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Abstract. There are two ways to write a program for manipulating
tree-structured data such as XML documents and S-expressions: One is
to write a tree-processing program focusing on the logical structure of
the data and the other is to write a stream-processing program focus-
ing on the physical structure. While tree-processing programs are easier
to write than stream-processing programs, tree-processing programs are
less efficient in memory usage since they use trees as intermediate data.
Our aim is to establish a method for automatically translating a tree-
processing program to a stream-processing one in order to take the best
of both worlds. We define a programming language for processing binary
trees and a type system based on ordered linear type, and show that every
well-typed program can be translated to an equivalent stream-processing
program.

1 Introduction

There are two ways to write a program for manipulating tree-structured data
such as XML documents [6] and S-expressions: One is to write a tree-processing
program focusing on the logical structure of the data and the other is to write
a stream-processing program focusing on the physical structure. For example,
as for XML processing, DOM (Document Object Mode) API and programming
language XDuce [12] are used for tree-processing, while SAX (Simple API for
XML) is for stream-processing.

Figure 1 illustrates what tree-processing and stream-processing programs
look like for the case of binary trees. The tree-processing program f takes a
binary tree t as an input, and performs case analysis on t. If t is a leaf, it
increments the value of the leaf. If t is a branch, f recursively processes the left
and right subtrees. If actual tree data are represented as a sequence of tokens (as
is often the case for XML documents), f must be combined with the function
parse for parsing the input sequence, and the function unparse for unparsing
the result tree into the output sequence, as shown in the figure. The stream-
processing program g directly reads/writes data from/to streams. It reads an
element from the input stream using the read primitive and performs case-
analysis on the element. If the input is the leaf tag, g outputs leaf to the
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Tree-processing program f :
fix f.λt.(case t of leaf x ⇒ leaf (x + 1) | node x1 x2 ⇒ node (f x1) (f x2))
Stream-processing program: g
fix g.λt.(case read() of leaf ⇒ write(leaf);write(read() + 1) | node ⇒ write(node); g (); g ())

Fig. 1. Tree-processing and stream-processing

output stream with the write primitive, reads another element, adds 1 to it,
and outputs it. If the input is the node tag, g outputs node to the output
stream and recursively calls the function g twice with the argument ().

Both of the approaches explained above have advantages and disadvantages.
Tree-processing programs are written based on the logical structure of data, so
that it is easier to write, read, and manipulate (e.g. apply program transfor-
mation like deforestation [23]) than stream-processing programs. On the other
hand, stream-processing programs have their own advantage that intermediate
tree structures are not needed, so that they often run faster than the correspond-
ing tree-processing programs.

The goal of the present paper is to achieve the best of both approaches, by
allowing a programmer to write a tree-processing program and automatically
translating the program to an equivalent stream-processing program. To clarify
the essence, we use a λ-calculus with primitives on binary trees, and show how
the translation works.

The key observation is that we can obtain from a tree-processing program
the corresponding stream-processing program simply by replacing case analyses
on an input tree with case analyses on input tokens, and replacing tree construc-
tions with stream outputs, as long as the tree-processing program traverses and
constructs trees from left to right in the depth-first manner. In fact, the stream-
processing program in Figure 1, which satisfies the above criterion, is obtained
from the tree-processing program in that way. In order to check that a program
satisfies the criterion, we use the idea of ordered linear types [19, 20]. Ordered
linear types, which are an extension of linear types [3, 22], describe not only how
often but also in which order data are used. Our type system designed based
on the ordered linear types guarantees that a well-typed program traverses and
constructs trees from left to right and in the depth-first order. Thus, every well-



Tree-processing program:
fix f.λt.(case t of leaf x ⇒ leaf x | node x1 x2 ⇒ node (f x2) (f x1))

Fig. 2. A program that swaps children of every node

typed program can be translated to an equivalent stream-processing program.
The tree-processing program f in Figure 1 is well-typed in our type system, so
that it can automatically be translated to the stream-processing program g. On
the other hand, the program in Figure 2 is not well-typed in our type system
since it accesses the right sub-tree of an input before accessing the left sub-tree.
In fact, we would obtain a wrong stream-processing program if we simply apply
the above-mentioned translation to the program in Figure 2.

The rest of the paper is organized as follows: To clarify the essence, we first
focus on a minimal calculus in Section 2–4. In Section 2, we define the source
language and the target language of the translation. We define a type system
of the source language in Section 3. Section 4 presents a translation algorithm,
shows its correctness and discuss the improvement gained by the translation. The
minimal caclulus is not so expressive; especially, one can only write a program
that does not store input/output trees on memory at all. (Strictly speaking, one
can still store some information about trees by encoding it into lambda-terms.)
Section 5 describes several extensions to recover the expressive power. With the
extensions, one can write a program that selectively buffers input/output trees
on memory, while the type system guarantees that the buffering is correctly
performed. After discussing related work in Section 6, we conclude in Section 7.

For the restriction of space, proofs are omitted in this paper. They are found
in the full version [14].

2 Language

We define the source and target languages in this section. The source language
is a call-by-value functional language with primitives for manipulating binary
trees. The target language is a call-by-value, impure functional language that
uses imperative streams for input and output.

2.1 Source Language

The syntax and operational semantics of the source language is summarized in
Figure 3.

The meta-variables x and i range over the sets of variables and integers
respectively. The meta-variable W ranges over the set of values, which con-
sists of integers i, lambda-abstractions λx.M , and binary-trees V . A binary
tree V is either a leaf labeled with an integer or a tree with two children.
(case M of leaf x ⇒ M1 | node x1 x2 ⇒ M2) performs case analysis on a
tree. If M is a leaf, x is bound to its label and M1 is evaluated. Otherwise, x1



Terms, values and evaluation contexts:

M (terms) ::= i | λx.M | x | M1 M2 | M1 + M2 | fix f.M
| leaf M | node M1 M2

| (case M of leaf x ⇒ M1 | node x1 x2 ⇒ M2)
V (tree values) ::= leaf i | node V1 V2

W (values) ::= i | λx.M | V
Es (evaluation contexts) ::= [ ] | Es M | (λx.M) Es | Es + M | i + Es

| leaf Es | node Es M | node V Es

| (case Es of leaf x ⇒ M1 | node x1 x2 ⇒ M2)

Reduction rules:

Es[i1 + i2] −→ Es[plus(i1, i2)] (Es-Plus)

Es[(λx.M)W ] −→ Es[[W/x]M ] (Es-App)

Es[fix f.M ] −→ Es[[fix f.M/f ]M ] (Es-Fix)

Es[case leaf i of leaf x ⇒ M1 | node x1 x2 ⇒ M2] −→ Es[[i/x]M1] (Es-Case1)

Es[case node V1 V2 of leaf x ⇒ M1 | node x1 x2 ⇒ M2] −→ Es[[V1/x1, V2/x2]M2]
(Es-Case2)

Fig. 3. The syntax, evaluation context and reduction rules of the source language.
plus(i1, i2) is the sum of i1 and i2.

and x2 are bound to the left and right children respectively and M2 is evaluated.
fix f.M is a recursive function that satisfies f = M . Bound and free variables
are defined as usual. We assume that α-conversion is implicitly applied so that
bound variables are always different from each other and free variables.

We write let x = M1 in M2 for (λx.M2) M1. Especially, if M2 contains no
free occurrence of x, we write M1; M2 for it.

2.2 Target Language

The syntax and operational semantics of the source language is summarized in
Figure 4. A stream, represented by the meta variable S, is a sequence consisting
of leaf , node and integers. We write ∅ for the empty sequence and write S1;S2

for the concatenation of the sequences S1 and S2.
read is a primitive for reading a token (leaf , node, or an integer) from the

input stream. write is a primitive for writing a value to the output stream. The
term (case e of leaf ⇒ e1 | node ⇒ e2) performs a case analysis on the value
of e. If e evaluates to leaf , e1 is evaluated and if e evaluates to node, e2 is
evaluated. fix f.e is a recursive function that satisfies f = e. Bound and free
variables are defined as usual.



Terms, values and evaluation contexts:

e (terms) ::= v | x | e1 e2 | e1 + e2 | fix f.e
| read e | write e | (case e of leaf ⇒ e1 | node ⇒ e2)

v (values) ::= i | leaf | node | λx.e | ()
Et (evaluation contexts) ::= [ ] | Et e | (λx.e) Et | Et + e | i + Et

| read Et | write Et

| (case Et of leaf ⇒ e1 | node ⇒ e2)

Reduction rules:

(Et[v1 + v2], Si, So) −→ (Et[plus(v1, v2)], Si, So) (Et-Plus)

(Et[(λx.M)v], Si, So) −→ (Et[[v/x]M ], Si, So) (Et-App)

(Et[fix f.e], Si, So) −→ (Et[[fix f.e/f ]e], Si, So) (Et-Fix)

(Et[read()], v; Si, So) −→ (Et[v], Si, So) (Et-Read)

(Et[write v], Si, So) −→ (Et[()], Si, So; v) (when v is an integer, leaf or node)
(Et-Write)

(Et[case leaf of leaf ⇒ e1 | node ⇒ e2], Si, So) −→ (Et[e1], Si, So) (Et-Case1)

(Et[case node of leaf ⇒ e1 | node ⇒ e2], Si, So) −→ (Et[e2], Si, So) (Et-Case2)

Fig. 4. The reduction rules of the target language.

We write let x = e1 in e2 for (λx.e2) e1. Especially, if e2 does not contain x
as a free variable, we write e1; e2 for it.

Figure 5 shows programs that take a tree as an input and calculate the sum of
leaf elements. The source program takes a tree t as an argument of the function,
and performs a case analysis on t. If t is a leaf, the program binds x to the
element and returns it. If t is a branch node, the program recursively applies
f to the left and right children and returns the sum of the results. The target
program reads a tree (as a sequence of tokens) from the input stream, performs
a case analysis on tokens, and returns the sum of leaf elements. Here, we assume
that the input stream represents a valid tree. If the input stream is in a wrong
format (e.g., when the stream is node; 1; 2), the execution gets stuck.

3 Type System

In this section, we present a type system of the source language, which guarantees
that a well-typed program reads every node of an input tree exactly once from
left to right in the depth-first order. Thanks to this guarantee, any well-typed



A source program:
fix sumtree.λt.(case t of leaf x ⇒ x | node x1 x2 ⇒ (sumtree x2) + (sumtree x1))
A target program:
fix sumtree.λt.(case read() of leaf ⇒ read() | node ⇒ sumtree () + sumtree ())

Fig. 5. Programs that calculate the sum of leaf elements of an binary tree.

program can be translated to an equivalent, stream-processing program without
changing the structure of the program, as shown in the next section. To enforce
the depth-first access order on input trees, we use ordered linear types [19, 20].

3.1 Type and Type Environment

Definition 1 (Type). The set of types, ranged over by τ , is defined by:

τ (type) ::= Int | Treed | τ1 → τ2

d (mode) ::= − | +
Int is the type of integers. For a technical reason, we distinguish between

input trees and output trees by types. We write Tree− for the type of input
trees, and write Tree+ for the type of output trees. τ1 → τ2 is the type of
functions from τ1 to τ2.

We introduce two kinds of type environments for our type system: ordered
linear type environments and (non-ordered) type environments.

Definition 2 (Ordered Linear Type Environment). An ordered linear type
environment is a sequence of the form x1:Tree−, . . . , xn:Tree−, where x1, . . . , xn

are different from each other. We write ∆1,∆2 for the concatenation of ∆1 and
∆2.

An ordered linear type environment x1 : Tree−, . . . , xn : Tree− specifies not
only that x1, . . . , xn are bound to trees, but also that each of x1, . . . , xn must
be accessed exactly once in this order and that each of the subtrees bound to
x1, . . . , xn must be accessed in the left-to-right, depth-first order.

Definition 3 (Non-Ordered Type Environment). A (non-ordered) type
environment is a set of the form {x1 :τ1, . . . , xn :τn} where x1, . . . , xn are different
from each other and {τ1, . . . , τn} does not contain Treed.

We use the meta-variable Γ for non-ordered type environments. We often
write Γ, x : τ for Γ ∪{x : τ}, and write x1 : τ1, . . . , xn : τn for {x1 : τ1, . . . , xn : τn}.

Note that a non-ordered type environment must not contain variables of tree
types. Tree− is excluded since input trees must be accessed in the specific or-
der. Tree+ is excluded in order to forbid output trees from being bound to
variables. For example, we will exclude a program like let x1 = t1 in let x2 =
t2 in node x2 x1. This restriction is convenient for ensuring that trees are con-
structed in the specific (from left to right, and in the depth-first manner) order.



