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ABSTRACT

There are two ways to write a program for manipulating tree-structured data such as
XML documents and S-expressions: One is to write a tree-processing program focusing
on the logical structure of the data and the other is to write a stream-processing
program focusing on the physical structure. While tree-processing programs are easier
to write than stream-processing programs, tree-processing programs are less efficient
in memory usage since they use trees as intermediate data. The goal of this study
is to establish a method for automatically translating a tree-processing program to
a stream-processing one in order to take the best of both worlds. To achieve the
goal, we first introduce a statically-typed language that accepts only tree-processing
programs that traverse input trees from left to right in the depth-first order, and
show an algorithm for translating well-typed tree-processing programs into stream-
processing programs. We then remove the restriction on the access order by extending
the language with primitives for selectively buffering part of trees on memory. With the
extended language, programmers can write arbitrary tree-processing, but inserting the
buffering primitives manually is sometimes tedious. We therefore also develop a type-
based algorithm that inputs arbitrary tree-processing programs and automatically
inserts the buffering primitives.

論文要旨

XML文書や Lispの S式のようなデータに対する処理記述には, その論理的な構造に
基づいて木構造処理として記述する手法と, 物理的な構造に基づいてストリーム処理と
して記述する手法がある. 前者は後者に比べて記述が容易である一方, データを木構造
としてメモリ中に保持するため大規模な入力の処理の際に効率が悪い. この研究の目標
は, XML文書や Lispの S式のようなデータの処理を木構造処理を行うプログラムとし
て記述し,それをストリーム処理を行うプログラムに自動変換する方法を確立すること
である. これを実現するために, 入力木を左から右の深さ優先順序でアクセスする木構
造処理プログラムのみが型付け可能な静的型付き言語を導入し, 型付け可能な木構造処
理プログラムをストリーム処理プログラムに変換するアルゴリズムを示す. 次に, 入力
木の一部をメモリ上にバッファリングするためのプリミティブを導入してこの言語を拡

張し, アクセス順序に関する制約を取り除く. 拡張された言語においては, プログラマは
任意の木構造処理プログラムを書くことができるが, バッファリングされた木を扱うた
めのプリミティブをプログラマ自身で挿入しなければならないので, 我々はこれらのプ
リミティブを自動的に挿入する型主導のアルゴリズムを開発し, プログラム記述をより
容易に行えるようにする.
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Chapter 1

Introduction

There are two ways to write a program for manipulating tree-structured data such as
XML documents [6] and S-expressions: One is to write a tree-processing program fo-
cusing on the logical structure of the data and the other is to write a stream-processing
program focusing on the physical structure. For example, as for XML processing, DOM
(Document Object Mode) API and programming language XDuce [12] are used for
tree-processing, while SAX (Simple API for XML) is for stream-processing.

Figure 1.1 illustrates what tree-processing and stream-processing programs look
like for the case of binary trees. The tree-processing program f takes a binary tree t

as an input, and performs case analysis on t. If t is a leaf, it increments the value of the
leaf. If t is a branch, f recursively processes the left and right subtrees. If actual tree
data are represented as a sequence of tokens (as is often the case for XML documents),
f must be combined with the function parse for parsing the input sequence, and the
function unparse for unparsing the result tree into the output sequence, as shown
in the figure. The stream-processing program g directly reads/writes data from/to
streams. It reads an element from the input stream using the read primitive and
performs case-analysis on the element. If the input is the leaf tag, g outputs leaf to
the output stream with the write primitive, reads another element, adds 1 to it, and
outputs it. If the input is the node tag, g outputs node to the output stream and
recursively calls the function g twice with the argument ().

Both of the approaches explained above have advantages and disadvantages. Tree-
processing programs are written based on the logical structure of data, so that it is
easier to write, read, and manipulate (e.g. apply program transformation like defor-
estation [25]) than stream-processing programs. On the other hand, stream-processing
programs have their own advantage that intermediate tree structures are not needed,
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Tree-processing program f :
fix f.λt.(case t of leaf x ⇒ leaf (x + 1) | node x1 x2 ⇒ node (f x1) (f x2))
Stream-processing program: g

fix g.λt.(case read() of leaf ⇒ leaf (read() + 1)
| node ⇒ write(node); g (); g ())

Figure 1.1: Tree-processing and stream-processing

so that they often run faster than the corresponding tree-processing programs if in-
put/output trees are physically represented as streams, as in the case of XML.

The goal of the present paper is to achieve the best of both approaches, by allowing
a programmer to write a tree-processing program and automatically translating the
program to an equivalent stream-processing program. To clarify the essence, we use a
λ-calculus with primitives on binary trees, and show how the translation works.

The key observation is that: (1) stream processing is most effective when trees
are traversed and constructed from left to right in the depth-first manner and (2) in
that case, we can obtain from the tree-processing program the corresponding stream-
processing program simply by replacing case analysis on an input tree with case anal-
ysis on input tokens, and replacing tree constructions with stream outputs. In fact,
the stream-processing program in Figure 1.1, which satisfies the above criterion, is
obtained from the tree-processing program in that way.

