lemma of the
translator (shown in Fig. 6.15). The translator is implemented by the Coq
function translate13, which is the composition of all the steps previously pre-
sented. The semantics preservation lemma preservation13 asserts that the
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Fixpoint build_fun_name_map (f: fenv2) : list (string * Z) :=
match f with
| nil ⇒ nil
| (s,(l,c))::tl ⇒ (s,l)::(build_fun_name_map tl)

end.

Fixpoint get_fun_label3 (s: string) (map: list (string * Z)) struct map : Z :=
match map with
| nil ⇒ 0 (* default *)
| (s’, l)::tl ⇒

if (string_dec s s’) then l else (get_fun_label3 s tl)
end.

Fixpoint compile_block (c: cmd2) (map: list (string * Z)) struct c : cmd3 :=
match c with
| skip2 ⇒ skip3::nil
| mutate2 i ⇒ (mutate3 i)::nil
| jmp2 l ⇒ (jmp3 l)::nil
| ifnjmp2 b l ⇒ (ifnjmp3 b l)::nil
| seq2 c1 c2 ⇒ (compile_block c1 map) ++ (compile_block c2 map)
| call2 s ⇒ (call3 (get_fun_label3 s map))::nil

end.

Definition add_ret3 (c: cmd3) := c ++ ret3::nil.

Fixpoint translate_fenv2_to_cmd3 (f: fenv2) (map: list (string * Z)) struct f : cmd3 :=
match f with
| nil ⇒ nil
| (s, (l, c))::tl ⇒

(add_ret3 (compile_block c map)) ++ (translate_fenv2_to_cmd3 tl map)
end.

Definition translate23 (f: fenv2) (mc: cmd2) : cmd3 :=
let mp := (build_fun_name_map f) in (
(add_ret3 (compile_block mc mp)) ++ (translate_fenv2_to_cmd3 f mp)

).

Figure 6.12: Coq function to modify the address space of an intermediate lan-
guage command.

execution of the original command and of the translated command behave the
same way. More precisely, the starting and ending states are the same in both
executions, the target language command will execute entirely, and the initial
and final stack are identical (which mean that all called function will return).

6.1.3 Hoare-triples Preservation

Until now, we have presented the languages that are manipulated by the trans-
lator (through their syntax and semantics), as well as the translator stages and
their semantics preservation lemmas. Yet, our main concern still remains the
composition of Hoare-logic triples. In this section we first present the Hoare-
triples semantics for the source language, as well as a provably sound proof
system. Then we present the Hoare-triples semantics for the intermediate lan-
guage, and the preservation lemma for the first step of the translator. We
then present the Hoare-triples semantics for the target language as well as the
preservation lemma for the second step of the translator. Finally, by transitiv-
ity, we show the Hoare-triples preservation lemma from the source language to
the target language.

As we previously stated, for sake of generality our translator is parameterized
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. . .; call f1; . . . f1 fn, , ,
. . .

lc

sc

. . .; call f1; . . . f1 fn

1 1 1
lc

sc

. . .

. . .; call (lc + sc + 1); . . . f ′
1 f ′

n

1 1 1
lc

sc

. . .

. . .; call (lc + sc + 1); . . . ret f ′
1 ret . . . f ′

n ret

lc

sc

(1) first step: functions adresses shifting

(2) second step: translation of functions into the target language

(3) third step: append of functions bodies with in-between return instructions

Figure 6.13: Illustration of the translation from the intermediate language to
the target language.

by a set of state-modifying instructions (insn). For the Hoare-triples issue we
add several parameters. The first one, assert defines the assertions as the Coq
functions of type: state → Prop. Through this definition, we define the Hoare
semantics for the state-modifying instruction language as:

Definition insn_tot_triple_sem (P: assert) (i: insn) (Q: assert) :=
∀ (st: state),

(P st ->
∃ st’,

insn_semop st i (Some st’) ∧ Q st’
).

We finally add as parameters insn_tot_semax, a Hoare-logic proof system
which type is assert → insn → assert → Prop, and its soundness proof
w.r.t. insn_tot_triple_sem:

Variable insn_tot_semax_sound: ∀ P i Q,
insn_tot_semax P i Q ->
insn_tot_triple_sem P i Q.

Hoare-triples for the Target Language

We define the semantics for Hoare-triples of the source language as:
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Lemma preservation23’: ∀ f ST ST’ C,
cmd2_semop f ST C ST’ →

∀ l c,
C = (l, c) →

∀ ls st,
ST = Some (ls, st) →
∀ lf st’,

ST’ = Some (lf, st’) →
∀ lc mc f’,

fenv2_chg_labels f (lc + cmd2_size mc + 1) = f’ →
∀ c’,

translate23 f’ mc = c’ →
∀ delta,
subcmd3 c’ lc (l + delta) (cmd2_size c) =
Some (

compile_block (cmd2_chg_labels delta c) (build_fun_name_map f’)
) →
∀ stk,

cmd3_closure
(Some (ls + delta, st, stk))
(lc, c’)
(Some (lf + delta, st’, stk)).

Lemma preservation23: ∀ f l st l’ st’ lc mc,
cmd2_semop f (Some (l, st)) (lc, mc) (Some (l’, st’)) →
∀ f’,
fenv2_chg_labels f (lc + cmd2_size mc + 1) = f’ →
∀ c’,

translate23 f’ mc = c’ →
∀ stk,

cmd3_closure (Some (l, st, stk)) (lc, c’) (Some (l’, st’, stk)).

Figure 6.14: Preservation lemmas of the translation from the intermediate lan-
guage to the target language.

Definition triple1_sem (f: fenv1) (P: assert) (c: cmd1) (Q: assert) :=
∀ (st: state),
(P st →
∃ st’,

cmd1_semop f (Some st) c (Some st’) ∧
Q st’

).

This kind of semantics is known as total-correctness (in comparison to partial
correctness presented in both lemmas of 2.1.3), which is characterized by the
assertion of the existence of a final state st’. More informally, it states that: if
the assertion P holds for the initial state st of the execution of the command c,
then there exists a final state st’ for which the assertion Q holds.