Γ | x : Tree− ` x : Tree−
(T-Var1)

Γ, x : τ | ∅ ` x : τ
(T-Var2)

Γ | ∅ ` i : Int
(T-Int)

Γ | x : Tree− ` M : τ

Γ | ∅ ` λx.M : Tree− → τ
(T-Abs1)

Γ, x : τ1 | ∅ ` M : τ2

Γ | ∅ ` λx.M : τ1 → τ2

(T-Abs2)

Γ | ∆1 ` M1 : τ2 → τ1 Γ | ∆2 ` M2 : τ2

Γ | ∆1, ∆2 ` M1M2 : τ1

(T-App)

Γ | ∆1 ` M1 : Int Γ | ∆2 ` M2 : Int

Γ | ∆1, ∆2 ` M1 + M2 : Int
(T-Plus)

Γ, f : τ1 → τ2 | ∅ ` M : τ1 → τ2

Γ | ∅ ` fix f.M : τ1 → τ2

(T-Fix)

Γ | ∆ ` M : Int

Γ | ∆ ` leaf M : Tree+ (T-Leaf)

Γ | ∆1 ` M1 : Tree+ Γ | ∆2 ` M2 : Tree+

Γ | ∆1, ∆2 ` node M1 M2 : Tree+ (T-Node)

Γ | ∆1 ` M : Tree− Γ, x : Int | ∆2 ` M1 : τ Γ | x1 : Tree−, x2 : Tree−, ∆2 ` M2 : τ

Γ | ∆1, ∆2 ` case M of leaf x ⇒ M1 | node x1 x2 ⇒ M2 : τ
(T-Case)

Fig. 6. Rules of typing judgment

3.2 Type Judgment

A type judgement is of the form Γ | ∆ ` M : τ , where Γ is a non-ordered type
environment and ∆ is an ordered linear type environment. The judgment means
“If M evaluates to a value under an environment described by Γ and ∆, the
value has type τ and the variables in ∆ are accessed in the order specified by
∆.” For example, if Γ = {f : Tree− → Int} and ∆ = x1 : Tree−, x2 : Tree−,

Γ | ∆ ` node (f x1) (f x2) : Int

holds, while
Γ | ∆ ` node (f x2) (f x1) : Int

does not. The latter program violates the restriction specified by ∆ that x1 and
x2 must be accessed in this order.

Γ | ∆ ` M : τ is the least relation that is closed under the rules in Figure 6.
T-Var1, T-Var2 and T-Int are the rules for variables and integer constants.



As in ordinary linear type systems, these rules prohibit variables that do not
occur in a term from occurring in the ordered linear type environment. (In other
words, weakening is not allowed on an ordered linear type environment.) That
restriction is necessary to guarantee that each variable in an ordered linear type
environment is accessed exactly once.

T-Abs1 and T-Abs2 are rules for lambda abstraction. Note that the ordered
type environments of the conclusions of these rules must be empty. This restric-
tion prevents input trees from being stored in function closures. That makes
it easy to enforce the access order on input trees. For example, without this
restriction, the function

λt.let g = λf.(f t) in (g sumtree) + (g sumtree)

would be well-typed where sumtree is the function given in Figure 5. However,
when a tree is passed to this function, its nodes are accessed twice because
the function g is called twice. The program above is actually rejected by our
type system since the closure λf.(f t) is not well-typed due to the restriction of
T-Abs2.1

T-App is the rule for function application. The ordered linear type environ-
ments of M1 and M2, ∆1 and ∆2 respectively, are concatenated in this order
because when M1 M2 is evaluated, (1) M1 is first evaluated, (2) M2 is then
evaluated, and (3) M1 is finally applied to M2. In the first step, the variables in
∆1 are accessed in the order specified by ∆1. In the second and third steps, the
variables in ∆2 are accessed in the order specified by ∆2, On the other hand,
because there is no restriction on usage of the variables in a non-ordered type
environment, the same type environment (Γ ) is used for both subterms.

T-Leaf and T-Node are rules for tree construction. We concatenate the
ordered type environments of M1 and M2, ∆1 and ∆2, in this order as we did
in T-App.

T-Case is the rule for case expressions. If M matches node x1 x2, subtrees
x1 and x2 have to be accessed in this order after that. This restriction is expressed
by x1 : Tree−, x2 : Tree−,∆2, the ordered linear type environment of M2.

T-Fix is the rule for recursion. Note that the ordered type environment must
be empty as in T-Abs2.

The program in Figure 1 is typed as shown in Figure 7. On the other hand, the
program in Figure 2 is ill-typed: Γ | x1 :Tree−, x2 :Tree− ` node (f x2) (f x1):
Tree+ must hold for the program to be typed, but it cannot be derived by using
T-Node.

3.3 Examples of Well-typed Programs

Figure 8 shows more examples of well-typed source programs. The frist and sec-
ond programs (or the catamorphism [16]) apply the same operation on every
1 We can relax the restriction by controlling usage of not only trees but also functions,

as in the resource usage analysis [13]. The resulting type system would, however,
become very complex.



Γ | t : Tree− ` t : Tree−

.

.

.

Γ ′ | ∅ ` leaf (x + 1) : Tree+

.

.

.

Γ | x1 : Tree− ` (f x1) : Tree+

.

.

.

Γ | x2 : Tree− ` (f x2) : Tree+

Γ | x1 : Tree−, x2 : Tree− ` node (f x1) (f x2) : Tree+

Γ | t : Tree− ` case t of leaf x ⇒ leaf (x + 1) | node x1 x2 ⇒ node (f x1) (f x2) : Tree+

Γ | ∅ ` λt.case t of leaf x ⇒ leaf (x + 1) | node x1 x2 ⇒ node (f x1) (f x2) : Tree− → Tree+

∅ | ∅ ` fix f.λt.case t of leaf x ⇒ leaf (x + 1) | node x1 x2 ⇒ node (f x1) (f x2) : Tree− → Tree+

Fig. 7. An example of typing derivation. Γ = {f :Tree− → Tree+}, Γ ′ = {f :Tree− →
Tree+, x : Int}

fix tree map.λf.λt.(case t of leaf x ⇒ leaf (f x) | node x1 x2 ⇒ node (tree map f x1) (tree map f x2))
fix tree fold.λf.λg.λt.(case t of leaf n ⇒ (f n) | node t1 t2 ⇒ (g (tree fold f g t1) (tree fold f g t2)))
fix inc alt.λt.(case t of leaf x ⇒ leaf x | node x1 x2 ⇒ node

(case x1 of leaf y ⇒ leaf (y + 1)
| node y1 y2 ⇒ node (inc alt y1) (inc alt y2))

(case x2 of leaf z ⇒ leaf (z + 1)
| node z1 z2 ⇒ node (inc alt z1) (inc alt z2))

let copy tree =
fix copy tree.λt.(case t of leaf x ⇒ leaf x | node x1 x2 ⇒ node (copy tree x1) (copy tree x2)) in

let skip tree = fix skip tree.λt.(case t of leaf x ⇒ 0 | node x1 x2 ⇒ (skip tree x1); (skip tree x2)) in
λt.(case t of leaf x ⇒ leaf x | node x1 x2 ⇒ (skip tree x1); (copy tree x2))

Fig. 8. Examples of well-typed programs.

node of the input tree. (The return value of the function tree fold cannot, how-
ever, be a tree.) One can also write functions that process nodes in a non-uniform
manner, like the third program in Figure 8 (which increments the value of each
leaf whose depth is odd).

The fourth program takes a tree as an input and returns the right sub-
tree. Due to the restriction imposed by the type system, the program uses sub-
functions copy tree and skip tree for explicitly copying and skipping trees. (See
Section 7 for a method for automatically inserting those functions.)

3.4 Type Checking Algorithm

We show an algorithm that takes as an input a triple (Γ, ∆,M) consisting of a
non-ordered type environment Γ , an ordered linear type environment ∆ and a
type-annotated term M , and outputs τ such that Γ | ∆ ` M : τ and reports
failure if such τ does not exists. Here, by a type-annotated term, we mean a
term whose bound variables are annotated with types.

The algorithm is basically obtained by reading typing rules in a bottom-up
manner, but a little complication arises on the rules T-App, T-Plus, etc., for
which we do not know how to split the ordered linear type environment for
sub-terms. We avoid this problem by splitting the ordered type environment



fix f.λt.case t of leaf x ⇒ leaf x | node x1 x2 ⇒ (λt′.node (f t′) (f x2)) x1

Fig. 9. Program that is not typed due to the restriction on closures though the access
order is correct.

lazily [11]. To make the lazy splitting of the ordered type environment explicit,
we use a relation Γ | ∆ ` M : τ ↗ ∆′. The relation means that Γ | ∆1 ` M : τ
holds for ∆1 such that ∆ = ∆1,∆

′. As the specification of the type-checking
algorithm, it can be read “Given a triple (Γ, ∆, M), as an input, the algorithm
outputs the type τ of M and the unused ordered type environment ∆′.”

For example, if Γ = f : Tree− → Tree+ and ∆ = x1 : Tree−, x2 : Tree−,

Γ | ∆ ` (f x1) : Tree+ ↗ x2 : Tree−

holds.
By using the relation above, the procedure for type-checking function appli-

cations is formalized as:

Γ | ∆1 ` M1 : τ1 → τ2 ↗ ∆2 Γ | ∆2 ` M2 : τ1 ↗ ∆3

Γ | ∆1 ` M1 M2 : τ2 ↗ ∆3

The above rule specifies that given (Γ, ∆1,M1M2) as an input, we should (i)
first type-check M1 and obtain a type τ3 and the unused environment ∆2, (ii)
type-check M2 using Γ and ∆2 and obtain τ1 and the unused environment ∆3,
and then (iii) unifies τ3 with τ1 → τ2 and outputs τ2 and ∆3 as a result.

To check whether Γ | ∆ ` M : τ holds, it is sufficient to check whether
Γ | ∆ ` M : τ ↗ ∅ holds. The whole rules for the relation Γ | ∆ ` M : τ ↗ ∆′

is given in Appendix A.

4 Translation Algorithm

In this section, we define a translation algorithm for well-typed source programs
and prove its correctness.

4.1 Definition of Translation

Translation algorithm A is shown in Figure 10. A maps a source program to a
target program, preserving the structure of the source program and replacing
operations on trees with operations on streams.

4.2 Correctness of Translation Algorithm

The correctness of the translation algorithm A is stated as follows.



A(x) = x
A(i) = i
A(λx.M) = λx.A(M)
A(M1M2) = A(M1) A(M2)
A(M1 + M2) = A(M1) +A(M2)
A(fix f.M) = fix f.A(M)A(leaf M) = write(leaf);write(A(M))
A(node M1 M2) = write(node);A(M1);A(M2)
A(case M of leaf x ⇒ M1 | node x1 x2 ⇒ M2) =

case A(M); read() of leaf ⇒ let x = read() in A(M1)
| node ⇒ [()/x1, ()/x2]A(M2)

Fig. 10. Translation Algorithm

Definition 4. A function [[ · ]] from the set of trees to the set of streams is defined
by:

[[ leaf i ]] = leaf ; i
[[node V1 V2 ]] = node; [[ V1 ]]; [[ V2 ]]

Theorem 1 (Correctness of Translation).
If ∅ | ∅ ` M : Tree− → τ and τ is Int or Tree+, the following properties hold
for any tree value V :

(i) M V −→∗ i if and only if (A(M)(), [[V ]], ∅) −→∗ (i, ∅, ∅)
(ii) M V −→∗ V ′ if and only if (A(M)(), [[ V ]], ∅) −→∗ ((), ∅, [[ V ′ ]])

The above theorem means that a source program and the corresponding target
program evaluates to the same value. The clause (i) is for the case where the
result is an integer, and (ii) is for the case where the result is a tree.

We give an outline of the proof of Theorem 1 below. The basic idea of the
proof is to show a correspondence between reduction steps of a source program
and those of the target program. However, the reduction semantics given in
Section 2 is not convenient for showing the correspondence. We define another
reduction semantics of the source language and prove: (1) the new semantics
is equivalent to the one in Section 2 (Corollary 1 below), and (2) evaluation
of the source program based on the new semantics agrees with evaluation of
the corresponding target program (Theorem 3 below). First, we define a new
operational semantics of the source language. The semantics takes the access
order of input trees into account.

Definition 5 (Ordered Environment). An ordered environment is a sequence
of the form x1 7→ V1, . . . , xn 7→ Vn, where x1, . . . , xn are distinct from each other.

We use a meta-variable δ to represent an ordered environment. Given an ordered
environment x1 7→ V1, . . . , xn 7→ Vn, a program must access variables x1, . . . , xn

in this order.