In order to check that a program satisfies the criterion, we use the idea of ordered
linear types [20, 22]. Ordered linear types, which are an extension of linear types [3, 24],
describe not only how often but also in which order data are used. Our type system
designed based on the ordered linear types guarantees that a well-typed program tra-
verses and constructs trees from left to right and in the depth-first order. Thus, every
well-typed program can be translated to an equivalent stream-processing program.
The tree-processing program f in Figure 1.1 is well-typed in our type system, so that
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Tree-processing program:
fix f.λt.(case t of leaf x ⇒ leaf x | node x1 x2 ⇒ node (f x2) (f x1))

Figure 1.2: An ill-typed program that swaps children of every node

Tree-processing program:
fix f.λt.(mcase t of mleaf x ⇒ mleaf x | mnode x1 x2 ⇒ mnode (f x2) (f x1))

Figure 1.3: A well-typed program that swaps children of every node

it can automatically be translated to the stream-processing program g.
On the other hand, the program in Figure 1.2 is not well-typed in our type system

since it accesses the right sub-tree of an input before accessing the left sub-tree. To
deal with that case, we extend our framework with buffered trees, which can be used
arbitrary times and in arbitrary order, in the latter part of this thesis. The type system
still guarantees that buffering is correctly performed. Figure 1.3 shows a program
which is equivalent to one in Figure 1.2 and which uses buffered trees. mleaf and
mnode are constructors of buffered trees and mcase expression is a pattern-matching
for a buffered tree. The program is well-typed because buffered trees x1 and x2

can be used in arbitrary manner. Though efficiency is reduced, we can deal with
more programs, especially programs that buffer only a part of input trees, with that
extension. For the convenience of programmers, we also provide an algorithm that
automatically determine which trees are to be buffered.

The rest of this thesis is organized as follows: To clarify the essence, we first focus
on a minimal calculus in Chapter 2–4. In Chapter 2, we define the source language and
the target language of the translation. We define a type system of the source language
in Chapter 3. Chapter 4 presents a translation algorithm, shows its correctness and
discuss the improvement gained by the translation. Chapter 5 describes extensions to
allow buffering of trees. After discussing related work in Chapter 6, we conclude in
Chapter 7.

This is a joint work with Koichi Kodama and Naoki Kobayashi. The work in
Chapter 1 through Chapter 4 is done in cooperation. Chapter 5 is the original work
of the author.
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Chapter 2

Language

We define the source and target languages in this section. The source language is a
call-by-value functional language with primitives for manipulating binary trees. The
target language is a call-by-value, impure functional language that uses imperative
streams for input and output.

2.1 Source Language

The syntax and operational semantics of the source language is summarized in Fig-
ure 2.1.

The meta-variables x and i range over the sets of variables and integers respectively.
The meta-variable W ranges over the set of values, which consists of integers i, lambda-
abstractions λx.M , and binary-trees V . A binary tree V is either a leaf labeled with
an integer or a tree with two children. (case M of leaf x ⇒ M1 | node x1 x2 ⇒ M2)
performs case analysis on a tree. If M is a leaf, x is bound to its label and M1 is
evaluated. Otherwise, x1 and x2 are bound to the left and right children respectively
and M2 is evaluated. fix f.M is a recursive function that satisfies f = M . Bound and
free variables are defined as usual. We assume that α-conversion is implicitly applied
so that bound variables are always different from each other and free variables.

We write let x = M1 in M2 for (λx.M2) M1. Especially, if M2 contains no free
occurrence of x, we write M1; M2 for it.
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Terms, values and evaluation contexts:

M (terms) ::= i | λx.M | x | M1 M2 | M1 + M2 | fix f.M

| leaf M | node M1 M2

| (case M of leaf x ⇒ M1 | node x1 x2 ⇒ M2)
V (tree values) ::= leaf i | node V1 V2

W (values) ::= i | λx.M | V
Es (evaluation contexts) ::= [ ] | Es M | (λx.M) Es | Es + M | i + Es

| leaf Es | node Es M | node V Es

| (case Es of leaf x ⇒ M1 | node x1 x2 ⇒ M2)

Reduction rules:

Es[i1 + i2] −→ Es[plus(i1, i2)] (Es-Plus)

Es[(λx.M)W ] −→ Es[[W/x]M ] (Es-App)

Es[fix f.M ] −→ Es[[fix f.M/f ]M ] (Es-Fix)

Es[case leaf i of leaf x ⇒ M1 | node x1 x2 ⇒ M2] −→ Es[[i/x]M1] (Es-Case1)

Es[case node V1 V2 of leaf x ⇒ M1 | node x1 x2 ⇒ M2] −→
Es[[V1/x1, V2/x2]M2]

(Es-Case2)

Figure 2.1: The syntax, evaluation context and reduction rules of the source language.
plus(i1, i2) is the sum of i1 and i2.

2.2 Target Language

The syntax and operational semantics of the target language is summarized in Fig-
ure 2.2. A stream, represented by the meta variable S, is a sequence consisting of
leaf , node and integers. We write ∅ for the empty sequence and write S1;S2 for the
concatenation of the sequences S1 and S2.

read is a primitive for reading a token (leaf , node, or an integer) from the input
stream. write is a primitive for writing a value to the output stream. The term
(case e of leaf ⇒ e1 | node ⇒ e2) performs a case analysis on the value of e. If e

evaluates to leaf , e1 is evaluated and if e evaluates to node, e2 is evaluated. fix f.e

is a recursive function that satisfies f = e. Bound and free variables are defined as
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usual.
We write let x = e1 in e2 for (λx.e2) e1. Especially, if e2 does not contain x as a

free variable, we write e1; e2 for it.
Figure 2.3 shows programs that take a tree as an input and calculate the sum of

leaf elements. The source program takes a tree t as an argument of the function,
and performs a case analysis on t. If t is a leaf, the program binds x to the element
and returns it. If t is a branch node, the program recursively applies f to the left
and right children and returns the sum of the results. The target program reads a
tree (as a sequence of tokens) from the input stream, performs a case analysis on
tokens, and returns the sum of leaf elements. Here, we assume that the input stream
represents a valid tree. If the input stream is in a wrong format (e.g., when the stream
is node; 1; 2), the execution gets stuck.
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Terms, values and evaluation contexts:

e (terms) ::= v | x | e1 e2 | e1 + e2 | fix f.e

| read e | write e | (case e of leaf ⇒ e1 | node ⇒ e2)
v (values) ::= i | leaf | node | λx.e | ()