A provably sound proof system w.r.t this semantics is illustrated in Fig. 6.16.
The main design difference with the proof system presented in Fig. 2.4 appears
in the rule for the loop. In the present case, the premise that asserts that I
is an invariant also include the fact that there exists a well-founded relation P
over the sequence of initial and final states of the execution of the loop body. If
such relation exists, then it implies that the loop always finishes. This new rule
is the main issue of the proof of soundness. For this subgoal we need a nested
well-formed induction over the natural number that is related by P to the initial
state (n).
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Definition translate13 (l: Z) (f: fenv1) (c: cmd1) : (Z * cmd3) :=
match (translate12 l c) with
| (l’, c’) ⇒

(l’, translate23 (fenv2_chg_labels (translate_fenv1_to_fenv2 f) (l’ + 1)) c’)
end.

Lemma preservation13: ∀ f st c st’,
cmd1_semop f (Some st) c (Some st’) →
∀ l l’ c’,
translate13 l f c = (l’, c’) →
∀ stk,

cmd3_closure (Some (l, st, stk)) (l, c’) (Some (l’, st’, stk)).

Figure 6.15: The translator code and semantics preservation lemma.

Translator First Stage Preservation Lemma

The Hoare-triples semantics for the intermediate language is stated as:

Definition triple2_sem (f: fenv2) (P: assert) (ls: Z) (lc: Z) (c: cmd2) (lf: Z) (Q: assert) :=
∀ (st: state),
(P st →
∃ st’,

cmd2_semop f (Some (ls,st)) (lc, c) (Some (lf, st’)) ∧ Q st’
).

Informally this definition states that if the precondition P holds for the initial
state st of the execution of the block (lc, c) starting at the address ls, then
there exists some final state st’ after the execution until address lf, such that
the post-condition Q holds. The preservation lemma for the translation between
the source and intermediate state is:

Lemma triple_preservation12: ∀ c lc c’ lc’,
translate12 lc c = (lc’, c’) →
∀ f f’,

translate_fenv1_to_fenv2 f = f’ →
∀ P Q,

triple1_sem f P c Q →
triple2_sem f’ P lc lc c’ (lc + cmd2_size c’) Q.

This lemma asserts that a source language and its translation in the intermedi-
ate language have the same precondition P and post-condition Q. The starting
address (the first instruction of the command), and the final address (the next
after the last instruction) of the execution are logically deduced from the oper-
ational semantics preservation lemma preservation12 (Fig. 6.10).

Translator Second Stage Preservation Lemma

The Hoare-triples semantics for the target language is stated as:

Definition triple3_sem (P: assert) (ls: Z) (lc: Z) (c: cmd3) (Q: assert) (lf: Z) :=
∀ (st: state),
(P st →
∃ st’,

∀ stk,
cmd3_closure (Some (ls, st, stk)) (lc, c) (Some (lf, st’, stk)) ∧
Q st’

).

This definition states that if a target language program executes from the ad-
dress ls, in a state st for which the precondition P holds, then it will end
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Inductive cmd1_tot_semax: fenv1 → assert → cmd1 → assert → Prop :=
| skip1_tot_semax: ∀ f P,

cmd1_tot_semax f P skip1 P
| pre_str_tot_semax: ∀ f P P’ c Q ,

entail P P’ →
cmd1_tot_semax f P’ c Q →
cmd1_tot_semax f P c Q

| post_weak_tot_semax: ∀ f P c Q Q’,
entail Q’ Q →
cmd1_tot_semax f P c Q’ →
cmd1_tot_semax f P c Q

| mutate1_tot_semax: ∀ f P Q i,
insn_tot_semax P i Q →
cmd1_tot_semax f P (mutate1 i) Q

| seq1_tot_semax: ∀ f P Q R c1 c2,
cmd1_tot_semax f P c1 R →
cmd1_tot_semax f R c2 Q →
cmd1_tot_semax f P (seq1 c1 c2) Q

| ifte1_tot_semax: ∀ f P Q b c1 c2,
cmd1_tot_semax f (fun st ⇒ P st ∧ beval b st) c1 Q →
cmd1_tot_semax f (fun st ⇒ P st ∧ ~ beval b st) c2 Q →
cmd1_tot_semax f P (ifte1 b c1 c2) Q

| while1_tot_semax: ∀ f I b c (P: state → nat),
(∀ n, cmd1_tot_semax f (fun st ⇒ I st ∧ P st = n) c (fun st ⇒ I st ∧ (P st < n)%nat)) →
cmd1_tot_semax f I (while1 b c) (fun st ⇒ I st ∧ ~ beval b st)

| call1_tot_semax: ∀ f P Q s c,
get_cmd1_f f s = Some c →
cmd1_tot_semax f P c Q →
cmd1_tot_semax f P (call1 s) Q.

Lemma cmd11_tot_semax_sound: ∀ f P c Q,
cmd1_tot_semax f P c Q →
triple1_sem f P c Q.

Figure 6.16: Hoare-logic proof system for the target language and its soundness
lemma.

at the address lf in some state st’ for which the post-condition Q will hold.
The Hoare-triples preservation lemma between the intermediate and the target
language is defined as:

Lemma preservation_triple23: ∀ f P Q mc lc,
triple2_sem f P lc lc mc (lc + cmd2_size mc) Q →
∀ f’,

fenv2_chg_labels f (lc + cmd2_size mc + 1) = f’ →
∀ c’,

translate23 (fenv2_chg_labels f (lc + cmd2_size mc + 1)) mc = c’ →
triple3_sem P lc lc c’ Q (lc + cmd2_size mc).

This lemma asserts that an intermediate language and its translation into the
target language have the same pre/post-conditions. It also states that it will
execute the whole translated block (lc, c).

Put it all Together

Through the two previously shown lemmas, we can derived by transitivity of the
implication an important result for the translator: the Hoare-triples preservation
lemma.

Lemma preservation_triple13: ∀ f P Q c ,
triple1_sem f P c Q →
∀ l l’ c’,

translate13 l f c = (l’, c’) →
triple3_sem P l l c’ Q l’.
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This lemma states that a source language program and its translation into the
target language shares the same pre/post-conditions.