Definition 6 (New Reduction Semantics). The reduction relation (M, δ) −→
(M ′, δ′) is the least relation that satisfies the rules in Figure 11.



U ::= x | i | λx.M

(Es[i1 + i2], δ) −→ (Es[plus(i1, i2)], δ) (Es2-Plus)

(Es[(λx.M)U ], δ) −→ (Es[[U/x]M ], δ) (Es2-App)

(Es[case y of leaf x ⇒ M1 | node x1 x2 ⇒ M2], (y 7→ leaf i, δ)) −→ (Es[[i/x]M1], δ)
(Es2-Case1)

(Es[case y of leaf x ⇒ M1 | node x1 x2 ⇒ M2], (y 7→ node V1 V2, δ))
−→ (Es[M2], (x1 7→ V1, x2 7→ V2, δ))

(Es2-Case2)

(Es[fix f.M ], δ) −→ (Es[[fix f.M/f ]M ], δ) (Es2-Fix)

Fig. 11. The new reduction semantics of the source language.

The meta-variable U in Figure 11 ranges over the set of trees and non-tree values.
The differences between the new reduction semantics above and the original one
in Section 2 are: (1) input trees are substituted in the original semantics while
they are held in ordered environments in the new semantics (compare Es-Case2
with Es2-Case2), and (2) input trees must be accessed in the order specified
by δ in the new semantics (note that variable y that is being referred to must
be at the head of the ordered environment in Es2-Case1 and Es2-Case2).
Thus, evaluation based on the new semantics can differ from the one in Section
2 only when the latter one succeeds while the former one gets stuck due to
the restriction on access to input trees. As the following theorem (Theorem 2)
states, that cannot happen if the program is well-typed, so that both semantics
are equivalent for well-typed programs (Corollary 1).

Theorem 2. Suppose Γ | 〈〈δ〉〉 ` M : τ . Then the following conditions hold.

– M is a value or a variable, or (M, δ) −→ (M ′, δ′) holds for some M ′ and δ′.
– If (M, δ) −→ (M ′, δ′) holds, then Γ | 〈〈δ′〉〉 ` M ′ : τ .

Corollary 1. If ∅ | ∅ ` M : Tree− → τ and if τ ∈ {Int,Tree+}, MV −→∗ W
if and only if (Mx, x 7→ V ) −→∗ (W, ∅) for any tree value V .

The following theorem states that the evaluation of a source program under
the new rules agrees with the evaluation of the target program.

Theorem 3. If ∅ | ∅ ` M : Tree− → τ and τ ∈ {Int,Tree+} holds, the
following statements hold for any tree value V .

(i) (Mx, x 7→ V ) −→∗ (i, ∅) holds if and only if
(A(M)(), [[ V ]], ∅) −→∗ (i, ∅, ∅))

(ii) If (Mx, x 7→ V ) −→∗ (V ′, ∅) holds if and only if
(A(M)(), [[ V ]], ∅) −→∗ ((), ∅, [[ V ′ ]]))



I ::= (λx.M)U | i1 + i2 | (case y of leaf x ⇒ M1 | node x1 x2 ⇒ M2) | fix f.M

M ∼FV (M) (e, So) Si = 〈δ〉
(M, δ) ∼ (e, Si, So)

U ∼γ (Aγ(U), ∅) (C-Value)

V ∼γ ((), [[ V ]])
(C-Tree)

I ∼γ (Aγ(I), ∅) (C-Inst)

Es[I] ∼γ (e, So)

Es[I] M ∼γ (e Aγ(M), So)
(C-App1)

Es[I] ∼γ (e, So)

(λx.M) Es[I] ∼γ ((λx.Aγ(M)) e, So)
(C-App2)

Es[I] ∼γ (e, So)

Es[I] + M ∼γ (e +Aγ(M), So)
(C-Plus1)

Es[I] ∼γ (e, So)

i + Es[I] ∼γ (i + e, So)
(C-Plus2)

Es[I] ∼γ (e, So)

leaf Es[I] ∼γ (write(e), leaf ; So)
(C-Leaf)

Es[I] ∼γ (e, So)

node Es[I] M ∼γ (e;Aγ(M),node; So)
(C-Node1)

Es[I] ∼γ (e, So)

node V Es[I] ∼γ (e,node; [[ V ]]; So)
(C-Node2)

Es[I] ∼γ (e, So)

case Es[I] of leaf x ⇒ M1 | node x1 x2 ⇒ M2

∼γ (case e; read () of leaf ⇒ let x = read () in Aγ(M1) | node ⇒ [()/x1, ()/x2]Aγ(M2), So)
(C-Case)

Fig. 12. Correspondence between run-time states of source and target programs.

We hereafter give an outline of the proof of Theorem 3. Figure 13 illustrates
the idea of the proof (for the case where the result is a tree). The relation
∼ (defined later in Definition 8) in the diagram expresses the correspondence
between an evaluation state of a source program (M, δ) and a state of a target
program (e, Si, So). We shall show that the target program A(M) can always
be reduced to a state corresponding to the inital state of the source program M
(Lemma 1 below) and that reductions and the correspondence relation commute
(Lemma 2). Those imply that the whole diagram in Figure 13 commutes, i.e.,
the second statement of Theorem 3 holds.

To define the correspondence (M, δ) ∼ (e, Si, So) between states, we use the
following function 〈·〉, which maps an ordered environment to the corresponding
stream.

Definition 7. A function 〈·〉 from the set of ordered environments to the set of
streams is defined by:

〈∅〉 = ∅
〈x 7→ V, δ〉 = [[V ]]; 〈δ〉

Definition 8 (Correspondence between States). The relations (M, δ) ∼
(e, Si, So) and M ∼γ (e, So) are the least relations closed under the rules in
Figure 12.

In the figure, the meta-variable γ denotes a set of variables. FV(M) is a set
of free variables in M . Aγ(M) is the term obtained from A(M) by replacing



every occurrence of variables in γ with (). The meta-variable I represents the
term that is being reduced. Note that any term M can be written as Es[I] if it
is reducible.

In the relation (M, δ) ∼ (e, Si, So), e represents the rest of computation,
Si is the input stream, and So is the already output streams. For example,
(node(leaf 1)(leaf (2 + 3)), ∅) corresponds to (2 + 3, ∅,node; leaf ; 1; leaf).

We explain some of the rules in Figure 12 below.

– C-Tree: A source program V represents a state where the tree V has been
constructed. Thus, it corresponds to ((), [[ V ]]), where there is nothing to be
computed and V has been written to the output stream.

– C-Node1: A source program node Es[I] M represents a state where the
left subtree is being computed. Thus, the rest computation of the target
program is (e;Aγ(M)) where e is the rest computation in Es[I], and Aγ(M)
represents the computation for constructing the right subtree. The corre-
sponding output stream is node; So because node represents the root of the
tree being constructed, and So represents the part of the left subtree that
has been already constructed.

Lemmas 1 and 2 below imply that the whole diagram in Figure 12 commutes,
which completes the proof of Theorem 3.

Definition 9. A function 〈〈·〉〉 from the set of ordered environments to the set
of ordered linear type environments is defined by:

〈〈∅〉〉 = ∅
〈〈x 7→ V, δ〉〉 = x : Tree−, 〈〈δ〉〉

Lemma 1. Suppose ∅ | 〈〈δ〉〉 ` M : τ . Then, there exist e and Si and So that
satisfy

– (M, δ) ∼ (e, Si, So)
– (Aγ(M), 〈δ〉, ∅) −→∗ (e, 〈δ〉, So)

Lemma 2. If ∅ | 〈〈δ〉〉 ` M : τ and (M, δ) ∼ (e, Si, So), the following conditions
hold:

– If (M, δ) −→ (M ′, δ′), then there exist e′ and S′i and S′o that satisfy (e, 〈δ〉, S) −→+

(e′, 〈δ′〉, S′) and (M ′, δ′) ∼ (e′, S′i, S
′
o).

– If (e, 〈δ〉, S) is reducible,there exist M ′ and δ′ that satisfy (M, δ) −→ (M ′, δ′).

4.3 Efficiency of Translated Programs

Let M be a source program of type Tree− → Tree+. We argue below that the
target program A(M) runs more efficiently than the source program unparse ◦
M ◦ parse, where parse is a function that parses the input stream and returns a
binary tree, and unparse is a function that takes a binary tree as an input and
writes it to the output stream. Note that the fact that the target program is a



(A(M), [[ V ]], ∅) →∗ (e, [[ V ]], So) →+ (e′, S′i, S
′
o) →+ · · · →+ (e′′, S′′i , S′′o ) →+ ((), ∅, [[ V ′ ]])

(Mx, x 7→ V ) → (M ′, δ′) → · · · → (M ′′, δ′′) → (V ′, ∅)

∼ ∼ ∼ ∼

'

?Lemma 1 Lemma 2 Lemma 2

Fig. 13. Evaluation of a source and the target program.

stream-processing program does not necessarily imply that it is more efficient
than the source program: In fact, if the translation A were defined by A(M) =
unparse ◦M ◦ parse, obviously there would be no improvement.

The target program being more efficient follows from the fact that the trans-
lation function A preserves the structure of the source program, with only re-
placing tree constructions with stream outputs, and case analyses on trees with
stream inputs and case analyses on input tokens. More precisely, by inspecting
the proof of soundness of the translation (which is available in the full version
of the paper), we can observe:2

– When a closure is allocated in the execution of M (so that the heap space
is consumed), the corresponding closure is allocated in the corresponding
reduction step of A(M), and vice versa.

– When a function is called in the execution of M (so that the stack space is
consumed), the corresponding function is called in the corresponding reduc-
tion step of A(M), and vice versa.

– When a case analysis on an input tree is performed in the execution of M ,
a token is read from the input stream and a case analysis on the token is
performed in the corresponding reduction step of A(M).

– When a tree is constructed in the execution of M , the corresponding sequence
of tokens is written on the output stream in the corresponding reduction
steps of A(M).

By the observation above, we can conclude:

– The memory space allocated by A(M) is less than the one allocated by
unparse ◦M ◦ parse, by the amount of the space for storing the intermedi-
ate trees output by parse and M (except for an implementation-dependent
constant factor).

– The number of computation steps for running A(M) is the same as the one
for running unparse◦M ◦parse (up to an implementation-dependent constant
factor).

Thus, our translation is effective especially when the space for evaluating M is
much smaller than the space for storing input and output trees.

We performed a preliminary experiment to support the argument above. Fig-
ure 14 shows the execution time and the total size of allocated heap memory
2 To completely formalize these observations, we need to define another operational

semantics that makes the heap and the stack explicit.
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Fig. 14. Result of experiments. Inputs are binary trees whose height varies from 10 to
24. The experiment was performed on Sun Enterprise E4500/E5500, 400 MHz CPU,
13GB memory.

for the two versions of the program (both written manually in Objective Caml).
As expected, the stream-processing program was more efficient. Especially, the
heap memory size is constant for the stream-processing program while it is ex-
ponential in the depth of input trees for the tree-processing program.

5 Extensions

So far, we have focused on a minimal calculus to clarify the essence of our frame-
work. This section shows how to extend the framework to be used in practice.

5.1 Constructs for storing trees on memory

By adding primitives for constructing and destructing trees on memory, we can
allow programmers to selectively buffer input/output trees. Let us extend the
syntax of the source and target languages as follows:

M ::= · · · | mleaf M | mnode M1 M2

| (mcase M of mleaf x ⇒ M1 | mnode x1 x2 ⇒ M2)
e ::= · · · | mleaf e | mnode e1 e2

| (mcase e of mleaf x ⇒ e1 | mnode x1 x2 ⇒ e2)

Here, mleaf M and mnode M1 M2 are constructors of trees on memory and
mcase · · · is a destructor.

We also add type MTree, the type of trees stored on memory. The type
system imposes no restriction on access order between variables of type MTree
like type Int (so MTree is put in the ordinary type environment, not the ordered
linear type environment). The translation algorithm A simply translates a source
program, preserving the structure:

A(mleaf M) = mleaf A(M)
A(mnode M1 M2) = mnode A(M1) A(M2)

· · ·



fix strm to mem.λt.case t of leaf x ⇒ mleaf x
| node x1 x2 ⇒ mnode (strm to mem x1) (strm to mem x2)

fix mem to strm.λt.mcase t of mleaf x ⇒ leaf x
| mnode x1 x2 ⇒ node (mem to strm x1) (mem to strm x2)

Fig. 15. Definition of strm to mem and mem to strm

let mswap = fix f.λt.mcase t of mleaf x ⇒ leaf x | mnode x1 x2 ⇒ node (f x2) (f x1) in
fix swap deep.λn.λt.

if n = 0 then
mswap (strm to mem t)

else
case t of

leaf x ⇒ leaf x
| node x1 x2 ⇒ node (swap deep (n− 1) x1) (swap deep (n− 1) x2)

Fig. 16. A program which swaps children of nodes whose depth is more than n

These extensions are summarized in Appendix B.
With these primitives, a function strm to mem, which copies a tree from the

input stream to memory, and mem to strm, which writes a tree on memory to
the output stream, can be defined as shown in Figure 15.