Et (evaluation contexts) ::= [ ] | Et e | (λx.e) Et | Et + e | i + Et

| read Et | write Et

| (case Et of leaf ⇒ e1 | node ⇒ e2)

Reduction rules:

(Et[v1 + v2], Si, So) −→ (Et[plus(v1, v2)], Si, So) (Et-Plus)

(Et[(λx.M)v], Si, So) −→ (Et[[v/x]M ], Si, So) (Et-App)

(Et[fix f.e], Si, So) −→ (Et[[fix f.e/f ]e], Si, So) (Et-Fix)

(Et[read()], v; Si, So) −→ (Et[v], Si, So) (Et-Read)

(Et[write v], Si, So) −→ (Et[()], Si, So; v) (when v is an integer, leaf or node)
(Et-Write)

(Et[case leaf of leaf ⇒ e1 | node ⇒ e2], Si, So) −→ (Et[e1], Si, So) (Et-Case1)

(Et[case node of leaf ⇒ e1 | node ⇒ e2], Si, So) −→ (Et[e2], Si, So) (Et-Case2)

Figure 2.2: The reduction rules of the target language.

A source program:
fix sumtree.λt.(case t of leaf x ⇒ x | node x1 x2 ⇒ (sumtree x1) + (sumtree x2))
A target program:
fix sumtree.λt.(case read() of leaf ⇒ read() | node ⇒ sumtree () + sumtree ())

Figure 2.3: Programs that calculate the sum of leaf elements of an binary tree.
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Chapter 3

Type System

In this section, we present a type system of the source language, which guarantees
that a well-typed program reads every node of an input tree exactly once from left
to right in the depth-first order. Thanks to this guarantee, any well-typed program
can be translated to an equivalent, stream-processing program without changing the
structure of the program, as shown in the next section. To enforce the depth-first
access order on input trees, we use ordered linear types [20, 22].

3.1 Type and Type Environment

Definition 3.1 (Type) The set of types, ranged over by τ , is defined by:

τ (type) ::= Int | Treed | τ1 → τ2

d (use) ::= 1 | +.

Int is the type of integers. For a technical reason, we distinguish between input
trees and output trees by types. We write Tree1 for the type of input trees, and write
Tree+ for the type of output trees. τ1 → τ2 is the type of functions from τ1 to τ2.

We introduce two kinds of type environments for our type system: ordered linear
type environments and (non-ordered) type environments.

Definition 3.2 (Ordered Linear Type Environment) An ordered linear type en-
vironment is a sequence of the form x1 : Tree1, . . . , xn : Tree1, where x1, . . . , xn are
different from each other. We write ∆1, ∆2 for the concatenation of ∆1 and ∆2.

An ordered linear type environment x1 : Tree1, . . . , xn : Tree1 specifies not only
that x1, . . . , xn are bound to trees, but also that each of x1, . . . , xn must be accessed
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exactly once in this order and that each of the subtrees bound to x1, . . . , xn must be
accessed in the left-to-right, depth-first order.

Definition 3.3 (Non-Ordered Type Environment) A (non-ordered) type envi-
ronment is a set of the form {x1 : τ1, . . . , xn : τn} where x1, . . . , xn are different from
each other and {τ1, . . . , τn} does not contain Treed.

We use the meta-variable Γ for non-ordered type environments. We often write
Γ, x : τ for Γ ∪ {x : τ}, and write x1 : τ1, . . . , xn : τn for {x1 : τ1, . . . , xn : τn}.

Note that a non-ordered type environment must not contain variables of tree types.
Tree1 is excluded since input trees must be accessed in the specific order. Tree+ is
excluded in order to forbid output trees from being bound to variables. For example,
we will exclude a program like let x1 = t1 in let x2 = t2 in node x1 x2 when t1 and t2

have type Tree+. This restriction is convenient for ensuring that trees are constructed
in the specific (from left to right, and in the depth-first manner) order.

3.2 Type Judgment

A type judgment is of the form Γ | ∆ ` M : τ , where Γ is a non-ordered type envi-
ronment and ∆ is an ordered linear type environment. The judgment means “If M

evaluates to a value under an environment described by Γ and ∆, the value has type
τ and the variables in ∆ are accessed in the order specified by ∆.” For example, if
Γ = {f : Tree1 → Tree+} and ∆ = x1 : Tree1, x2 : Tree1,

Γ | ∆ ` node (f x1) (f x2) : Tree+

holds, while
Γ | ∆ ` node (f x2) (f x1) : Tree+

does not. The latter program violates the restriction specified by ∆ that x1 and x2

must be accessed in this order.
Γ | ∆ ` M : τ is the least relation that is closed under the rules in Figure 3.1.

T-Var1, T-Var2 and T-Int are the rules for variables and integer constants. As in
ordinary linear type systems, these rules prohibit variables that do not occur in a term
from occurring in the ordered linear type environment. (In other words, weakening is
not allowed on an ordered linear type environment.) That restriction is necessary to
guarantee that each variable in an ordered linear type environment is accessed exactly
once.
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Γ | x : Tree1 ` x : Tree1 (T-Var1)

Γ, x : τ | ∅ ` x : τ (T-Var2)

Γ | ∅ ` i : Int (T-Int)

Γ | x : Tree1 ` M : τ

Γ | ∅ ` λx.M : Tree1 → τ
(T-Abs1)

Γ, x : τ1 | ∅ ` M : τ2

Γ | ∅ ` λx.M : τ1 → τ2

(T-Abs2)

Γ | ∆1 ` M1 : τ2 → τ1 Γ | ∆2 ` M2 : τ2

Γ | ∆1, ∆2 ` M1M2 : τ1

(T-App)

Γ | ∆1 ` M1 : Int Γ | ∆2 ` M2 : Int

Γ | ∆1,∆2 ` M1 + M2 : Int
(T-Plus)