6.1.4 Hoare-triples Composition

The triples composition can be used in two different cases. The first one is when
a C-like language program call an assembly routine. This case is often met in
operating system kernels. Indeed, the parts of the source code that manipulate
the hardware (such as context switching or memory paging) are written directly
in assembly. These snippets of code can be called in the main loop of the oper-
ating system, which is written in C. In this case, the main issue is how to build a
Hoare-triple for such a main loop which call assembly subroutines. The second
case is met when a program uses a library written in a C-like language. For sake
of reusability, one would like to use such library functions inside assembly code,
instead of rewriting a corresponding library directly in assembly. In this case,
the issue is how to build a specification for the assembly code that call C-like
subroutines. Our approach is to lift the code to the same level: the assembly
language. Thanks to our translator preservation lemmas, we know that the
translation preserves the pre/post-conditions. Thus, the composition of triples
is reduced to the composition of assembly triples by the sequence rule. The
only technical issue is the manipulation of the function environment. Indeed,
our approach considers that the subroutines are called, and thus their bodies
are stored inside the function environment. In the rest of the section we explain
in more technical details the lemma for triples composition for both cases.

C-like Program Calling Assembly Subroutines

In this case, we consider a snippet of the source language which corresponds to
a sequence, of three commands: c1; call s; c2. In the case where the body
of the function s is written in the source language, we can used the proof system
introduced in Sect. 6.1.3 to prove the whole command Hoare-triple. However, in
our case the body of the function s is a command of the intermediate language,
for which this Hoare-triple proof system cannot be used anymore (the main
problem is that we cannot apply the call1_tot_semax). For the verification of
such template of source code we provide the following lemma:

Lemma heterogeneous_proof1:
forall f P1 Q1 c1 P2 Q2 c2 f’ P Q c lc s c’ l l’

(c1_triple: triple1_sem f P1 c1 Q1)
(c2_triple: triple1_sem f P2 c2 Q2)
(f_trans: translate_fenv1_to_fenv2 f = f’)
(no_s_in_f: forall c, ~ In (s, c) f)
(c_triple: triple2_sem ((s, (lc, c))::f’) P lc lc c (lc + cmd2_size c) Q)
(Assert_H1: forall st, Q1 st -> P st)
(Assert_H2: forall st, Q st -> P2 st)
(prog_trans: translate12 l (c1; call1 s; c2) = (l’, c’))
(f_no_call: forall (s’ : string) (c0 : cmd1),

In (s’, c0) f -> cmd1_no_call s c0)
(c1’_no_call: cmd1_no_call s c1)
(c2’_no_call: cmd1_no_call s c2),

triple2_sem
((s, (lc, c))::f’)
P1 l
l c’
(l + cmd2_size c’) Q2.
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Lets examine more closely this lemma. In a first time, we have proved some
Hoare-triple for c1 (respectively c2), with for precondition the assertion P1
(resp. P2), and the assertion Q1 (resp. Q2) for post-condition, both using
the function environment f. These facts are captured by the hypothesizes
c1_triple and c2_triple. The hypothesis f_trans captures that f’ is the
translation of the function environment f into the intermediate language. Next,
we have proved the Hoare-triple for the intermediate language subroutine, namely
c. This is captured by the hypothesis c_triple, which asserts that if the as-
sertion P holds at the first instruction c, then after the execution of the last
instruction, the assertion Q will holds. This triple is valid with for function en-
vironment f’ to which we append the function s. This allows our subroutine to
call itself, as well as a target language function. To be sure that this append will
not interfere with the original function environment, the hypothesis no_s_is_f
asserts that the name s is fresh in f (and thus by extension fresh in f’). We
must also ensure that there is no functions in the environment f that call the
function s. This property is captured by the hypothesis f_no_call, which uses
the inductive predicate cmd1_no_call (for which a decidability lemma as been
proved, meaning that Coq can build a sound and complete decision procedure).
The goal of the lemma asserts that the translation of the whole command into
the intermediate language (hypothesis prog_trans), have P1 for precondition
and Q2 for post-condition, with for function environment the appending of the
body c of function s. To achieve this goal, we need the fact that we can ap-
ply the precondition strengthening between (1) the c1 post-condition and the c
precondition (hypothesis Assert_H1), and (2) the c post-condition and the c2
precondition (hypothesis Assert_H2).

Assembly Program Calling C-like Subroutines

In this case, an intermediate language command calls a target language. Simi-
larly to the previous case, we decompose this command into three parts: a first
intermediate command c1, followed by a call instruction to the target language
subroutine (named c), and ending by an intermediate command c2. We use the
same principle as previously: we translate the target language subroutine into
an intermediate command, and we add it to the function environment (so that
the call will execute it). This is captured by the following lemma:

Lemma heterogeneous_proof2:
forall f P1 lc c1 Q1 P2 c2 Q2 P c Q s l l’ c’

(c1_triple: triple2_sem f P1 lc lc c1 (lc + cmd2_size c1) Q1)
(c2_triple: triple2_sem f P2 (lc + cmd2_size c1 + 1)

(lc + cmd2_size c1 + 1) c2 (lc + cmd2_size c1 + 1 + cmd2_size c2) Q2)
(c_triple: triple1_sem nil P c Q)
(no_s_in_f: forall c, ~ In (s, c) f)
(Assert_H1: forall st, Q1 st -> P st)
(Assert_H2: forall st, Q st -> P2 st)
(prog_trans: translate12 l c = (l’, c’))
(f_no_call: forall (s’ : string) (l0: Z) (c0 : cmd2),

In (s’, (l0, c0)) f -> cmd2_no_call s c0)
(c1_no_call: cmd2_no_call s c1)
(c2_no_call: cmd2_no_call s c2)
(c_no_call: cmd1_no_call s c),

triple2_sem
((s, (l, c’))::f)
P1 lc
lc (c1; call2 s; c2)
(lc + cmd2_size c1 + 1 + cmd2_size c2) Q2.
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6.2 Discussion

We have presented a generalize translator from a C-like language to an assembly
language. This work is an extension of [2] with function calls. A main difference
with this later work is that we only focus on the semantics preservation of the
translation, whereas Saabas also provide proof for reflection. Such an extension
should be an interesting future work.