Using the functions above, one can write a program that selectively buffers
only a part of the input tree, while the type system guarantees that the selective
buffering is correctly performed. For example, the program in Figure 16, which
swaps children of nodes whose depth is more than n, only buffers the nodes
whose depth is more than n.

The proof of Theorem 1 can be easily adapted for the extended language.

5.2 Side effects and multiple input trees

Since our translation algorithm preserves the structure of source programs, the
translation works in the presence of side effects other than stream inputs/outputs.

Our framework can also be easily extended to deal with multiple input trees,
by introducing pair constructors and refining the type judgment form to Γ |
{s1 : ∆1, . . . , sn : ∆n} ` M : τ where s1, . . . , sn are the names of input streams
and each of ∆1, . . . ,∆ is an ordered linear type environment.

In Appendix C, we present examples of programs that take multiple input
trees and use side effects.

5.3 Extention for dealing with XML

We discuss below how to extend our method to deal with XML documents.
The difference between binary trees and XML documents is that the latter

ones (i) are rose trees and (ii) contain end tags that mark the end of sequences



in the stream format. The first point can be captured as the difference between
the following types (we use ML-style type declarations):

datatype tree = leaf of int | node of tree*tree;
datatype xmltree = leaf of pcdata | node of label*attribute*treelist
and treelist = nil | cons of xmltree*treelist;

While the type tree represents binary trees, xmltree represents rose trees. Based
on the difference between these types, we can replace the case-construct of the
source language with the following two case-constructs.

caseElem t of leaf(x) ⇒ M1 | node(l, attr, tl) ⇒ M2

caseSeq tl of nil ⇒ M1 | cons(x, xl) ⇒ M2

Typing rules can also be naturally extended. For example, the typing rule for
the latter construct is:

Γ | ∆1 ` tl : treelist Γ | ∆2 ` M1 : τ Γ | x : xmltree, xl : treelist,∆2 ` M2 : τ

Γ | ∆1,∆2 ` caseSeq tl of nil ⇒ M1 | cons(x, xl) ⇒ M2 : τ

The restriction on the access order is expressed by x : xmltree, xl : treelist,∆2,
as in T-Node.

The translation algorithm (1) maps the pattern nil in the source language to
the pattern for closing tags. (2) prepares a stack and confirms well-formedness
of input documents. Typing rules and the definition of the translation algorithm
for these constructs are found in Appendix D.

6 Related Work

Nakano and Nishimura [17, 18] proposed a method for translating tree-processing
programs to stream-processing programs using attribute grammars. In their
method, programmers write XML processing with an attribute grammar. Then,
the grammar is composed with parsing and unparsing grammars by using the
descriptional composition [8] and translated to a grammar that directly deals
with streams. Quasi-SSUR condition in [18] and single use requirement in [17],
which force attributes of non-terminal symbols to be used at most once, seems to
correspond to our linearity restriction on variables of tree types, but there seems
to be no restriction that corresponds to our order restriction. As a result, their
method can deal with programs (written as attribute grammars) that violate the
order restriction of our type system (although in that case, generated stream-
processing programs store a part of trees in memory, so that the translation may
not improve the efficiency). On the other hand, an advantage of our method is
that programs are easier to read and write since one can write programs as ordi-
nary functional programs except for the restriction imposed by the type system,
rather than as attribute grammars. Another advantage of our method is that
we can deal with source programs that involve side-effects (e.g. programs that



N → node N1 N2

N1.inh = f1 N.inh
N2.inh = f2 N.inh N1.syn N1.inh
N.syn = f3 N.inh N1.syn N1.inh N2.syn N2.inh

N → leaf i
N.syn = f4 N.inh i

fix f.λinh.λt.case t of
leaf x ⇒ f4 inh x
node x1 x2 ⇒

let N1.inh = f1 inh in
let N1.syn = f N1.inh x1 in
let N2.inh = f2 N.inh N1.syn N1.inh in
let N2.syn = f N2.inh x2 in

f3 N.inh N1.syn N1.inh N2.syn N2.inh

Fig. 17. L-attributed grammar over binary trees and corresponding program.

N → node N1 N2

N1.depth = N.depth + 1
N2.depth = N.depth + 1
N.result = node N1.result N2.result

N → leaf i
if N.depth mod 2 = 0 then

N.result = leaf (i + 1)
else

N.result = leaf i

Fig. 18. L-attributed grammar that corresponds to inc alt in Figure 8.

print the value of every leaf) while that seems difficult in their method based on
attribute grammars (since the order is important for side effects).

The class of well-typed programs in our language seems to be closely related
to the class of L-attributed grammars [1]. In fact, any L-attributed grammar
over the binary tree can be expressed as a program as shown in Figure 17. If
output trees are not used in attributes, the program is well-typed. Conversely,
any program that is well-typed in our language seems to be definable as an
L-attribute grammar. The corresponding attribute grammar may, however, be
awkward, since one has to encode control information into attributes. For ex-
ample, the attribute grammar corresponding to inc alt is shown in Figure 18.

There are other studies on translation of tree-processing programs into stream-
processing programs. Some of them [2, 9, 10] deal with XPath expressions [4, 21]
and others [15] deal with XQuery [5, 7]. Those translations are more aggressive
than ours in the sense that the structure of source programs is changed so that
input trees can be processed in one path. On the other hand, their target lan-



guages (XPath and XQuery languages) are restricted in the sense that they do
not contain functions and side-effects.

There are many studies on program transformation [16, 23] for eliminating
intermediate data structures of functional programs, known as deforestation or
fusion. Although the goal of our translation is also to remove intermediate data
structures from unparse ◦ f ◦ parse, the previous methods are not directly appli-
cable since those methods do not guarantee that transformed programs access
inputs in a stream-processing manner. In fact, swap in Figure 2, which violates
the access order, can be expressed as a treeless program [23] or a catamor-
phism [16], but the result of deforestation is not an expected stream-processing
program.

Actually, there are many similarities between the restriction of treeless pro-
gram [23] and that of our type system. In treeless programs, (1) variables have
to occur only once, and (2) only variables can be passed to functions. (1) corre-
sponds to the linearity restriction of our type system. (2) is the restriction for
prohibiting trees generated in programs to be passed to functions, which corre-
sponds to the restriction that functions cannot take values of type Tree+ in our
type system. The main difference is that:

– Our type system additionally imposes a restriction on the access order. This
is required to guarantee that translated programs read input streams se-
quentially.

– We restrict programs with a type system, while the restriction on treeless
programs is syntactic. Our type-based approach enables us to deal with
higher-order functions. The type-based approach is also useful for automatic
inference of selective buffering of trees, as discussed in Section 7.

The type system we used in this paper is based on the ordered linear logic
proposed by Polakow [20]. He proposed a logic programming language Olli and
logical framework OLF based on the logic. There are many similarities between
our typing rules and his derivation rules for the ordered linear logic. For exam-
ple, our type judgment Γ | ∆ ` M : τ corresponds to the judgment Γ ; ·; ∆ ` A
of ordered linear logic. The rule T-Abs1 corresponds to a combination of the
rules for an ordered linear implication and the modality (!). There is not, how-
ever, a complete correspondence, probably mainly because of the call-by-value
semantics of our language. Petersen et al. [19] used ordered linear types to guar-
antee correctness of memory allocation and data layout. While they used an
ordered linear type environment to express a spatial order, we used it to express
a temporal order.

7 Conclusion

We have proposed a type system based on ordered linear types to enable trans-
lation of tree-processing programs into stream-processing programs, and proved
the correctness of the translation.



As we stated in Section 3 and Section 5, one can write tree-processing pro-
grams that selectively skip and/or buffer trees by using skip tree, copy tree,
strm to mem and mem to strm. However, inserting those functions by hand is
sometimes tedious. We are currently studying a type-directed, source-to-source
translation for automatically inserting these functions. For example, the rules
for skip tree, copy tree and strm to mem are:

Γ | ∆ ` M =⇒ M ′ : τ

Γ | x : Tree−,∆ ` M =⇒ skip tree(x); M ′ : τ
(Tr-Skip)

Γ | ∆ ` M =⇒ M ′ : Tree−

Γ | ∆ ` M =⇒ copy tree(M ′) : Tree+
(Tr-Copy)

Γ, x : MTree | ∆ ` M =⇒ M ′ : τ

Γ | x : Tree−,∆ ` M =⇒ let x = strm to mem(x) in M ′ : τ
(Tr-StrToMem)

The relation Γ | ∆ ` M =⇒ M ′ : τ means that the source program M can be
translated to the equivalent source program M ′ which uses skip tree, strm to mem,
etc. such that Γ | ∆ ` M ′ : τ .

In addition to application to XML processing, our translation framework may
also be useful for optimization of distributed programs that process and commu-
nicate complex data structures. Serialization/unserialization of data correspond
to unparsing/parsing in Figure 1, so that our translation framework can be used
for eliminating intermediate data structures and processing serialized data di-
rectly.
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Γ | x : Tree−, ∆ ` x : Tree− ↗ ∆
(T-Var1)

Γ, x : τ | ∆ ` x : τ ↗ ∆
(T-Var2)

Γ | ∆ ` i : Int ↗ ∆
(T-Int)

Γ | x : Tree−, ∆ ` M : τ ↗ ∆

Γ | ∆ ` λx.M : Tree− → τ ↗ ∆
(T-Abs1)

Γ, x : τ1 | ∆ ` M : τ2 ↗ ∆

Γ | ∆ ` λx.M : τ1 → τ2 ↗ ∆
(T-Abs2)

Γ | ∆ ` M1 : τ2 → τ1 ↗ ∆′ Γ | ∆′ ` M2 : τ2 ↗ ∆′′

Γ | ∆ ` M1M2 : τ1 ↗ ∆′′ (T-App)

Γ | ∆ ` M1 : Int ↗ ∆′ Γ | ∆′ ` M2 : Int ↗ ∆′′

Γ | ∆ ` M1 + M2 : Int ↗ ∆′′ (T-Plus)

Γ | ∆ ` M : Int ↗ ∆′

Γ | ∆ ` leaf M : Tree+ ↗ ∆′ (T-Leaf)

Γ | ∆ ` M1 : Tree+ ↗ ∆′ Γ | ∆′ ` M2 : Tree+ ↗ ∆′′

Γ | ∆ ` node M1 M2 : Tree+ ↗ ∆′′ (T-Node)

Γ | ∆ ` M : Tree− ↗ ∆′ Γ, x : Int | ∆′ ` M1 : τ ↗ ∆′′

Γ | x1 : Tree−, x2 : Tree−, ∆′ ` M2 : τ ↗ ∆′′

Γ | ∆ ` (case M of leaf x ⇒ M1 | node x1 x2 ⇒ M2) : τ ↗ ∆′′ (T-Case)

Γ, f : τ1 → τ2 | ∆ ` M : τ1 → τ2 ↗ ∆

Γ | ∆ ` fix f.M : τ1 → τ2 ↗ ∆
(T-Fix)

Fig. 19. Rules for Type Checking

A Type Checking Algorithm

The relation Γ | ∆ ` M : τ ↗ ∆′ mentioned in Section 3.4 is defined as the least
relation closed under the rules in Figure 19.

B Extended Languages, Type System and Translation
Algorithm

Figure 20 shows the extended languages, type system and translation algorithm
for selective buffering of input trees.