Γ, f : τ1 → τ2 | ∅ ` M : τ1 → τ2

Γ | ∅ ` fix f.M : τ1 → τ2

(T-Fix)

Γ | ∆ ` M : Int

Γ | ∆ ` leaf M : Tree+
(T-Leaf)

Γ | ∆1 ` M1 : Tree+ Γ | ∆2 ` M2 : Tree+

Γ | ∆1, ∆2 ` node M1 M2 : Tree+
(T-Node)

Γ | ∆1 ` M : Tree1 Γ, x : Int | ∆2 ` M1 : τ

Γ | x1 : Tree1, x2 : Tree1, ∆2 ` M2 : τ

Γ | ∆1,∆2 ` case M of leaf x ⇒ M1 | node x1 x2 ⇒ M2 : τ
(T-Case)

Figure 3.1: Rules of typing judgment
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Γ | t : Tree1 ` t : Tree1

.

.

.

Γ′ | ∅ ` leaf (x + 1) : Tree+

.

.

.

Γ | x1 : Tree1 ` (f x1) : Tree+

.

.

.

Γ | x2 : Tree1 ` (f x2) : Tree+

Γ | x1 : Tree1, x2 : Tree1 ` node (f x1) (f x2) : Tree+

Γ | t : Tree1 ` case t of leaf x ⇒ leaf (x + 1) | node x1 x2 ⇒ node (f x1) (f x2) : Tree+

Γ | ∅ ` λt.case t of leaf x ⇒ leaf (x + 1) | node x1 x2 ⇒ node (f x1) (f x2) : Tree1 → Tree+

∅ | ∅ ` fix f.λt.case t of leaf x ⇒ leaf (x + 1) | node x1 x2 ⇒ node (f x1) (f x2) : Tree1 → Tree+

Figure 3.2: An example of typing derivation. Γ = {f : Tree1 → Tree+}, Γ′ =
{f : Tree1 → Tree+, x : Int}

T-Abs1 and T-Abs2 are rules for lambda abstraction. Note that the ordered type
environments of the conclusions of these rules must be empty. This restriction prevents
input trees from being stored in function closures. That makes it easy to enforce the
access order on input trees. For example, without this restriction, the function

λt.let g = λf.(f t) in (g sumtree) + (g sumtree)

would be well-typed where sumtree is the function given in Figure 2.3. However, when
a tree is passed to this function, its nodes are accessed twice because the function g

is called twice. The program above is actually rejected by our type system since the
closure λf.(f t) is not well-typed due to the restriction of T-Abs2.1

T-App is the rule for function application. The ordered linear type environments
of M1 and M2, ∆1 and ∆2 respectively, are concatenated in this order because when
M1 M2 is evaluated, (1) M1 is first evaluated, (2) M2 is then evaluated, and (3) M1 is
finally applied to M2. In the first step, the variables in ∆1 are accessed in the order
specified by ∆1. In the second and third steps, the variables in ∆2 are accessed in the
order specified by ∆2, On the other hand, because there is no restriction on usage of
the variables in a non-ordered type environment, the same type environment (Γ) is
used for both subterms.

T-Leaf and T-Node are rules for tree construction. We concatenate the ordered
type environments of M1 and M2, ∆1 and ∆2, in this order as we did in T-App.

T-Case is the rule for case expressions. If M matches node x1 x2, subtrees x1

and x2 have to be accessed in this order after that. This restriction is expressed by
x1 : Tree1, x2 : Tree1, ∆2, the ordered linear type environment of M2.

T-Fix is the rule for recursion. Note that the ordered type environment must be
empty as in T-Abs2.

1We can relax the restriction by controlling usage of not only trees but also functions, as in the
resource usage analysis [13]. The resulting type system would, however, become very complex.
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The program in Figure 1.1 is typed as shown in Figure 3.2. On the other hand,
the program in Figure 1.2 is ill-typed: Γ | x1 :Tree1, x2 :Tree1 ` node (f x2) (f x1) :
Tree+ must hold for the program to be typed, but it cannot be derived by using
T-Node.

3.3 Examples of Well-typed Programs

Figure 3.3 shows more examples of well-typed source programs. The first and second
programs (or the catamorphism [16]) apply the same operation on every node of the
input tree. (The return value of the function tree fold cannot, however, be a tree
because the value is passed to g.) One can also write functions that process nodes in a
non-uniform manner, like the third program in Figure 3.3 (which increments the value
of each leaf whose depth is odd).

The fourth program takes a tree as an input and returns the right subtree. Due to
the restriction imposed by the type system, the program uses sub-functions copy tree
and skip tree for explicitly copying and skipping trees.2 (See Section 5.2 for a method
for automatically inserting those functions.)

3.4 Type Checking Algorithm

We show an algorithm that takes as an input a triple (Γ, ∆,M) consisting of a
non-ordered type environment Γ, an ordered linear type environment ∆ and a type-
annotated term M , and outputs τ such that Γ | ∆ ` M : τ and reports failure if such
τ does not exists. Here, by a type-annotated term, we mean a term whose bound
variables are annotated with types.

The algorithm is basically obtained by reading typing rules in a bottom-up manner,
but a little complication arises on the rules T-App, T-Plus, etc., for which we do
not know how to split the ordered linear type environment for sub-terms. We avoid
this problem by splitting the ordered type environment lazily [11]. To make the lazy
splitting of the ordered type environment explicit, we use a relation Γ | ∆ ` M :τ ↗ ∆′,
which is defined as the least relation that satisfies the rules in Figure 3.5. The relation
means that Γ | ∆1 ` M : τ holds for ∆1 such that ∆ = ∆1,∆′. As the specification

2Due to the restriction that lambda abstractions cannot contain variables of type Treed, we need
to introduce sequential composition (;) as a primitive and extend typing rules with the following rule:

Γ | ∆1 ` M1 : τ ′ Γ | ∆2 ` M2 : τ τ ′ 6= Treed

Γ | ∆1, ∆2 ` M1; M2 : τ.
(T-Seq)
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fix tree map.λf.λt.(case t of leaf x ⇒ leaf (f x)
| node x1 x2 ⇒ node (tree map f x1) (tree map f x2))

fix tree fold .λf.λg.λt.