In further implementations, we experimented other design choices and ex-
tensions. Yet these implementations are less advanced in features (for instance
no triples composition lemmas). In a first variant we tried to avoid the sequence
command in the intermediate language by using a list of instructions, similarly
to the target language. This choice was motivated by the consideration of opti-
mization steps for the intermediate language. Indeed any optimization implies
the parsing of the language. It is well-known that parsing of tree-structured
commands (i.e. with a binary sequence operator), is more tedious than a list
traversal. The main issue for this design is located in the definition of the se-
mantics for the sequence. Indeed in the case of a list of instructions, the left
rule focuses on the first instruction of the command (i.e. the head of the list),
and the right rule focuses on the remaining list (i.e. the tail of the list). Unfor-
tunately, The lemmas that generalize the rules to version more similar to the
original ones (considering not only the head and the tail, but any partition of
the list), are difficult to prove by induction.

Another extension was to consider a particular instance of instructions for
the target language. This instructions set includes a numerical and a boolean
expressions. We intended to provide their translation into another instruction
language without expressions. An illustrating example for such a translation is:

q
x <-- (y + (3 ∗ z))

y
l

=
x1 <-- mul 3 z;
x <-- add y x1

Our approach was to translate every operator of the numerical and the
boolean languages into instructions. We implemented this translator in Coq,
and proved the preservation of the semantics. Although it is an interesting work
(especially the generalization of lemmas for proof by induction), we found that
the translation of the boolean expressions was not pertinent. Indeed, real com-
piler translate the boolean expression using the control flow of the underlying
assembly, and not boolean instructions (like and, or). After this observation, we
tried to implement the same mechanism using the intermediate language. For
this purpose we started to inspect a way to extends the intermediate language
with explicit labels (which map names to address in a command).

Another future work should be the implementation and certification of a reg-
isters allocation step, that replaces the source language variables, with registers
for the target language.

6.3 Related Work

The verification of code translation is a popular trend in the community of
proof assistants. Indeed, such tools allow to verify directly the implementation
through clearly defined semantics.
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The state of the art work is a compiler implemented and verified inside the
Coq proof assistant [3]. It compiles a realistic subset of C into PPC assembly.
The translation is split into several steps, and includes lightly optimizations.
The only part of the compiler that is not proved correct is the register allocation.

Several previous work on certified compilation focus on Java-like languages.
In [62], G.Klein and T.Nipkow propose Jinja, a Java-like programming language
with formal semantics and type system. They propose also a virtual machine
(JVM), and a compiler that is proved to preserve semantics and well-typeness.
A similar work is presented in [63], with a compiler which is proved to preserve
well-typeness.

Another previous work, from Okuma et al., [64] proposes a certified compiler
from a scheme-like language into Jaba bytecode. This compiler implements an
illustrating optimization: elimination of dead code. The main difference with
our work is the source language. Indeed, whereas we focus on the compila-
tion of a structured and imperative language, this related work implement the
compilation of a functional language.
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Chapter 7

Conclusion

In this Ph.D. thesis, we have investigated how one can verifies low-level soft-
ware, such as operating system. For our experiments we have chosen the Topsy
operating system as our test-bed [10]. We claim that Topsy was a pertinent
choice, for several reasons:

• It directly controls its underlying hardware, and thus is obviously an in-
stance of low-level software

• As an operating system, Topsy tries to build an abstraction of the under-
lying for hardware for the user applications. This adds another level of
complexity.

• Even if Topsy is an embedded operating system, it implements several fea-
tures also present in other operating systems: memory allocation, multi-
programming, multi-threading, message passing, etc. This implies that
our method and implementations should be reusable as a starting point
for the verification of more complex operating system kernels, such as
Linux.

• Finally, as Topsy started as a student project, it is simple and clear to
read, making its analysis tractable.

Our approach is based on a top-down analysis of the system. Starting with its
abstraction, we have focused on the verification of non-trivial properties, such
as the task isolation, which informally can be stated as: the user threads cannot
access the kernel memory. This abstraction, implemented as a model in SPIN,
provides a more readable image of the system and allows to pinpoint the parts
of the code that play a key role in the task isolation property. In order to verify
that their correctness is a necessary condition for the task isolation, we injected
bugs in their abstractions. Through this corrupted abstraction, SPIN has found
execution traces for which task isolation does not hold any more.

Through several similar experiments we were able to find several parts of
the code which correctness are a necessary condition for the task isolation.
The interesting thing is that they all present different characteristics: some
of them are non-trivial code in C, some are more straightforward, and some
are written in assembly. To deal with the source code verification, we have
implemented libraries inside the Coq proof assistant. Through these libraries, we
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have formally verified the correctness of some C and assembly source code. On
top of these libraries, we have implemented and certified an original verification
procedure for a decidable fragment of an extension of the Hoare-logic. We
also have implemented and certified a translator from a C-like to an assembly
language.

7.1 Summary of the Dissertation

In this section, we present a detail summary of the work presented in this Ph.D.
thesis.

In Chap. 2.3, we presented a model for the Topsy operating system inside
the SPIN model checker. This model abstracts the underlying hardware, the
Topsy kernel as well as the network and thread servers, and an echo-server user
application, which use all implemented operating system services. Through this
model we verified several properties of the system:

• Status Correctness: the property that the kernel always restore the thread
that has been elected by the scheduling algorithm

• Status Consistency: the property that a thread waiting for a message can
never be scheduled

• Reply consistency: this property states that the receiver pointer for the
message passing answer is not changed until the thread is unblocked and
the expected message is sent

• Task Isolation: our main desired property, which states that the user
threads of the system cannot access the kernel memory space

This model highlight the interactions between the system components and the
underlying hardware. It helps to identify several parts of the code which cor-
rectness are necessary for this later property. We verify the importance of this
system parts by injection of errors and verifying that the task isolation property
does not hold anymore.