M ::= i | λx.M | x | M1 M2 | M1 + M2

| leaf M | node M1 M2 | mleaf M | mnode M1 M2

| (case M of leaf x ⇒ M1 | node x1 x2 ⇒ M2)
| (mcase M of mleaf x ⇒ M1 | mnode x1 x2 ⇒ M2)
| fix f.M

e ::= v | x | e1 e2 | e1 + e2

| read e | write e
| mleaf M | mnode M1 M2

| (mcase M of mleaf x ⇒ M1 | mnode x1 x2 ⇒ M2)
| (case e of leaf ⇒ e1 | node ⇒ e2)
| fix f.e

Γ | ∆ ` M : Int

Γ | ∆ ` mleaf M : MTree
(T-MLeaf)

Γ | ∆1 ` M1 : MTree Γ | ∆2 ` M2 : MTree

Γ | ∆1, ∆2 ` mnode M1 M2 : MTree
(T-MNode)

Γ | ∆1 ` M : MTree Γ, x : Int | ∆2 ` M1 : τ Γ, x1 : MTree, x2 : MTree | ∆2 ` M2 : τ

Γ | ∆1, ∆2 ` mcase M of mleaf x ⇒ M1 | mnode x1 x2 ⇒ M2 : τ
(T-MCase)

A(mleaf M) = mleaf A(M)
A(mnode M1 M2) = mnode A(M1) A(M2)
A(mcase M of mleaf x ⇒ M1 | mnode x1 x2 ⇒ M2) =

mcase A(M) of mleaf x ⇒ A(M1) | mnode x1 x2 ⇒ A(M2)

Fig. 20. Extended languages, type system and translation algorithm

C Examples of programs that use side effects and take
multiple input trees

Figure 21 shows a program that prints out integer elements to standard error
output in right-to-left, depth-first manner.

Figure 22 shows a program that takes two input trees and returns whether
they are identical. Note that the structure-preserving translation works.

D Extensions for XML processing

Figure 23 shows typing rules and the definition of A for XML processing con-
structs we mentioned in Section 5. readtoken() reads an element from the input
stream where the element is either start tag(l, attr), end tag(l), pcdata(x) or
end of file. The primitive unread() cancels the previous read operation. Values
of type attribute are stored on memory like values of type pcdata, because at-
tributes can occur in an arbitrary order (e.g., <a b=’’foo’’ c=’’baa’’> and <a



Source program
let f ’ = fix f ′.λt.mcase t of mleaf x ⇒ print err x | mnode x1 x2 ⇒ (f ′ x2); (f

′ x1) in
fix f.λt.case t of

leaf x ⇒ print err x
| node x1 x2 ⇒ let mt = strm to mem x1 in (f x2); (f

′ mt)

Target program
let f ’ = fix f ′.λt.mcase t of mleaf x ⇒ print err x | mnode x1 x2 ⇒ (f ′ x2); (f

′ x1) in
fix f.λt.case read () of

leaf ⇒ let x = read() in print err x
| node ⇒ let mt = strm to mem () in (f ()); (f ′ mt)

Fig. 21. A program that prints out integer elements to standard error output in right-
to-left, depth-first manner.

Source program
fix eq.λ(t1, t2).

case t1 of
leaf x ⇒ (case t2 of leaf y ⇒ x = y | node x1 x2 ⇒ false)

| node x1 x2 ⇒
(case t2 of leaf y ⇒ false | node y1 y2 ⇒ eq (x1, y1) && eq (x2, y2))

Target program
fix eq.λ(t1, t2).

case read(t1) of
leaf ⇒ let x = read(t1)in

(case read(t2) of leaf ⇒ let y = read(t2) in x = y | node ⇒ false)
| node ⇒ (case read(t2) of leaf ⇒ let y = read(t2) in false

| node ⇒ eq (t1, t2) && eq (t1, t2))

Fig. 22. A program that takes two input trees and returns whether they are identical

c=’’baa’’ b=’’foo’’> have the same meaning). Thus, type attribute is put
in the ordinary type environment , not in the ordered linear type environment,
in the rule T-CaseElem.

In target programs, a stack is used to check well-formedness of input docu-
ments. When a start tag is read, the tag is pushed on the stack. When an end
tag is read, it is compared with the tag stored on the top of the stack.

Note that the pattern nil in the source language is translated to the pattern
for closing tags.

E The Proof of Theorem 2

In this section, we prove Theorem 2. We prepare the following lemma to prove
the theorem.



Γ | ∆1 ` M : xmltree Γ, x : pcdata | ∆2 ` M2 : τ
Γ, l : label, attr : attribute | tl : treelist, ∆2 ` M1 : τ

Γ | ∆1, ∆2 ` caseElem M of node(l, attr, tl) ⇒ M1 | leaf(x) ⇒ M2 : τ
(T-CaseElem)

Γ | ∆1 ` tl : treelist Γ | ∆2 ` M1 : τ Γ | x : xmltree, xl : treelist, ∆2 ` M2 : τ

Γ | ∆1, ∆2 ` caseSeq tl of nil ⇒ M1 | cons(x, xl) ⇒ M2 : τ
(T-CaseSeq)

A(caseElem M of node(l, attr, tl) ⇒ M1 | leaf(x) ⇒ M2) =
case readtoken() of

start tag(l, attr) ⇒ push(l); [()/tl]A(M1)
| pcdata(x) ⇒ A(M2)
| ⇒ raise IllFormedException (* end tag or end of file *)

A(caseSeq M of nil ⇒ M1 | cons(x, xs) ⇒ M2) =
case readtoken() of

end tag(l) ⇒ let l′ = pop() in
if l = l′ then A(M1) else raise IllFormedException

| ⇒ (unread(); [()/x, ()/xs]A(M2))

Fig. 23. Typing rules and definition of translation for XML processing constructs

Lemma 3 (type substitution). If Γ, x : τ ′ | ∆ ` M : τ and Γ | ∅ ` N : τ ′ hold,
Γ | ∆ ` [N/x]M : τ .

Proof. We use induction on the derivation tree of Γ, x : τ ′ | ∆ ` M : τ .

– Case T-Var1:
M = z
∆ = z : Tree−

Since [N/x]z = z, we have Γ | ∆ ` [N/x]M : τ .
– Case T-Var2:

M = z
z : τ ′ ∈ {Γ, x : τ ′}
∆ = ∅

If z = x, then [N/x]M = N and τ = τ ′. Thus, Γ | ∆ ` [N/x]M : τ holds
from the assumption Γ | ∅ ` N : τ ′. If z 6= x, then [N/x]M = z. Thus,
Γ | ∆ ` [N/x]M : τ holds.

– Case T-Int:
M = i
τ = Int,
∆ = ∅

Since [N/x]M = M , we have Γ | ∆ ` [N/x]M : τ .
– Case T-Abs1:

M = λz.M2

τ = Tree− → τ2



Γ, x : τ ′ | z : Tree− ` M2 : τ2

∆ = ∅
Γ | z : Tree− ` [N/x]M2 : τ2 follows from the induction hypothesis. Thus,
Γ | ∅ ` λz.[N/x]M2 : Tree− → τ2 follows from T-Abs1. Because [N/x]M =
λz.[N/x]M2 (Note that we assume that every bound variable be different as
we mentioned in Section 2.1), we have Γ | ∆ ` [N/x]M : τ as required.

– Case T-Abs2:
M = λz.M1

τ = τ1 → τ2

Γ, x : τ ′, z : τ1 | ∅ ` M1 : τ2

∆ = ∅
Γ, z : τ1 | ∅ ` [N/x]M1 : τ2 follows from the induction hypothesis. Thus,
Γ | ∅ ` λz.[N/x]M2 : τ1 → τ2 follows from T-Abs2. Because [N/x]M =
λz.[N/x]M2, we have Γ | ∆ ` [N/x]M : τ as required.

– Case T-App:
M = M1M2

Γ, x : τ ′ | ∆1 ` M1 : τ2 → τ
Γ, x : τ ′ | ∆2 ` M2 : τ2

∆ = ∆1,∆2

Γ | ∆1 ` [N/x]M1 : τ2 → τ and Γ | ∆2 ` [N/x]M2 : τ2 follow from the
induction hypothesis. Because ([N/x]M1 [N/x]M2) = [N/x](M1 M2), we
have Γ | ∆ ` [N/x]M : τ from T-App as required.

– Case T-Plus:
M = M1 + M2

τ = Int
Γ, x : τ ′ | ∆1 ` M1 : Int
Γ, x : τ ′ | ∆2 ` M2 : Int
∆ = ∆1,∆2

Γ | ∆1 ` [N/x]M1 : Int and Γ | ∆2 ` [N/x]M2 : Int follow from the
induction hypothesis. Because [N/x]M1 + [N/x]M2 = [N/x](M1 + M2), we
have Γ | ∆ ` [N/x]M : τ from T-Plus.

– Case T-Leaf:
M = leaf M1

τ = Tree+

Γ, x : τ ′ | ∆ ` M1 : Int
Γ | ∆ ` [N/x]M1 : Int follows from the induction hypothesis. Because
leaf [N/x]M1 = [N/x](leaf M1), we have Γ | ∆ ` [N/x]M :τ from T-Leaf.

– Case T-Node:
M = node M1 M2

τ = Tree+

Γ, x : τ ′ | ∆1 ` M1 : Tree+

Γ, x : τ ′ | ∆2 ` M2 : Tree+

∆ = ∆1,∆2

Γ | ∆1 ` [N/x]M1 : Tree+ and Γ | ∆2 ` [N/x]M2 : Tree+ follow from the
induction hypothesis. Because node [N/x]M1 [N/x]M2 = [N/x](node M1 M2),
we have Γ | ∆ ` [N/x]M : τ from T-Node.



– Case T-Case:
M = case M0 of leaf z ⇒ M1 | node z1 z2 ⇒ M2

Γ, x : τ ′ | ∆1 ` M0 : Tree−

Γ, x : τ ′, z : Int | ∆1 ` M1 : τ
Γ, x : τ ′ | z1 : Tree−, z2 : Tree−,∆2 ` M2 : τ
∆ = ∆1,∆2

Γ | ∆1 ` [N/x]M0 : Tree− and Γ, z : Int | ∆2 ` [N/x]M1 : τ and Γ |
z1 : Tree−, z2 : Tree−, ∆2 ` M2 : τ follow from the induction hypothesis.
Because case [N/x]M0 of leaf z ⇒ [N/x]M1 | node z1 z2 ⇒ [N/x]M2 =
[N/x]M , we have Γ | ∆ ` [N/x]M : τ from T-Case.

– Case T-Fix:
M = fix f.M1,
τ = τ1 → τ2

Γ, x : τ ′, f : τ1 → τ2 | ∆ ` M1 : τ1 → τ2

Γ, f : τ1 → τ2 | ∆ ` [N/x]M1 : τ1 → τ2 follows from the induction hypothe-
sis. Because fix f.[N/x]M1 = [N/x](fix f.M1), we have Γ | ∆ ` [N/x]M : τ
from T-Fix.

¤

Proof of Theorem 2. The first condition can be easily proved by induction on the
derivation tree of Γ | 〈〈δ〉〉 ` M : τ . Here we only show the proof of the second
condition.

From the assumption (M, δ) −→ (M ′, δ′), there exist Es and I that satisfy
M = Es[I]. We use structural induction on Es.

– Case Es = [ ].

• Case I = i1 + i2.
〈〈δ〉〉 = ∅ and τ = Int follow from the assumption Γ | 〈〈δ〉〉 ` M : τ
and T-Plus and T-Int. M ′ = plus(i1, i2) and δ′ = δ (and thus, δ′ = ∅)
follow from Es2-Plus. Thus, Γ | 〈〈δ′〉〉 ` plus(i1, i2) : Int holds from
T-Int as required.

• Case I = (λx.N) U .
First, suppose U = i or U = λy.N ′ for some i or y and N ′. Then, δ = ∅
and Γ | ∅ ` U : τ ′ and Γ, x : τ ′ | ∅ ` N : τ follow from the assumption
Γ | 〈〈δ〉〉 ` M : τ and T-App and T-Abs2. M ′ = [U/x]N and δ′ = δ
(and thus, δ′ = ∅) follow from Es2-App. Thus, Γ | 〈〈δ′〉〉 ` M ′ : τ follows
from Lemma 3 as required.
Next, suppose U = y for some y. Then, M ′ = [y/x]N and δ′ = δ follow
from Es2-App. 〈〈δ〉〉 = y : Tree− and Γ | x : Tree− ` N : τ follow from
the assumption Γ | 〈〈δ〉〉 ` M : τ and T-App and T-Abs1. Thus, as
easily seen, Γ | y : Tree− ` [y/x]N : τ . Thus, Γ | 〈〈δ′〉〉 ` M ′ : τ follows
as required.

• Case I = (case y of leaf x ⇒ M1 | node x1 x2 ⇒ M2) with δ = (y 7→
leaf i, δ′′).
Γ | 〈〈δ〉〉 ` M : τ must have been derived by using T-Case. Thus,



we have Γ, x : Int | 〈〈δ′′〉〉 ` M1 : τ . Because Γ | ∅ ` i : Int, we have
Γ | 〈〈δ′′〉〉 ` [i/x]M1 : τ from Lemma 3. Because M ′ = [i/x]M1 and
δ′ = δ′′ follow from Es2-Case1, we have Γ | 〈〈δ′〉〉 ` M ′ : τ as required.