(case t of leaf n ⇒ (f n)
| node t1 t2 ⇒ (g (tree fold f g t1)(tree fold f g t2)))

fix inc alt.λt.(case t of leaf x ⇒ leaf x | node x1 x2 ⇒ node

(case x1 of leaf y ⇒ leaf (y + 1)
| node y1 y2 ⇒ node (inc alt y1) (inc alt y2))

(case x2 of leaf z ⇒ leaf (z + 1)
| node z1 z2 ⇒ node (inc alt z1) (inc alt z2))

let copy tree =
fix copy tree.λt.(case t of leaf x ⇒ leaf x

| node x1 x2 ⇒ node (copy tree x1) (copy tree x2)) in

let skip tree =
fix skip tree.λt.(case t of leaf x ⇒ 0

| node x1 x2 ⇒ (skip tree x1); (copy tree x2) in

λt.(case t of leaf x ⇒ leaf x | node x1 x2 ⇒ (skip tree x1); (copy tree x2))

Figure 3.3: Examples of well-typed programs.

fix f.λt.case t of leaf x ⇒ leaf x | node x1 x2 ⇒ (λt′.node (f t′) (f x2)) x1

Figure 3.4: Program that is not typed due to the restriction on closures though the
access order is correct.
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of the type-checking algorithm, it can be read “Given a triple (Γ,∆,M), as an input,
the algorithm outputs the type τ of M and the unused ordered type environment ∆′.”
For example, if Γ = f : Tree1 → Tree+ and ∆ = x1 : Tree1, x2 : Tree1,

Γ | ∆ ` (f x1) : Tree+ ↗ x2 : Tree1

holds.
The relation above specifies the type-checking algorithm. For example, T-App in

Figure 3.5 specifies, given (Γ, ∆1, M1M2) as an input, we should (i) first type-check
M1 and obtain a type τ3 and the unused environment ∆2, (ii) type-check M2 using Γ
and ∆2 and obtain τ1 and the unused environment ∆3, and then (iii) unifies τ3 with
τ1 → τ2 and outputs τ2 and ∆3 as a result.

To check whether Γ | ∆ ` M : τ holds, it is sufficient to check whether Γ | ∆ `
M : τ ↗ ∅ holds. The whole rules for the relation Γ | ∆ ` M : τ ↗ ∆′ is given in
Figure 3.5.
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Γ | x : Tree1,∆ ` x : Tree1 ↗ ∆
(T-Var1)

Γ, x : τ | ∆ ` x : τ ↗ ∆
(T-Var2)

Γ | ∆ ` i : Int ↗ ∆
(T-Int)

Γ | x : Tree1, ∆ ` M : τ ↗ ∆

Γ | ∆ ` λx.M : Tree1 → τ ↗ ∆
(T-Abs1)

Γ, x : τ1 | ∆ ` M : τ2 ↗ ∆

Γ | ∆ ` λx.M : τ1 → τ2 ↗ ∆
(T-Abs2)

Γ | ∆ ` M1 : τ2 → τ1 ↗ ∆′ Γ | ∆′ ` M2 : τ2 ↗ ∆′′

Γ | ∆ ` M1M2 : τ1 ↗ ∆′′ (T-App)

Γ | ∆ ` M1 : Int ↗ ∆′ Γ | ∆′ ` M2 : Int ↗ ∆′′

Γ | ∆ ` M1 + M2 : Int ↗ ∆′′ (T-Plus)

Γ | ∆ ` M : Int ↗ ∆′

Γ | ∆ ` leaf M : Tree+ ↗ ∆′ (T-Leaf)

Γ | ∆ ` M1 : Tree+ ↗ ∆′ Γ | ∆′ ` M2 : Tree+ ↗ ∆′′

Γ | ∆ ` node M1 M2 : Tree+ ↗ ∆′′ (T-Node)

Γ | ∆ ` M : Tree1 ↗ ∆′ Γ, x : Int | ∆′ ` M1 : τ ↗ ∆′′

Γ | x1 : Tree1, x2 : Tree1, ∆′ ` M2 : τ ↗ ∆′′

Γ | ∆ ` (case M of leaf x ⇒ M1 | node x1 x2 ⇒ M2) : τ ↗ ∆′′ (T-Case)

Γ, f : τ1 → τ2 | ∆ ` M : τ1 → τ2 ↗ ∆

Γ | ∆ ` fix f.M : τ1 → τ2 ↗ ∆
(T-Fix)

Figure 3.5: Rules for Type Checking
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Chapter 4

Translation Algorithm

In this section, we define a translation algorithm for well-typed source programs and
prove its correctness.

4.1 Definition of Translation

The translation algorithm A is shown in Figure 4.1. A maps a source program to a tar-
get program, preserving the structure of the source program and replacing operations
on trees with operations on streams.

4.2 Correctness of Translation Algorithm

The correctness of the translation algorithm A is stated as follows.

Definition 4.1 A function [[ · ]] from the set of trees to the set of streams is defined
by:

[[ leaf i ]] = leaf ; i
[[node V1 V2 ]] = node; [[V1 ]]; [[V2 ]] .