In Chap. 2, we presented the methods by which we verified the source code:
(1) the separation logic, and (2) the Coq proof assistant. Separation logic is
a extension of the Hoare-logic with a native notion of heap and pointers. We
presented the semantics of the command language, the separation logic connec-
tives that extends the Hoare-logic assertion language, and a provably sound and
complete proof system. The Coq proof assistant is a tool which allows one to
build mathematical models, and to mechanically construct and verify proof of
their properties. We highlighted how Coq can be use to implement a certified
arithmetic decision procedure by reflection.

In Chap. 3, we presented a library implementing the separation logic inside
the Coq proof assistant. We detailed the implementation choices for the syntax
and the semantics of the command language, and presented the provably sound
and complete proof system for separation logic triples. Then we presented a use-
case verification: the Topsy memory allocator (also known as the heap manager).
This verification output is that we have found bugs, and through our verification
we were able to patch the original source code.
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In Chap. 4, we presented a variant of the previous library, that deals with
verification of MIPS assembly source code. Using this implementation, we ver-
ified the source code for the context restoring function of Topsy.

In Chap. 5, we presented a decidable fragment of separation logic, as well
as an original decision procedure. We implemented and proved the soundness
of this procedure, on top of our separation logic library in Coq. The output
is a tactics by reflection. Thanks to Coq extraction system, we provided a
stand-alone, certified verifier in Ocaml.

In Chap. 6, we presented a translator from a C-like language to an assembly
language, which has been proved to preserve the programs semantics. Through
this translator, we have shown how one can compose specification of source code
written in both C and assembly, to specify a statically linked program.

7.2 Contributions

7.3 Citations and Awards

A preliminary overview of this Ph.D. work was detailed in [43]. Our presen-
tation was rewarded with the Takahashi Award from the Japanese Society for
Software Science and Technology (JSSST) [48]. Our work about the automated
verification of separation logic triples [45], presented in Chap. 5, was rewarded
with the PPL2007 Best Paper Award.

Our work has been reused in a few research work: Andrew Appel extends
our separation logic library in Coq with tactics for forward reasoning in [55], and
Chunxiao Lin reuses our implementation ideas in Coq in [57]. Our work has also
been cited in conference papers: the verification of the memory management in
the L4 micro-kernel [58], and the design of a separation logic framework for
the C minor programming language in Coq [59]. Finally, our separation logic
library and the automated verification of separation logic triples was cited by
Edmund Clarke in a survey of the separation logic [56].

Finally, we participated to an external work which aimed at formalize the
verification of cryptographic protocols inside the Coq proof assistant [50].
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Appendix A

Translator Languages
Semantics in Coq

Inductive cmd1_semop:
fenv1 → option state →
cmd1 → option state → Prop :=

| err1_semop: ∀ c f,
cmd1_semop f None c None
| skip1_semop: ∀ f st,
cmd1_semop f (Some st) skip1 (Some st)
| mutate1_semop: ∀ st i st’ f,
insn_semop st i st’ →
cmd1_semop f (Some st) (mutate1 i) st’
| seq1_semop: ∀ st st’ st’’ c1 c2 f,
cmd1_semop f (Some st) c1 st’ →
cmd1_semop f st’ c2 st’’ →
cmd1_semop f (Some st) (seq1 c1 c2) st’’
| ifte1_true_semop: ∀ st b c1 c2 st’ f,
beval b st →
cmd1_semop f (Some st) c1 st’ →
cmd1_semop f (Some st) (ifte1 b c1 c2) st’
| ifte1_false_semop: ∀ st b c1 c2 st’ f,
~ beval b st →
cmd1_semop f (Some st) c2 st’ →
cmd1_semop f (Some st) (ifte1 b c1 c2) st’
| while1_false_semop: ∀ st b c f,
~ beval b st →
cmd1_semop f (Some st) (while1 b c) (Some st)
| while1_true_semop: ∀ st b c st’ st’’ f,
beval b st →
cmd1_semop f (Some st) c st’ →
cmd1_semop f st’ (while1 b c) st’’ →
cmd1_semop f (Some st) (while1 b c) st’’
| call1_err_semop: ∀ st s f,
get_cmd1_f f s = None →
cmd1_semop f (Some st) (call1 s) None
| call1_semop: ∀ st s f st’ c,
get_cmd1_f f s = Some c →
cmd1_semop f (Some st) c st’ →
cmd1_semop f (Some st) (call1 s) st’.

Figure A.1: Coq source language semantics.
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Inductive cmd3_semop:
option (Z * state * stack3) → (Z * cmd3) →
option (Z * state * stack3) → Prop :=
| err2_cmd3_semop: ∀ s l st lc c,
get_insn3 c lc l = None →
cmd3_semop (Some (l, st, s)) (lc, c) None
| err_cmd3_semop: ∀ c,
cmd3_semop None c None
| skip3_semop: ∀ l st lc c s,
get_insn3 c lc l = Some (skip3) →
cmd3_semop (Some (l, st ,s)) (lc, c) (Some (l + 1, st, s))
| mutate3_semop: ∀ l st st’ i s c lc,
get_insn3 c lc l = Some (mutate3 i) →
insn_semop st i (Some st’) →
cmd3_semop (Some (l, st ,s)) (lc, c) (Some (l + 1, st’, s))
| mutate3_err_semop: ∀ l st i s c lc,
get_insn3 c lc l = Some (mutate3 i) →
insn_semop st i None →
cmd3_semop (Some (l, st, s)) (lc, c) None
| jmp3_semop: ∀ l st l’ s lc c,
get_insn3 c lc l = Some (jmp3 l’) →
cmd3_semop (Some (l, st, s)) (lc, c) (Some (l’, st, s))
| ifnjmp3_true_semop: ∀ b l st l’ s lc c,
get_insn3 c lc l = Some (ifnjmp3 b l’) →
beval b st →
cmd3_semop (Some (l, st, s)) (lc, c) (Some (l + 1, st, s))
| ifnjmp3_false_semop: ∀ b l st l’ s lc c,
get_insn3 c lc l = Some (ifnjmp3 b l’) →
~ beval b st →
cmd3_semop (Some (l, st, s)) (lc, c) (Some (l’, st, s))
| call3_semop: ∀ lc c l st l’ s,
get_insn3 c lc l = Some (call3 l’) →
cmd3_semop (Some (l, st, s)) (lc, c) (Some (l’, st, (l + 1)::s))
| ret3_semop: ∀ lc c l st hd tl,
get_insn3 c lc l = Some (ret3) →
cmd3_semop (Some (l, st, hd::tl)) (lc, c) (Some (hd, st, tl)).