• Case I = (case y of leaf x ⇒ M1 | node x1 x2 ⇒ M2) with δ = (y 7→
(node V1 V2), δ′′).
Γ | 〈〈δ〉〉 ` M : τ must have been derived by using T-Case. Thus, we
have Γ | x1 : Tree−, x2 : Tree−, 〈〈δ′′〉〉 ` M2 : τ . Because M ′ = M2 and
δ′ = x1 7→ V1, x2 7→ V2, δ

′′ follow from Es2-Case2, we have Γ | 〈〈δ′〉〉 `
M ′ : τ as required.

• Case I = fix f.N .
Γ | 〈〈δ〉〉 ` M : τ must have been derived by using T-Fix. Thus, we have
δ = ∅ and Γ, f : τ | ∅ ` N : τ . M ′ = [fix f.N/f ]N and δ′ = δ follow from
Es2-Fix. Because Γ | ∅ ` fix f.N : τ , we have Γ | ∅ ` [fix f.N/f ]N : τ
from Lemma 3. Thus, we have Γ | 〈〈δ′〉〉 ` M ′ : τ as required.

– Case Es = E′
s N .

Γ | 〈〈δ〉〉 ` M : τ must have been derived by using T-App. Thus, we have
Γ | 〈〈δ1〉〉 ` E′

s[I] :τ ′ → τ and Γ | 〈〈δ2〉〉 ` N :τ ′ and δ = δ1, δ2 for some δ1, δ2

and τ ′. From the induction hypothesis, there exist δ′1 and M ′′ that satisfy
Γ | 〈〈δ′1〉〉 ` M ′′ : τ ′ → τ and (E′

s[I], δ1) −→ (M ′′, δ′1). Because M ′ = M ′′ N
and δ′ = δ′1, δ2, we have Γ | 〈〈δ′〉〉 ` M ′ : τ from T-App as required.

– Case Es = (λx.N)E′
s.

Γ | 〈〈δ〉〉 ` M : τ must have been derived by using T-App. Thus, we have
Γ | ∅ ` λx.N : τ ′ → τ and Γ | 〈〈δ〉〉 ` E′

s[I] : τ ′ for some τ ′. From the
induction hypothesis, there exists M ′′ that satisfies Γ | 〈〈δ′〉〉 ` M ′′ : τ ′ and
(E′

s[I], δ) −→ (M ′′, δ′). Because M ′ = (λx.N) M ′′, we have Γ | 〈〈δ′〉〉 ` M ′:τ
from T-App as required.

– Case Es = E′
s + N .

Γ | 〈〈δ〉〉 ` M : τ must have been derived by using T-Plus. Thus, we have
τ = Int and Γ | 〈〈δ1〉〉 ` E′

s[I] :Int and Γ | 〈〈δ2〉〉 ` N :Int and δ = δ1, δ2 for
some δ1, δ2. From the induction hypothesis, there exist δ′1 and M ′′ that satisfy
Γ | 〈〈δ′1〉〉 ` M ′′ : Int and (E′

s[I], δ1) −→ (M ′′, δ′1). Because M ′ = M ′′ + N
and δ′ = δ′1, δ2, we have Γ | 〈〈δ′〉〉 ` M ′ : τ from T-App as required.

– Case Es = i + E′
s.

Γ | 〈〈δ〉〉 ` M : τ must have been derived by using T-Plus. Thus, we have
τ = Int and Γ | 〈〈δ〉〉 ` E′

s[I] : Int. From the induction hypothesis, there
exists M ′′ that satisfies Γ | 〈〈δ′〉〉 ` M ′′ : Int and (E′

s[I], δ) −→ (M ′′, δ′).
Because M ′ = i + M ′′, we have Γ | 〈〈δ′〉〉 ` M ′ : τ from T-Plus as required.

– Case Es = leaf E′
s.

Γ | 〈〈δ〉〉 ` M : τ must have been derived by using T-Leaf. Thus, we have
τ = Tree+ and Γ | 〈〈δ〉〉 ` E′

s[I] : Int. From the induction hypothesis, there
exists M ′′ that satisfies Γ | 〈〈δ′〉〉 ` M ′′ : Int and (E′

s[I], δ) −→ (M ′′, δ′).
Because M ′ = leaf M ′′, we have Γ | 〈〈δ′〉〉 ` M ′ :τ from T-Leaf as required.

– Case Es = node E′
s N .

Γ | 〈〈δ〉〉 ` M : τ must have been derived by using T-Node. Thus, we have
τ = Tree+ and Γ | 〈〈δ1〉〉 ` E′

s[I] : Tree+ and Γ | 〈〈δ2〉〉 ` N : Tree+

and δ = δ1, δ2 for some δ1, δ2. From the induction hypothesis, there exist δ′1



and M ′′ that satisfy Γ | 〈〈δ′1〉〉 ` M ′′ : Tree+ and (E′
s[I], δ1) −→ (M ′′, δ′1).

Because M ′ = node M ′′ N and δ′ = δ′1, δ2, we have Γ | 〈〈δ′〉〉 ` M ′ : τ from
T-Node as required.

– Case Es = node V E′
s.

Γ | 〈〈δ〉〉 ` M : τ must have been derived by using T-Node. Thus, we have
τ = Tree+ and Γ | 〈〈δ〉〉 ` E′

s[I] : Tree+. From the induction hypothesis,
there exists M ′′ that satisfies Γ | 〈〈δ′〉〉 ` M ′′ : Tree+ and (E′

s[I], δ) −→
(M ′′, δ′). Because M ′ = node V M ′′, we have Γ | 〈〈δ′〉〉 ` M ′ : τ from
T-Node as required.

– Case Es = (case E′
s of leafx ⇒ M1 | node x1 x2 ⇒ M2).

Γ | 〈〈δ〉〉 ` M : τ must have been derived by using T-Case. Thus, we have
Γ | 〈〈δ1〉〉 ` E′

s[I]:Tree− and Γ, x:Int | 〈〈δ2〉〉 ` M1 :τ and Γ | x1 :Tree−, x2 :
Tree−, 〈〈δ2〉〉 ` M2 : τ and δ = δ1, δ2 for some δ1 and δ2. From the induction
hypothesis, there exist δ′1 and M ′′ that satisfy Γ | 〈〈δ′1〉〉 ` M ′′ : Tree−

and (E′
s[I], δ1) −→ (M ′′, δ′1). Because M ′ = (case M ′′ of leaf x ⇒ M1 |

node x1 x2 ⇒ M2) and δ′ = δ′1, δ2, we have Γ | 〈〈δ′〉〉 ` M ′ : τ from T-Case
as required.

¤

F The Proof of Lemma 1

For the proof of Lemma 1, we prepare the following lemma.

Lemma 4. If x 6∈ γ, then Aγ([M1/x]M2) = [Aγ(M1)/x]Aγ(M2).

Proof. This follows from straightforward induction on the structure of M2.

¤
Proof of Lemma 1. To prove (M, δ) ∼ (e, Si, So), it is sufficient to prove M ∼FV(M)

(e, So). We hereafter write γ for FV(M) and S for So.
First, suppose that M is not reducible. Then, M = U or M = V .

– Case M = U .
Let e = Aγ(M) and S = ∅. Then M ∼γ (e, S) follows from C-Value.
(Aγ(M), 〈δ〉, ∅) −→∗ (e, 〈δ〉, S) is obvious.

– Case M = V .
Let e = () and S = [[V ]]. Then M ∼γ (e, S) follows from C-Tree. (Aγ(M), 〈δ〉, ∅) −→∗

(e, 〈δ〉, S) follows from the structural induction on V below:
• Case V = leaf i.

In this case,Aγ(M) = (write(leaf);write(i)). Thus, (Aγ(M), 〈δ〉, ∅) −→∗

(e, 〈δ〉, S) holds.
• Case V = node V1 V2.

In this case,Aγ(M) = (write(node);Aγ(V1);Aγ(V2)) and S = node; [[V1 ]]; [[V2 ]].
Because ∅ | ∅ ` V1:Tree+ and ∅ | ∅ ` V2:Tree+, we have (Aγ(V1), ∅, ∅) −→∗

((), ∅, [[ V1 ]]) and (Aγ(V2), ∅, ∅) −→∗ ((), ∅, [[ V2 ]]) from the induction hy-
pothesis. Thus, (Aγ(M), 〈δ〉, ∅) −→∗ (e, 〈δ〉, S). (Note that δ = ∅ because
∅ | ∅ ` V : Tree+.)



Next, suppose that M is reducible. Then, there exist Es and I such as M =
Es[I]. We use structural induction on Es.

– Case Es = [ ].
In this case, M = I. Let e = Aγ(M) and S = ∅. Then, M ∼γ (e, S) follows
from C-Inst. (Aγ(M), 〈δ〉, ∅) −→∗ (e, 〈δ〉, S) is obvious.

– Case Es = E′
s M ′.

In this case, M = E′
s[I] M ′. ∅ | 〈〈δ1〉〉 ` E′

s[I] : τ ′ → τ and ∅ | 〈〈δ2〉〉 ` M ′ : τ ′

and δ = δ1, δ2 follow for some δ1 and δ2 from the assumption ∅ | 〈〈δ〉〉 ` M :τ .
Thus, E′

s[I] ∼γ (e′, S′) and (Aγ(E′
s[I]), 〈δ1〉, ∅) −→∗ (e′, 〈δ1〉, S′) follow for

some e′ and S′ from the induction hypothesis. Let e be e′ Aγ(M ′) and
S be S′. Then, M ∼γ (e, S) follows from C-App1. Because Aγ(M) =
Aγ(E′

s[I]) Aγ(M ′), we have (Aγ(M), 〈δ〉, ∅) −→∗ (e, 〈δ〉, S).
– Case Es = (λx.M ′) E′

s.
In this case, M = (λx.M ′) E′

s[I]. ∅ | ∅ ` (λx.M ′) : τ ′ → τ and ∅ |
〈〈δ〉〉 ` E′

s[I] : τ ′ follow for some τ ′ from the assumption ∅ | 〈〈δ〉〉 ` M : τ .
Thus, E′

s[I] ∼γ (e′, S′) and (Aγ(E′
s[I]), 〈δ〉, ∅) −→∗ (e′, 〈δ〉, S′) follow for

some e′ and S′ from the induction hypothesis. Let e be (λx.Aγ(M ′)) e′

and S be S′. Then, M ∼γ (e, S) follows from C-App2. Because Aγ(M) =
(λx.Aγ(M ′)) Aγ(E′

s[I]), we have (Aγ(M), 〈δ〉, ∅) −→∗ (e, 〈δ〉, S).
– Case Es = E′

s + M ′.
In this case, M = E′

s[I]+M ′. ∅ | 〈〈δ1〉〉 ` E′
s[I] : Int and ∅ | 〈〈δ2〉〉 ` M ′ : Int

and δ = δ1, δ2 follow for some δ1 and δ2 from the assumption ∅ | 〈〈δ〉〉 ` M :τ .
Thus, E′

s[I] ∼γ (e′, S′) and (Aγ(E′
s[I]), 〈δ1〉, ∅) −→∗ (e′, 〈δ1〉, S′) follows for

some e′ and S′ from the induction hypothesis. Let e be e′ + Aγ(M ′) and
S be S′. Then, M ∼γ (e, S) follows from C-Plus1. Because Aγ(M) =
Aγ(E′

s[I]) +Aγ(M ′), we have (Aγ(M), 〈δ〉, ∅) −→∗ (e, 〈δ〉, S).
– Case Es = i + E′

s.
In this case, M = i + E′

s[I]. ∅ | 〈〈δ〉〉 ` E′
s[I] : Int follow from the assump-

tion ∅ | 〈〈δ〉〉 ` M : τ . Thus, E′
s[I] ∼γ (e′, S′) and (Aγ(E′

s[I]), 〈δ〉, ∅) −→∗

(e′, 〈δ〉, S′) follow for some e′ and S′ from the induction hypothesis. Let e
be i + e′ and S be S′. Then, M ∼γ (e, S) follows from C-Plus2. Because
Aγ(M) = i +Aγ(E′

s[I]), we have (Aγ(M), 〈δ〉, ∅) −→∗ (e, 〈δ〉, S).
– Case Es = leaf E′

s.
In this case, M = leaf E′

s[I]. ∅ | 〈〈δ〉〉 ` E′
s[I] : Tree+ follows from the as-

sumption ∅ | 〈〈δ〉〉 ` M :τ . Thus, E′
s[I] ∼γ (e′, S′) and (Aγ(E′

s[I]), 〈δ〉, ∅) −→∗

(e′, 〈δ〉, S′) follow for some e′ and S′ from the induction hypothesis. Let e
be write(e′) and S be leaf ;S′. Then, M ∼γ (e, S) follows from C-Leaf.
(Aγ(M), 〈δ〉, ∅) −→∗ (e, 〈δ〉, S) follows fromAγ(M) = write(leaf);write(Aγ(E′

s[I])).
– Case Es = node E′

s M ′.
In this case, M = node E′

s[I] M ′. ∅ | 〈〈δ1〉〉 ` E′
s[I] : Tree+ and ∅ | 〈〈δ2〉〉 `

M ′ : Tree+ and δ = δ1, δ2 follow for some δ1 and δ2 from the assump-
tion ∅ | 〈〈δ〉〉 ` M : τ . Thus, E′

s[I] ∼γ (e′, S′) and (Aγ(E′
s[I]), 〈δ1〉, ∅) −→∗

(e′, 〈δ1〉, S′) follows for some e′ and S′ from the induction hypothesis. Let e
be e′;Aγ(M ′) and S be node;S′. Then, M ∼γ (e, S) follows from C-Node1.
BecauseAγ(M) = write(node);Aγ(E′

s[I]);Aγ(M ′), we have (Aγ(M), 〈δ〉, ∅) −→∗

(e, 〈δ〉, S).