Theorem 4.1 (Correctness of Translation)

If ∅ | ∅ ` M : Tree1 → τ and τ is Int or Tree+, the following properties hold for any
tree value V :

(i) M V −→∗ i if and only if (A(M)(), [[ V ]], ∅) −→∗ (i, ∅, ∅)

(ii) M V −→∗ V ′ if and only if (A(M)(), [[ V ]], ∅) −→∗ ((), ∅, [[ V ′ ]]) .
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A(x) = x

A(i) = i

A(λx.M) = λx.A(M)
A(M1M2) = A(M1) A(M2)
A(M1 + M2) = A(M1) +A(M2)
A(fix f.M) = fix f.A(M)
A(leaf M) = write(leaf);write(A(M))
A(node M1 M2) = write(node);A(M1);A(M2)
A(case M of leaf x ⇒ M1 | node x1 x2 ⇒ M2) =

case A(M); read() of leaf ⇒ let x = read() in A(M1)
| node ⇒ [()/x1, ()/x2]A(M2)

Figure 4.1: Translation Algorithm

The above theorem means that a source program and the corresponding target program
evaluates to the same value. The clause (i) is for the case where the result is an integer,
and (ii) is for the case where the result is a tree.

We give an outline of the proof of Theorem 4.1 below. The basic idea of the proof
is to show a correspondence between reduction steps of a source program and those
of the target program. However, the reduction semantics given in Section 2 is not
convenient for showing the correspondence. We define another reduction semantics of
the source language and prove: (1) the new semantics is equivalent to the one in Section
2 (Corollary 4.1 below), and (2) evaluation of the source program based on the new
semantics agrees with evaluation of the corresponding target program (Theorem 4.3
below). First, we define a new operational semantics of the source language. The
semantics takes the access order of input trees into account.

Definition 4.2 (Ordered Environment) An ordered environment is a sequence of
the form x1 7→ V1, . . . , xn 7→ Vn, where x1, . . . , xn are distinct from each other.

We use a meta-variable δ to represent an ordered environment. Given an ordered
environment x1 7→ V1, . . . , xn 7→ Vn, a program must access variables x1, . . . , xn in
this order.

Definition 4.3 (New Reduction Semantics) The reduction relation (M, δ) −→
(M ′, δ′) is the least relation that satisfies the rules in Figure 4.2.
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U ::= x | i | λx.M

(Es[i1 + i2], δ) −→ (Es[plus(i1, i2)], δ) (Es2-Plus)

(Es[(λx.M)U ], δ) −→ (Es[[U/x]M ], δ) (Es2-App)

(Es[case y of leaf x ⇒ M1 | node x1 x2 ⇒ M2], (y 7→ leaf i, δ)) −→ (Es[[i/x]M1], δ)
(Es2-Case1)

(Es[case y of leaf x ⇒ M1 | node x1 x2 ⇒ M2], (y 7→ node V1 V2, δ))
−→ (Es[M2], (x1 7→ V1, x2 7→ V2, δ))

(Es2-Case2)

(Es[fix f.M ], δ) −→ (Es[[fix f.M/f ]M ], δ) (Es2-Fix)

Figure 4.2: The new reduction semantics of the source language.

The meta-variable U in Figure 4.2 ranges over the set of trees and non-tree values.
The differences between the new reduction semantics above and the original one in
Section 2 are: (1) input trees are substituted in the original semantics while they
are held in ordered environments in the new semantics (compare Es-Case2 with
Es2-Case2), and (2) input trees must be accessed in the order specified by δ in
the new semantics (note that variable y that is being referred to must be at the head
of the ordered environment in Es2-Case1 and Es2-Case2). Thus, evaluation based
on the new semantics can differ from the one in Section 2 only when the latter one
succeeds while the former one gets stuck due to the restriction on access to input
trees. As the following theorem (Theorem 4.2) states, that cannot happen if the
program is well-typed, so that both semantics are equivalent for well-typed programs
(Corollary 4.1).

Theorem 4.2 Suppose Γ | 〈〈δ〉〉 ` M : τ . Then the following conditions hold.

• M is a value or a variable, or (M, δ) −→ (M ′, δ′) holds for some M ′ and δ′.

• If (M, δ) −→ (M ′, δ′) holds, then Γ | 〈〈δ′〉〉 ` M ′ : τ .

Corollary 4.1 If ∅ | ∅ ` M : Tree1 → τ and if τ ∈ {Int,Tree+}, MV −→∗ W if
and only if (Mx, x 7→ V ) −→∗ (W, ∅) for any tree value V .

The following theorem states that the evaluation of a source program under the
new rules agrees with the evaluation of the target program.
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Theorem 4.3 If ∅ | ∅ ` M : Tree1 → τ and τ ∈ {Int,Tree+} holds, the following
statements hold for any tree value V .

(i) (Mx, x 7→ V ) −→∗ (i, ∅) holds if and only if
(A(M)(), [[V ]], ∅) −→∗ (i, ∅, ∅))

(ii) If (Mx, x 7→ V ) −→∗ (V ′, ∅) holds if and only if
(A(M)(), [[V ]], ∅) −→∗ ((), ∅, [[ V ′ ]]))

We hereafter give an outline of the proof of Theorem 4.3. Figure 4.4 illustrates the
idea of the proof (for the case where the result is a tree). The relation ∼ (defined later
in Definition 4.5) in the diagram expresses the correspondence between an evaluation
state of a source program (M, δ) and a state of a target program (e, Si, So). We shall
show that the target program A(M) can always be reduced to a state corresponding
to the initial state of the source program M (Lemma 4.1 below) and that reductions
and the correspondence relation commute (Lemma 4.2). Those imply that the whole
diagram in Figure 4.4 commutes, i.e., the second statement of Theorem 4.3 holds.

To define the correspondence (M, δ) ∼ (e, Si, So) between states, we use the fol-
lowing function 〈·〉, which maps an ordered environment to the corresponding stream.