Inductive cmd3_closure:
option (Z * state * stack3) → (Z * cmd3) →
option (Z * state * stack3) → Prop :=
| None_closure: ∀ lc c,
cmd3_closure None (lc, c) None
| one_step_closure: ∀ lc c l st st’ s st’’,
cmd3_semop (Some (l, st, s)) (lc, c) st’ →
cmd3_closure st’ (lc, c) st’’ →
cmd3_closure (Some (l, st, s)) (lc, c) st’’
| refl_closure: ∀ l st lc c stk,
cmd3_closure (Some (l, st, stk)) (lc, c) (Some (l, st, stk)).

Figure A.2: Coq target language semantics.
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Inductive cmd2_semop:
fenv2 → option (Z * state) →
block2 → option (Z * state) → Prop :=

| errl_cmd2_semop: ∀ l st lc c f,
lc + (cmd2_size c) <= l ∨ l < lc →
cmd2_semop f (Some (l, st)) (lc, c) (Some (l, st))
| errs_cmd2_semop: ∀ c f,
cmd2_semop f None c None
| skip2_semop: ∀ l st f,
cmd2_semop f (Some (l, st)) (l, skip2) (Some (l + 1, st))
| mutate2_cmd2: ∀ l st i st’ f,
insn_semop st i (Some st’) →
cmd2_semop f (Some (l, st)) (l, mutate2 i) (Some (l + 1, st’))
| mutate2_err_cmd2: ∀ l st i f,
insn_semop st i None →
cmd2_semop f (Some (l, st)) (l, mutate2 i) None
| jmp2_semop: ∀ l st l’ f,
(*l <> l’ → *)
cmd2_semop f (Some (l, st)) (l, jmp2 l’) (Some (l’, st))
| ifnjmp2_true_semop: ∀ l st b l’ f,
beval b st →
cmd2_semop f (Some (l, st)) (l, ifnjmp2 b l’) (Some (l + 1, st))
| ifnjmp2_false_semop: ∀ l st b l’ f,
(*l <> l’ → *)
~ beval b st →
cmd2_semop f (Some (l, st)) (l, ifnjmp2 b l’) (Some (l’, st))
| seq2_left_semop: ∀ l st lc c1 c2 st’ st’’ f,
lc <= l < lc + cmd2_size c1 →
cmd2_semop f (Some (l, st)) (lc, c1) st’ →
cmd2_semop f st’ (lc, seq2 c1 c2) st’’ →
cmd2_semop f (Some (l, st)) (lc, seq2 c1 c2) st’’
| seq2_right_semop: ∀ l st lc c1 c2 st’ st’’ f,
lc + cmd2_size c1 <= l < lc + cmd2_size (seq2 c1 c2) →
cmd2_semop f (Some (l, st)) (cmd2_size c1 + lc, c2) st’ →
cmd2_semop f st’ (lc, seq2 c1 c2) st’’ →
cmd2_semop f (Some (l, st)) (lc, seq2 c1 c2) st’’
| call2_semop: ∀ st l l’ f st’ s c’,
get_cmd2_f f s = Some (l’, c’) →
cmd2_semop f (Some (l’, st)) (l’, c’) (Some (l’ + cmd2_size c’, st’)) →
cmd2_semop f (Some (l, st)) (l, call2 s) (Some (l + 1, st’))
| call2’_semop: ∀ st l l’ f s c’,
get_cmd2_f f s = Some (l’, c’) →
cmd2_semop f (Some (l’, st)) (l’, c’) None →
cmd2_semop f (Some (l, st)) (l, call2 s) None
| call2_err_semop: ∀ st l f s,
get_cmd2_f f s = None →
cmd2_semop f (Some (l, st)) (l, call2 s) None.

Figure A.3: Coq intermediate language semantics.
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Appendix B

Hoare-triples of Topsy
Heap Manager Functions
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Definition hmAlloc result size entry
˘

∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx)
¯

cptr fnd stts nptr sz :=

1 result <- null;
˘

∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧ result=0
¯

2 findFree size entry fnd sz stts;

8

>

>

<

>

>

:

∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧ result=0 ∧
0

@

∃y.∃sizey .sizey ≥ size ∧ (y, sizey , Free) ∈ l ∧ entry=y
∨

entry=0

1

A

9

>

>

=

>

>

;

3 ifte (entry == null) thendo (



∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧ result=0 ∧
entry=0

ff

4 cptr <- hmStart;



∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧ result=0 ∧
entry=0 ∧ cptr=hmStart

ff

5 compact cptr nptr stts;



∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧ result=0 ∧
entry=0

ff

6 findFree size entry fnd sz stts;

8

>

>

<

>

>

:

∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧ result=0 ∧
0

@

∃y.∃sizey .sizey ≥ size ∧ (y, sizey , Free) ∈ l ∧ entry=y
∨

entry=0

1

A

9

>

>

=

>

>

;

7 ) elsedo (



∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧ result=0 ∧
∃y.∃sizey .sizey ≥ size ∧ (y, sizey , Free) ∈ l ∧ entry=y

ff

8 skip;



∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧ result=0 ∧
∃y.∃sizey .sizey ≥ size ∧ (y, sizey , Free) ∈ l ∧ entry=y

ff

9 )

8

>

>

<

>

>

:

∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧ result=0 ∧
0

@

∃y.∃sizey .sizey ≥ size ∧ (y, sizey , Free) ∈ l ∧ entry=y
∨

entry=0

1

A

9

>

>

=

>

>

;

10 ifte (entry == null) thendo (



∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧
result=0 ∧ entry=0

ff

(* HM ALLOCFAILED is equal to 0 *)

11 result <- HM ALLOCFAILED;



∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧
result=0 ∧ entry=0

ff

12 ) elsedo (



∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧ result=0 ∧
∃y.∃sizey .sizey ≥ size ∧ (y, sizey , Free) ∈ l ∧ entry=y ∧ x 6= y

ff

13 split entry size cptr sz;



∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧ result=0 ∧
∃y.∃sizey .sizey ≥ size ∧ (y, sizey , Alloc) ∈ l ∧ entry=y ∧ x 6= y

ff

14 result <- entry + 2;

8

<

:

∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧
∃y.∃sizey .sizey ≥ size ∧ (y, sizey , Alloc) ∈ l ∧

entry=y ∧ result=entry+2 ∧ x 6= y

9

=

;

15 ).