– Case Es = node V E′
s.

In this case, M = node V E′
s[I]. ∅ | 〈〈δ〉〉 ` E′

s[I]:Tree+ follows from the as-
sumption ∅ | 〈〈δ〉〉 ` M :τ . Thus, E′

s[I] ∼γ (e′, S′) and (Aγ(E′
s[I]), 〈δ〉, ∅) −→∗

(e′, 〈δ〉, S′) follow for some e′ and S′ from the induction hypothesis. Let e
be e′ and S be node; [[ V ]];S′. Then, M ∼γ (e, S) follows from C-Node2.
Because Aγ(M) = write(node);
Aγ(V );Aγ(E′

s[I]), we have (Aγ(M), 〈δ〉, ∅) −→∗ (e, 〈δ〉, S).
– Case Es = (case E′

s of leaf x ⇒ M1 | node x1 x2 ⇒ M2).
In this case, (M = (case E′

s[I] of leaf x ⇒ M1 | node x1 x2 ⇒ M2)).
∅ | 〈〈δ1〉〉 ` E′

s[I] : Tree− and x : Int | 〈〈δ2〉〉 ` M1 : τ and ∅ | x1 :
Tree−, x2 : Tree−, 〈〈δ2〉〉 ` M1 : τ and δ = δ1, δ2 follow for some δ1 and
δ2 from the assumption ∅ | 〈〈δ〉〉 ` M : τ . Thus, E′

s[I] ∼γ (e′, S′) and
(Aγ(E′

s[I]), 〈δ1〉, ∅) −→∗ (e′, 〈δ1〉, S′) follows for some e′ and S′ from the in-
duction hypothesis. Let e be case e′; read() of leaf ⇒ let x = read() in Aγ(M1) |
node ⇒ [()/x1, ()/x2]Aγ(M2) and S be S′. Then, M ∼γ (e, S) follows from
C-Case. BecauseAγ(M) = caseAγ(E′

s[I]); read() of leaf ⇒ let x = read() in Aγ(M1) |
node ⇒ [()/x1, ()/x2]Aγ(M2). (Aγ(M), 〈δ〉, ∅) −→∗ (e, 〈δ〉, S) holds.

¤

G The Proof of Lemma 2

We prove Lemma 2 in this section.

Proof. The second property follows immediately from the definition of M ∼γ

(e, S). (If M is irreducible, then M ∼γ (e, S) must follow either from C-Value
or C-Tree, which implies that e is irreducible too.)

We prove the first property below. To prove (M ′, δ′) ∼ (e′, S′i, S
′
o), it is suffi-

cient to prove M ′ ∼FV(M) (e′, S′o). We hereafter write γ for FV(M) and S′ for
S′o.

Suppose (M, δ) −→ (M ′, δ′). Then, M = Es[I] for some Es and I. We use
structural induction on Es.

– Case Es = [ ].

• Case I = i1 + i2.
In this case, (M, δ) −→ (M ′, δ′) must have been derived by using Es2-Plus.
Thus, M ′ = plus(i1, i2)(= i) and δ′ = δ. M ∼γ (e, S) implies e =
Aγ(I) = i1 + i2 and S = ∅. Let e′ = i and S′ = ∅. Then (e, 〈δ〉, S) −→+

(e′, 〈δ′〉, S′) and M ′ ∼γ (e′, S′) hold as required.
• Case I = (λx.M1)U .

(M, δ) −→ (M ′, δ′) must have been derived by using Es2-App. So, it
must be the case that M ′ = [U/x]M1 and δ′ = δ. M ∼γ (e, S) implies
e = Aγ(I) = (λx.Aγ(M1))Aγ(U) and S = ∅. By Lemma 4, we have:

(e, 〈δ〉, ∅) −→ ([Aγ(U)/x]Aγ(M1), 〈δ〉, ∅)
= (Aγ(M ′), 〈δ〉, ∅).



By Lemma 1, there exist e′′ and S′′ that satisfy (Aγ(M ′), 〈δ〉, ∅) −→∗

(e′′, 〈δ〉, S′′) and M ′ ∼γ (e′′, S′′). Let e′ be e′′ and S′ be S′′. Then,
(e, 〈δ〉, S) −→+ (e′, 〈δ′〉, S′) and M ′ ∼γ (e′, S′) hold as required.

• Case I = case y of leaf x ⇒ M1 | node x1 x2 ⇒ M2 with δ = (y 7→
leaf i, δ1).
(M, δ) −→ (M ′, δ′) must have been derived by using Es2-Case1. So, it
must be the case that M ′ = [i/x]M1 and δ′ = δ1. M ∼γ (e, S) implies
e = Aγ(I) = case (); read() of leaf ⇒ let x = read() in Aγ(M1) |
node ⇒ [()/x1, ()/x2]Aγ(M2) and S = ∅. (e, leaf ; i; 〈δ1〉, ∅) −→+ (Aγ(M ′), 〈δ1〉, ∅)
follows from Lemma 4. By Lemma 1, there exist e′′ and S′′ that satisfy
(Aγ(M ′), 〈δ1〉, ∅) −→ (e′′, 〈δ1〉, S′′) and M ′ ∼γ (e′′, S′′). Let e′ be e′′ and
S′ be S′′. Then, we have (e, 〈δ〉, S) −→+ (e′, 〈δ′〉, S′) and M ′ ∼γ (e′, S′)
as required.

• Case I = case y of leaf x ⇒ M1 | node x1 x2 ⇒ M2 with δ = (y 7→
node V1 V2, δ1).
(M, δ) −→ (M ′, δ′) must have been derived by using Es2-Case2. So, it
must be the case that M ′ = M2 and δ′ = x1 7→ V1, x2 7→ V2, δ1. M ∼γ

(e, S) implies e = Aγ(I) = case (); read() of leaf ⇒ let x = read() in Aγ(M1) |
node ⇒ [()/x1, ()/x2]Aγ(M2) and S = ∅. As easily seen, [()/x1, ()/x2]Aγ(M2) =
Aγ∪{x1,x2}(M2).Thus, (e,node; [[ V1 ]]; [[V2 ]]; 〈δ1〉, ∅) −→+ (Aγ∪{x1,x2}(M2), [[ V1 ]]; [[ V2 ]]; 〈δ1〉, ∅).
By Lemma1, there exist e′′ and S′′ that satisfy
(Aγ∪{x1,x2}(M2), [[ V1 ]]; [[ V2 ]]; 〈δ1〉, ∅) −→∗

(e′′, [[V1 ]]; [[V2 ]]; 〈δ1〉, S′′) and M2 ∼γ (e′′, S′′). Let e′ = e′′ and S′ = S′′.
Then, we have (e, 〈δ〉, S) −→+ (e′, 〈δ′〉, S′) and M ′ ∼γ (e′, S′) as re-
quired.

• Case I = fix f.M1.
(M, δ) −→ (M ′, δ′) must have been derived by using Es2-Fix. So, it
must be the case that M ′ = [fix f.M1/f ]M1 and δ′ = δ. M ∼γ (e, S)
implies e = Aγ(I) = fix f.Aγ(M1) and S = ∅. By Lemma4, we have:

(e, 〈δ〉, ∅) −→ ([fix f.Aγ(M1)/f ]Aγ(M1), 〈δ〉, ∅)
= (Aγ(M ′), 〈δ〉, ∅).

By Lemma1, there exsist e′′ and S′′ that satisfy (Aγ(M ′), 〈δ〉, ∅) −→∗

(e′′, 〈δ〉, S′′) and M ′ ∼γ (e′′, S′′). Let e′ be e′′ and S′ be S′′ Then, we
have (e, 〈δ〉, S) −→+ (e′, 〈δ′〉, S′) and M ′ ∼γ (e′, S′) as required.

– Case Es = E1M2.
There exists M ′

1 that satisfies M ′ = M ′
1 M2 and (E1[I], δ) −→ (M ′

1, δ
′).

M ∼γ (e, S) must have been derived from C-App1. Thus, there exists e1

that satisfies e = e1 Aγ(M2) and E1[I] ∼γ (e1, S). Because M is well-
typed, E1[I] is also well-typed. Thus, from the induction hypothesis, we
have (e1 Aγ(M2), 〈δ〉, S) −→+ (e′1 Aγ(M2), 〈δ′〉, S1) and M ′

1 ∼γ (e′1, S1) for
some e′1 and S1.
First, suppose that M ′

1 is reducible. Let e′ be e′1 Aγ(M2) and S′ be S1. Then,
M ′ ∼γ (e′, S′) follows from C-App1 as required.
Next, suppose that M ′

1 is not reducible. Because M ′
1 is a function-typed term,

M ′
1 ∼γ (e′1, S1) must have been derived from C-Value. Thus, e′1 = Aγ(M ′

1)



and thus, e′1 Aγ(M2) = Aγ(M ′). From Lemma 1, there exist e′′ and S′′ that
satisfy (e′1 Aγ(M2), 〈δ′〉, S1) −→∗ (e′′, 〈δ′〉, S′′) and M ′ ∼γ (e′′, S′′). Let e′

be e′′ and S′ be S′′. Then, (e, 〈δ〉, S) −→+ (e′, 〈δ′〉, S′) and M ′ ∼γ (e′, S′)
follow as required.

– Case Es = (λx.M2) E1.
There exists M ′

1 such that M ′ = (λx.M2) M ′
1 and (E1[I], δ) −→ (M ′

1, δ
′).

M ∼γ (e, S) must have been derived from C-App2. Thus, there exists e1

that satisfies e = (λx.Aγ(M2)) e1 and E1[I] ∼γ (e1, S). Because M is well-
typed, E1[I] is also well-typed. Thus, from the induction hypothesis, we have
((λx.Aγ(M2)) e1, 〈δ〉, S) −→+ ((λx.Aγ(M2)) e′1, 〈δ′〉, S1) and M ′

1 ∼γ (e′1, S1)
for some e′1 and S1.
First, suppose that M ′

1 is reducible. Let e′ be (λx.Aγ(M2)) e′1 and S′ be S1.
Then, M ′ ∼γ (e′, S′) follows from C-App2 as required.
Next, suppose that M ′

1 is a value. Because a tree-typed value cannot be
passed to a function, M ′

1 ∼γ (e′1, S1) must have been derived from C-Value,
not from C-Tree. Thus, e′1 = Aγ(M ′

1) and thus, (λx.Aγ(M2)) e′1 = Aγ(M ′)
From Lemma 1, there exist e′′ and S′′ that satisfy ((λx.Aγ(M2)) e′1, 〈δ′〉, S1) −→∗

(e′′, 〈δ′〉, S′′) and M ′ ∼γ (e′′, S′′). Let e′ be e′′ and S′ be S′′. Then, (e, 〈δ〉, S) −→+

(e′, 〈δ′〉, S′) and M ′ ∼γ (e′, S′) follow as required.
– Case Es = E1 + M2.