Definition 4.4 A function 〈·〉 from the set of ordered environments to the set of
streams is defined by:

〈∅〉 = ∅
〈x 7→ V, δ〉 = [[ V ]]; 〈δ〉

Definition 4.5 (Correspondence between States) The relations (M, δ) ∼ (e, Si, So)
and M ∼γ (e, So) are the least relations closed under the rules in Figure 4.3.

In the figure, the meta-variable γ denotes a set of variables. FV(M) is a set
of free variables in M . Aγ(M) is the term obtained from A(M) by replacing every
occurrence of variables in γ with (). The meta-variable I represents the term that is
being reduced. Note that any term M can be written as Es[I] if it is reducible.

In the relation (M, δ) ∼ (e, Si, So), e represents the rest of computation, Si is the in-
put stream, and So is the already output streams. For example, (node(leaf 1)(leaf (2 + 3)), ∅)
corresponds to (2 + 3, ∅,node; leaf ; 1; leaf).

We explain some of the rules in Figure 4.3 below.

• C-Tree: A source program V represents a state where the tree V has been
constructed. Thus, it corresponds to ((), [[ V ]]), where there is nothing to be
computed and V has been written to the output stream.
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I ::= (λx.M)U | i1 + i2 | (case y of leaf x ⇒ M1 | node x1 x2 ⇒ M2) | fix f.M

M ∼FV (M) (e, So) Si = 〈δ〉
(M, δ) ∼ (e, Si, So)

U ∼γ (Aγ(U), ∅)
(C-Value)

V ∼γ ((), [[V ]])
(C-Tree)

I ∼γ (Aγ(I), ∅)
(C-Inst)

Es[I] ∼γ (e, So)

Es[I] M ∼γ (e Aγ(M), So)
(C-App1)

Es[I] ∼γ (e, So)

(λx.M) Es[I] ∼γ ((λx.Aγ(M)) e, So)
(C-App2)

Es[I] ∼γ (e, So)

Es[I] + M ∼γ (e +Aγ(M), So)
(C-Plus1)

Es[I] ∼γ (e, So)

i + Es[I] ∼γ (i + e, So)
(C-Plus2)

Es[I] ∼γ (e, So)

leaf Es[I] ∼γ (write(e), leaf ; So)
(C-Leaf)

Es[I] ∼γ (e, So)

node Es[I] M ∼γ (e;Aγ(M),node;So)
(C-Node1)

Es[I] ∼γ (e, So)

node V Es[I] ∼γ (e,node; [[V ]];So)
(C-Node2)

Es[I] ∼γ (e, So)

case Es[I] of leaf x ⇒ M1 | node x1 x2 ⇒ M2

∼γ (case e; read () of leaf ⇒ let x = read () in Aγ(M1) | node ⇒ [()/x1, ()/x2]Aγ(M2), So)
(C-Case)

Figure 4.3: Correspondence between run-time states of source and target programs.
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(A(M), [[V ]], ∅) →∗ (e, [[V ]], So) →+ (e′, S′i, S
′
o) →+ · · · →+ (e′′, S′′i , S′′o ) →+ ((), ∅, [[ V ′ ]])

(Mx, x 7→ V ) → (M ′, δ′) → · · · → (M ′′, δ′′) → (V ′, ∅)

∼ ∼ ∼ ∼

'

?Lemma 4.1 Lemma 4.2 Lemma 4.2

Figure 4.4: Evaluation of a source and the target program.

• C-Node1: A source program node Es[I] M represents a state where the left
subtree is being computed. Thus, the rest computation of the target program
is (e;Aγ(M)) where e is the rest computation in Es[I], and Aγ(M) represents
the computation for constructing the right subtree. The corresponding output
stream is node; So because node represents the root of the tree being con-
structed, and So represents the part of the left subtree that has been already
constructed.

Lemmas 4.1 and 4.2 below imply that the whole diagram in Figure 4.3 commutes,
which completes the proof of Theorem 4.3.

Definition 4.6 A function 〈〈·〉〉 from the set of ordered environments to the set of
ordered linear type environments is defined by:

〈〈∅〉〉 = ∅
〈〈x 7→ V, δ〉〉 = x : Tree1, 〈〈δ〉〉

Lemma 4.1 Suppose ∅ | 〈〈δ〉〉 ` M : τ . Then, there exist e and Si and So that satisfy

• (M, δ) ∼ (e, Si, So)

• (Aγ(M), 〈δ〉, ∅) −→∗ (e, 〈δ〉, So)

Lemma 4.2 If ∅ | 〈〈δ〉〉 ` M :τ and (M, δ) ∼ (e, Si, So), the following conditions hold:

• If (M, δ) −→ (M ′, δ′), then there exist e′ and S′i and S′o that satisfy (e, 〈δ〉, S) −→+

(e′, 〈δ′〉, S′) and (M ′, δ′) ∼ (e′, S′i, S
′
o).

• If (e, 〈δ〉, S) is reducible,there exist M ′ and δ′ that satisfy (M, δ) −→ (M ′, δ′).

4.3 Efficiency of Translated Programs

Let M be a source program of type Tree1 → Tree+. We argue below that the target
program A(M) runs more efficiently than the source program unparse ◦ M ◦ parse,
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where parse is a function that parses the input stream and returns a binary tree, and
unparse is a function that takes a binary tree as an input and writes it to the output
stream. Note that the fact that the target program is a stream-processing program
does not necessarily imply that it is more efficient than the source program: In fact, if
the translation A were defined by A(M) = unparse ◦M ◦ parse, obviously there would
be no improvement.

The target program being more efficient follows from the fact that the translation
function A preserves the structure of the source program, with only replacing tree
constructions with stream outputs, and case analyses on trees with stream inputs and
case analyses on input tokens. More precisely, by inspecting the proof of soundness of
the translation (which is available in the full version of the paper), we can observe:1

• When a closure is allocated in the execution of M (so that the heap space is
consumed), the corresponding closure is allocated in the corresponding reduction
step of A(M), and vice versa.