8

>

>

>

<

>

>

>

:

∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧
0

B

B

@

∃y.∃sizey .sizey ≥ size ∧ (y, sizey , Alloc) ∈ l ∧
entry=y ∧ result=entry+2 ∧ x 6= y

∨
result=0

1

C

C

A

9

>

>

>

=

>

>

>

;

Hp(l)
def
= Heap-list l hmStart 0

Figure B.1: Sketch of hmAlloc proof (the proofs for grayed instructions appear
in Fig. B.2, Fig. B.3, and Fig. B.4)
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Definition findFree size entry fnd sz stts :=
˘

∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx)
¯

1 entry <- hmStart;
˘

. . .
¯

2 stts <-* (entry -.> status);
˘

. . .
¯

3 fnd <- 0;

8

>

>

<

>

>

:

∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧
entry=hmStart ∧

∃status.(status=Alloc ∨ status=Free) ∧ stts=status∧
∃size′.(hmStart, size′, status) ∈ l ∧ fnd=0

9

>

>

=

>

>

;

4 while ((entry =/= null) &&& (fnd =/= 1)) (

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx)
∧

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

∃bloc adr.entry=bloc adr ∧ bloc adr > 0 ∧
fnd=1 ∧

∃size′.size′ ≥ size ∧ (bloc adr, size′, Free) ∈ l
∨

fnd=0 ∧
∃status.(status=Alloc ∨ status=Free) ∧

stts=status ∧ ∃size′.(bloc adr, size′, Free) ∈ l
∨

fnd=0 ∧
(Heap-list l hmStart bloc adr **

Heap-list nil bloc adr 0)

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

∨
entry=0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

5 stts <-* (entry -.> status);
˘

. . .
¯

6 ENTRYSIZE entry sz;
˘

. . .
¯

7 ifte ((stts == Free) &&& (sz >>= size)) thendo
˘

. . .
¯

8 fnd <- 1

8

>

>

<

>

>

:

∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧
∃bloc adr.entry=bloc adr ∧ bloc adr > 0 ∧

fnd=1 ∧
∃size′.size′ ≥ size ∧ (bloc adr, size′, Free) ∈ l

9

>

>

=

>

>

;

9 elsedo
˘

. . .
¯

10 entry <-* (entry -.> next)
˘

. . .
¯

11 ).

8

>

>

>

<

>

>

>

:

∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧
0

B

B

@

∃y.∃sizey . sizey ≥ size ∧
(y, sizey , Free) ∈ l ∧ entry=y

∨
entry = 0

1

C

C

A

9

>

>

>

=

>

>

>

;

Hp(l)
def
= Heap-list l hmStart 0, only relevant assertions are displayed, the loop invariant is boxed

Figure B.2: Sketch of findFree proof (partial proof of hmAlloc in Fig. B.1)
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Definition compact cptr nptr stts :=



∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ cptr=hmStart ∧
Init-array (x+2) (listx)

ff

1
(* cptr points to the current block *)

while (cptr =/= null) (

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧
Init-array (x+2) (listx) ∧ ∃y.cptr=y

∧
0

B

B

B

B

B

@

∃sz.∃st.∃l1.∃l2.
l=(l1++((y, sz, st) ::nil)++l2)

∨
(Heap-list l hmStart y**Heap-list nil y 0)

∨
y = 0

1

C

C

C

C

C

A

9

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

;

2 stts <-* (cptr -.> status);
˘

. . .
¯

3 ifte (stts == Free) thendo (
˘

. . .
¯

4 nptr <-* (cptr -.> next);
˘

. . .
¯

5
(* nptr points to the block

next to cptr *)

while (nptr =/= null) (

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧
Init-array (x+2) (listx) ∧ ∃y.cptr=y

∧
0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

∃sz.∃l1.∃l2.
l=(l1++((y, sz, Free) ::nil)++l2) ∧

nptr=y+2+sz
∨

∃sz.∃sz′.∃l1.∃l2.
l=(l1++((y, sz, Free) ::

(y+2+sz, sz′, Alloc) ::nil)++l2) ∧
nptr=y+2+sz

∨
∃sz.∃l1.

l=(l1++((y, sz, Free) ::nil)) ∧
nptr=0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

6 stts <-* (nptr -.> status);
˘

. . .
¯

7 ifte (stts == Free) thendo (
˘

. . .
¯

8 stts <-* (nptr -.> next);

8

>

>

>

>

>

<

>

>

>

>

>

:

∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧
Init-array (x+2) (listx) ∧ ∃y.cptr=y

∧
∃sz.∃sz′.∃l1.∃l2.

l=(l1++((y, sz, Free) :: (y+2+sz, sz′, Free) ::nil)++l2) ∧
nptr=y+2+sz ∧ stts=y+4+sz+sz′

9

>

>

>

>

>

=

>

>

>

>

>

;

Compaction

9 (cptr -.> next) *<- stts;

8

>

>

>

>

>

<

>

>

>

>

>

:

∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧
Init-array (x+2) (listx) ∧ ∃y.cptr=y

∧
∃sz.∃sz′.∃l1.∃l2.

l=(l1++((y, sz + 2 + sz′, Free) ::nil)++l2) ∧
nptr=y+2+sz ∧ stts=y+4+sz+sz′

9

>

>

>

>

>

=

>

>

>

>

>

;