There exists M ′
1 that satisfies M ′ = M ′

1 + M2 and (E1[I], δ) −→ (M ′
1, δ

′).
M ∼γ (e, S) must have been derived from C-Plus1. Thus, there exists e1

that satisfies e = e1 + Aγ(M2) and E1[I] ∼γ (e1, S). Because M is well-
typed, E1[I] is also well-typed. Thus, from the induction hypothesis, we
have (e1 +Aγ(M2), 〈δ〉, S) −→+ (e′1 +Aγ(M2), 〈δ′〉, S1) and M ′

1 ∼γ (e′1, S1)
for some e′1 and S1.
First, suppose that M ′

1 is reducible. Let e′ be e′1 + Aγ(M2) and S′ be S1.
Then, M ′ ∼γ (e′, S′) follows from C-Plus1 as required.
Next, suppose that M ′

1 is not reducible. Because M ′
1 is an integer, M ′

1 ∼γ

(e′1, S1) must have been derived from C-Value. Thus, e′1 = Aγ(M ′
1) and

thus, e′1 + Aγ(M2) = Aγ(M ′). From Lemma 1, there exist e′′ and S′′ that
satisfy (e′1 +Aγ(M2), 〈δ′〉, S1) −→∗ (e′′, 〈δ′〉, S′′) and M ′ ∼γ (e′′, S′′). Let e′

be e′′ and S′ be S′′. Then, (e, 〈δ〉, S) −→+ (e′, 〈δ′〉, S′) and M ′ ∼γ (e′, S′)
follow as required.

– Case E = i2 + E1.
There exists M ′

1 that satisfies M ′ = i2 + M ′
1 and (E1[I], δ) −→ (M ′

1, δ
′).

M ∼γ (e, S) must have been derived from C-Plus2. Thus, there exists e1

that satisfies e = i2 + e1 and E1[I] ∼γ (e1, S). Because M is well-typed,
E1[I] is also well-typed. Thus, from the induction hypothesis, we have (i2 +
e1, 〈δ〉, S) −→+ (i2 + e′1, 〈δ′〉, S1) and M ′

1 ∼γ (e′1, S1) for some e′1 and S1.
First, suppose that M ′

1 is reducible. Let e′ be i2 + e′1 and S′ be S1. Then,
M ′ ∼γ (e′, S′) follows from C-Plus2 as required.
Next, suppose that M ′

1 is a value. M ′
1 ∼γ (e′1, S1) must have been de-

rived from C-Value. Thus, e′1 = Aγ(M ′
1) and thus, i2 + e′1 = Aγ(M ′)

From Lemma 1, there exist e′′ and S′′ that satisfy (i2 + e′1, 〈δ′〉, S1) −→∗



(e′′, 〈δ′〉, S′′) and M ′ ∼γ (e′′, S′′). Let e′ be e′′ and S′ be S′′. Then, (e, 〈δ〉, S) −→+

(e′, 〈δ′〉, S′) and M ′ ∼γ (e′, S′) follow as required.
– Case Es = leaf E1.

There exists M ′
1 that satisfies M ′ = leaf M ′

1 and (E1[I], δ) −→ (M ′
1, δ

′).
M ∼γ (e, S) must have been derived from C-Leaf. Thus, there exist e1

and S1 that satisfies e = write(e1) and E1[I] ∼γ (e1, S1) and S = leaf ; S1.
Because M is well-typed, E1[I] is also well-typed. Thus, from the induction
hypothesis, we have (e1, 〈δ〉, S1) −→+ (e′1, 〈δ′〉, S′1) and M ′

1 ∼γ (e′1, S
′
1) for

some e′1 and S′1.
First, suppose that M ′

1 is reducible. Let e′ be write(e′1) and S′ be leaf ; S1.
Then, M ′ ∼γ (e′, S′) follows from C-Leaf as required.
Next, suppose that M ′

1 is a value. Because M is well-typed, M ′
1 is an inte-

ger (let the integer be i′1) and M ′
1 ∼γ (e′1, S

′
1) must have been derived from

C-Value. Thus, e′1 = i′1 and S′1 = ∅. Let e′ be () and S′ be leaf ; i′1. Then,
M ′ ∼γ (e′, S′) follows from C-Tree and (write(e′1), 〈δ′〉, leaf ; S′1) −→ (e′, 〈δ′〉, S′)
holds.

– Case Es = node E1 M2.
There exists M ′

1 that satisfies M ′ = node M ′
1 M2 and (E1[I], δ) −→ (M ′

1, δ
′).

M ∼γ (e, S) must have been derived from C-Node1. Thus, there exist e1 and
S1 that satisfies e = e1;Aγ(M2) and E1[I] ∼γ (e1, S1) and S = node; S1.
Because we assume that M is well-typed, E1[I] is also well-typed. Thus, from
the induction hypothesis, we have (e1;Aγ(M2), 〈δ〉,node; S1) −→+

(e′1;Aγ(M2), 〈δ′〉,node; S′1) and M ′
1 ∼γ (e′1, S

′
1) for some e′1 and S′1.

First, suppose that M ′
1 is reducible. Let e′ be e′1;Aγ(M2) and S′ be node; S′1.

Then, M ′ ∼γ (e′, S′) follows from C-Node1 as required.
Next, suppose that M ′

1 is a value (let the value be V ′
1). M ′

1 ∼γ (e′1, S1)
must have been derived from C-Tree. Thus, e′1 = () and S1 = [[ V ′

1 ]]. Thus,
(e, 〈δ〉, S) −→+ (Aγ(M2), 〈δ′〉,node; [[V ′

1 ]]). From Lemma 1, there exist e2

and S2 that satisfy M2 ∼γ (e2, S2) and
(Aγ(M2), 〈δ′〉,node; [[V ′

1 ]]) −→∗ (e2, 〈δ′〉,node; [[V ′
1 ]];S2). Let e′ be e2 and

S′ be node; [[ V ′
1 ]];S2. Then, M ′ ∼γ (e′, S′) follows from C-Node2 and

(e, 〈δ〉, S) −→+ (e′, 〈δ′〉, S′) holds.
– Case Es = node V2 E1.

There exists M ′
1 that satisfies M ′ = node V2 M ′

1 and (E1[I], δ) −→ (M ′
1, δ

′).
M ∼γ (e, S) must have been derived from C-Node2. Thus, there exist e1

and S1 that satisfies e = e1 and E1[I] ∼γ (e1, S1) and S = node; [[ V2 ]]; S1.
Because M is well-typed, E1[I] is also well-typed. Thus, from the induction
hypothesis, we have (e1, 〈δ〉,node; [[ V2 ]];S1) −→+ (e′1, 〈δ′〉,node; [[V2 ]];S′1)
and M ′

1 ∼γ (e′1, S
′
1) for some e′1 and S′1.

First, suppose that M ′
1 is reducible. Let e′ be e′1 and S′ be node; [[ V2 ]]; S′1.

Then, M ′ ∼γ (e′, S′) follows from C-Node1 as required.
Next, suppose that M ′

1 is a value (let the value be V ′
1). M ′

1 ∼γ (e′1, S1)
must have been derived from C-Tree. Thus, e′1 = () and S1 = [[V ′

1 ]], and
thus, (e, 〈δ〉, S) −→+ ((), 〈δ′〉,node; [[V2 ]]; [[ V ′

1 ]]). Let e′ be () and S′ be
node; [[V2 ]]; [[V ′

1 ]]. Then, M ′ ∼γ (e′, S′) follows from C-Tree as required.



– Case Es = (case E1 of leaf x ⇒ M1 | node x1 x2 ⇒ M2).
There exists M ′

1 that satisfies M ′ = (case M ′
1 of leaf x ⇒ M1 | node x1 x2 ⇒

M2) and (E1[I], δ) −→ (M ′
1, δ

′). M ∼γ (e, S) must have been derived from
C-Case. Thus, there exists e1 that satisfies e = (case e1; read() of leaf ⇒
let x = read() in M1 | node ⇒ [()/x1, ()/x2]Aγ(M2)) and E1[I] ∼γ (e1, S).
Because M is well-typed, E1[I] is also well-typed. Thus, from the induction
hypothesis, we have ((case e1; read() of leaf ⇒ let x = read() in M1 |
node ⇒ [()/x1, ()/x2]Aγ(M2)), 〈δ〉, S) −→+

((case e′1; read() of leaf ⇒ let x = read() in M1 | node ⇒ [()/x1, ()/x2]Aγ(M2)), 〈δ′〉, S′′)
and M ′

1 ∼γ (e′1, S
′′) for some e′1 and S′′.

First, suppose that M ′
1 is reducible. Let e′ be

(case e′1; read() of leaf ⇒ let x = read() in M1 | node ⇒ [()/x1, ()/x2]Aγ(M2))
and S′ be S′′. Then, M ′ ∼γ (e′, S′) follows from C-Case.
Next, suppose that M ′

1 is not reducible. Because M ′
1 is a tree-typed term,

M ′
1 is a variable (let it be y′1). Because M ′

1 ∼γ (e′1, S
′′) must have been de-

rived from C-Value, e′1 = Aγ(y′1). Thus, (e, 〈δ〉, S) −→+ (Aγ(M ′), 〈δ′〉, S′′).
From Lemma 1, there exist e′′ and S1 that satisfy M ′ ∼γ (e′′, S1) and
(Aγ(M ′), 〈δ′〉, S′′) −→∗ (e′′, 〈δ′〉, S1). Let e′ be e′′ and S′ be S1. Then,
(e, 〈δ〉, S) −→+ (e′, 〈δ′〉, S′) and M ′ ∼γ (e′, S′) hold as required.

¤

H Proof of Theorem 3

This section proves Theorem 3.

Proof. First of all, note that ∅ | x : Tree− ` M x : τ follows an assumption
∅ | ∅ ` M : Tree− → τ and ∅ | x : Tree− ` x : Tree−.

We prove only (ii) hereafter. (i) can be proved in the same way.
Assume ((M x), x 7→ V ) →∗ (V ′, ∅). Because ∅ | x : Tree− ` (M x) : τ

holds, there exist e, Si and So such that ((M x), x 7→ V ) ∼ (e, Si, So) and
(A(M)(), Si, ∅) →∗ (e, Si, So) from Lemma 1 3. From the definition of ∼, Si =
[[V ]]. Because of Theorem 2 and Lemma 2, there exists a sequence of reduction
(e, [[ V ]], So) →∗ (e′, ∅, S′o) that satisfies (V ′, ∅) ∼ (e′, ∅, S′o). From the definition
of ∼, e′ = () and S′o = [[V ′ ]]. Thus, (A(M)(), [[V ]], ∅) →∗ ((), ∅, [[ V ′ ]]) holds.

Next, assume (A(M)(), [[ V ]], ∅) →∗ ((), ∅, [[V ′ ]]). As we stated above, there
exist e, Si and So such that ((M x), x 7→ V ) ∼ (e, [[V ]], So) and (A(M)(), [[V ]], ∅) →∗

(e, [[ V ]], So). Because applicable reduction rule can be uniquely determined at
each step of reduction, (e, [[V ]], So) →∗ ((), ∅, [[V ′ ]]) holds.

In the following, we prove “if ∅ | 〈〈δ〉〉 ` M ′ : Tree+ and (e, 〈δ〉, S′o) −→∗

((), ∅, [[V ′ ]])) and (M ′, δ) ∼ (e, S′i, S
′
o) hold, (M ′, δ) −→∗ (V ′, ∅) holds”. We

use mathematical induction on the number of reduction step of (e, 〈δ〉, S′o) −→∗

((), ∅, [[V ′ ]])). With this fact, by letting M ′ be M x and δ be x 7→ V , ((M x), x 7→
3 Because ∅ | ∅ ` M : Tree− → τ holds, FV(M) = ∅. Thus, AFV(M)∪{x}(M x) =
A(M)().



V ) −→∗ (V ′, ∅) holds because ∅ | x :Tree− ` (M x) :Tree+ follows ((M x), x 7→
V ) →∗ (V, ∅) and Theorem 2.

– In the case of n = 0, M ′ = V ′ and δ = ∅ hold because e = (), 〈δ〉 = ∅, S′o =
[[V ′ ]] and (M ′, ∅) ∼ (e, ∅, S′o) hold. Thus, (M ′, δ) −→∗ (V ′, ∅) holds.

– In the case of n ≥ 1, there exist e′, Si, S
′′
o that satisfies

(e, 〈δ〉, S′o) −→ (e′, Si, S
′′
o ) −→∗ ((), ∅, [[ V ′ ]]))

From Lemma 2, there exist M ′′, δ′, S′′′o that satisfies
• (M ′, δ) −→ (M ′′, δ′)
• (M ′′, δ′) ∼ (e′′, 〈δ′〉, S′′′o )
• (e, 〈δ〉, S′o) −→+ (e′′, 〈δ′〉, S′′′o )

Since the reduction is deterministic, (e′′, 〈δ′〉, S′′′o ) −→∗ ((), ∅, [[V ′ ]])) holds.
From the induction hypothesis, (M ′′, δ′) −→∗ (V ′, ∅). Thus, (M ′, δ) −→∗

(V ′, ∅) holds.
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