10 nptr <- stts
˘

. . .
¯

11 ) elsedo (
˘

. . .
¯

12 nptr <- null
˘

. . .
¯

13 )
˘

. . .
¯

14 )
˘

. . .
¯

15 ) elsedo (
˘

. . .
¯

16 skip
˘

. . .
¯

17 )
˘

. . .
¯

18 cptr <-* (cptr -.> next)
˘

. . .
¯

19 ).
˘

∃l.Hp(l) ∧ (x, size, Alloc) ∈ l ∧ Init-array (x+2) (listx)
¯

Hp(l)
def
= Heap-list l hmStart 0, only relevant assertions are displayed, loop invariants are boxed, the grayed area

corresponds to a heap-list lemma application

Figure B.3: Sketch of compact proof (partial proof of hmAlloc in Fig. B.1)
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Definition split entry size cptr sz :=

8

<

:

∃l. Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧
∃y.∃sizey .sizey ≥ size ∧ (y, sizey , Free) ∈ l ∧

entry=y ∧ x 6= y

9

=

;

1 ENTRYSIZE entry sz;

8

<

:

∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧
∃y.∃sizey .sizey ≥ size ∧ (y, sizey , Free) ∈ l ∧

entry=y ∧ x 6= y ∧ sz=sizey

9

=

;

2 ifte (sz >>= (size + LEFTOVER + 2) thendo (

8

<

:

∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧
∃y.∃sizey .sizey ≥ size ∧ (y, sizey , Free) ∈ l ∧

entry=y ∧ x 6= y ∧ sz=sizey

9

=

;

3 cptr <- (entry + 2 + size);
˘

. . .
¯

4 sz <-* (entry -.> next);

8

>

>

<

>

>

:

∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧
∃y.∃sizey .sizey ≥ size ∧ (y, sizey , Free) ∈ l ∧

cptr=entry+2+size ∧ sz=y+2+sizey ∧
entry = y ∧ x 6= y

9

>

>

=

>

>

;

Splitting
5 (cptr -.> next) *<- sz;

˘

. . .
¯

6 (cptr -.> status) *<- Free;
˘

. . .
¯

7 (entry -.> next) *<- cptr

8

<

:

∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧
∃y.∃sizey .sizey ≥ size ∧ (y, sizey , Free) ∈ l ∧

entry=y ∧ x 6= y

9

=

;

8 ) elsedo (
˘

. . .
¯

9 skip
˘

. . .
¯

10 );

8

<

:

∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧
∃y.∃sizey .sizey ≥ size ∧ (y, sizey , Free) ∈ l ∧

entry=y ∧ x 6= y

9

=

;

Change-status

11 (entry -.> status) *<- Allocated.

8

<

:

∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧
∃y.∃sizey .sizey ≥ size ∧ (y, sizey , Alloc) ∈ l ∧

entry=y ∧ x 6= y

9

=

;

Hp(l)
def
= Heap-list l hmStart 0, only relevant assertions are displayed, grayed areas correspond to a heap-list lemma

application

Figure B.4: Sketch of split proof (partial proof of hmAlloc in Fig. B.1)
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[28] Didier Galmiche and Daniel Méry. Characterizing Provability in BI’s
Pointer Logic through Resource Graphs. In 12th Int. Conf. on Logic for
Programming, Artificial Intelligence, and Reasoning (LPAR 2005), LNCS
vol. 3835, p. 459–473, Springer.

[29] Cristiano Calcagno, Philippa Gardner and Matthew Hague. From Sepa-
ration Logic to First-Order Logic. In 8th Int. Conf. on Foundations of
Software Science and Computational Structures (FOSSACS 2005), LNCS
vol. 3441, p. 395–409, Springer.

[30] Amine Chaieb and Tobias Nipkow. Verifying and Reflecting Quantifier
Elimination for Presburger Arithmetic. In 12th Int. Conf. on Logic for
Programming, Artificial Intelligence, and Reasoning (LPAR 2005), LNCS
vol. 3835, p. 367–380, Springer.

[31] Cristiano Calcagno, Dino Distefano, Peter O’Hearn and Hongseok Yang.
Beyond Reachability: Shape Abstraction in the Presence of Pointer Arith-
metic. In 13th Int. Symp. on Static Analysis (SAS 2006), LNCS vol. 4134,
p. 182–203, Springer.

[32] Nicolas Marti, Reynald Affeldt and Akinori Yonezawa. Formal Verification
of the Heap Manager of an Operating System using Separation Logic. In 8th
Int. Conf. on Formal Engineering Methods (ICFEM 2006), LNCS vol. 4260,
p. 400–419, Springer.

[33] Huu Hai Nguyen, Christina David, Shengchao Qin and Wei-Ngan Chin.
Automated Verification of Shape and Size Properties via Separation Logic.
In 8th Int. Conf. on Verification, Model Checking, and Abstract Interpre-
tation (VMCAI 2007), LNCS vol. 4349, Springer.

[34] John Harrison. Cooper’s Algorithm for Presburger Arithmetic. http:
//www.cl.cam.ac.uk/∼jrh13/atp.

[35] Nadeem Abdul Hamid, Zhong Shao, Valery Trifonov, Stefan Monnier, and
Zhaozhong Ni. A Syntactic Approach to Foundational Proof-Carrying
Code. In 7th IEEE Symposium on Logic In Computer Science (LICS 2002),
p. 89–100.

[36] Dachuan Yu and Nadeem Abdul Hamid and Zhong Shao. Building Certified
Libraries for PCC: Dynamic Storage Allocation. In 12th European Sym-
posium on Programming (ESOP 2003), volume 2618 of LNCS, p. 363–379.
Springer.

[37] Nadeem Abdul Hamid and Zhong Shao. Interfacing Hoare Logic and Type
Systems for Foundational Proof-Carrying Code. In 17th Conference on
Theorem Proving in Higher Order Logics (TPHOLs 2004), volume 3223 of
LNCS, p. 118–135. Springer.

119
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