• When a function is called in the execution of M (so that the stack space is
consumed), the corresponding function is called in the corresponding reduction
step of A(M), and vice versa.

• When a case analysis on an input tree is performed in the execution of M , a
token is read from the input stream and a case analysis on the token is performed
in the corresponding reduction step of A(M).

• When a tree is constructed in the execution of M , the corresponding sequence
of tokens is written on the output stream in the corresponding reduction steps
of A(M).

By the observation above, we can conclude:

• The memory space allocated by A(M) is less than the one allocated by unparse◦
M ◦ parse, by the amount of the space for storing the intermediate trees output
by parse and M (except for an implementation-dependent constant factor).

• The number of computation steps for running A(M) is the same as the one
for running unparse ◦M ◦ parse (up to an implementation-dependent constant
factor).

1To completely formalize these observations, we need to define another operational semantics that
makes the heap and the stack explicit.
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Figure 4.5: Result of experiments. Inputs are binary trees whose height varies from
10 to 24. The experiment was performed on Sun Enterprise E4500/E5500, 400 MHz
CPU, 13GB memory.

Thus, our translation is effective especially when the space for evaluating M is much
smaller than the space for storing input and output trees.

We performed a preliminary experiment to support the argument above. Figure 4.5
shows the execution time and the total size of allocated heap memory for the two
versions of the program (both written manually in Objective Caml). As expected,
the stream-processing program was more efficient. Especially, the heap memory size
is constant for the stream-processing program while it is exponential in the depth of
input trees for the tree-processing program.
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Chapter 5

Introducing Selective

Buffering of Input Trees

So far, we have focused on a minimal calculus which does not allow any buffering of
trees. In this chapter, we introduce buffering constructs to our languages. With this
extension, we can deal with more programs than the original calculus at the cost of
memory efficiency.

5.1 Constructs for Storing Trees on Memory

Let us extend the syntax of the source and target languages as follows:

M ::= · · · | mleaf M | mnode M1 M2

| (mcase M of mleaf x ⇒ M1 | mnode x1 x2 ⇒ M2)
e ::= · · · | mleaf e | mnode e1 e2

| (mcase e of mleaf x ⇒ e1 | mnode x1 x2 ⇒ e2) .

Here, mleaf M and mnode M1 M2 are constructors of trees on memory and mcase · · ·
is a destructor.

We also add type Treeω, the type of trees stored on memory. The type system
imposes no restriction on access order between variables of type Treeω like type Int

(so Treeω is put in the ordinary type environment, not the ordered linear type envi-
ronment). The translation algorithm A simply translates a source program, preserving
the structure:

A(mleaf M) = mleaf A(M)
A(mnode M1 M2) = mnode A(M1) A(M2)

· · ·
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These extensions are summarized in Figure 5.1.
With these primitives, a function strm to mem, which copies a tree from the input

stream to memory, and mem to strm, which writes a tree on memory to the output
stream, can be defined as shown in Figure 5.2.

Using the functions above, one can write a program that selectively buffers only a
part of the input tree, while the type system guarantees that the selective buffering is
correctly performed. For example, the program in Figure 5.3, which swaps children of
nodes whose depth is more than n, only buffers the nodes whose depth is more than
n.

The proof of Theorem 4.1 can be easily adapted for the extended language.

5.2 Automatic Insertion of Buffering Primitives

As we stated in 3.3 and 5.1, one can write tree-processing programs that selectively
skip and/or buffer trees by using skip tree, copy tree, strm to mem and mem to strm.
However, inserting those functions by hand is sometimes tedious. To solve this prob-
lem, we provide a type-directed, source-to-source translation for automatically insert-
ing these functions.

From this section, we write fix (f, x,M) for fix f.λx.M . With that new form, we
treat λx.M as a syntax-sugar that represents fix (f, x,M) where f /∈ FV(M)\{x}.

5.2.1 Type Judgment for the Automatic Insertion

We introduce a new judgment Γ | ∆ ` M ; M ′ : τ which means that (1) M can be
translated to an equivalent program M ′ (except for the difference of buffered trees and
ordinary trees) which uses skip tree, copy tree, strm to mem and mem to strm and (2)
Γ | ∆M ′ : τ holds. For example, both of

∅ | x1 : Tree1, x2 : Tree1 ` x2 ; skip tree(x1); copy tree(x2) : Tree+

and

∅ | x1 : Tree1, x2 : Tree1 ` x2 ;
let x1 = strm to mem(x1) in

copy tree(x2)
: Tree+

holds. As we can see in the above examples, the way of the translation is not unique.
We will present an algorithm which selects one of possible translations in Section 5.2.2.

The relation Γ | ∆ ` M ; M ′ : τ is defined as the least relation satisfies Figure 5.4
and Figure 5.5. We explain some of those rules below:



M ::= i | λx.M | x | M1 M2 | M1 + M2

| leaf M | node M1 M2 | mleaf M | mnode M1 M2

| (case M of leaf x ⇒ M1 | node x1 x2 ⇒ M2)
| (mcase M of mleaf x ⇒ M1 | mnode x1 x2 ⇒ M2)
| fix f.M

e ::= v | x | e1 e2 | e1 + e2

| read e | write e

| mleaf M | mnode M1 M2

| (mcase M of mleaf x ⇒ M1 | mnode x1 x2 ⇒ M2)
| (case e of leaf ⇒ e1 | node ⇒ e2)
| fix f.e

Γ | ∆ ` M : Int

Γ | ∆ ` mleaf M : Treeω
(T-MLeaf)

Γ | ∆1 ` M1 : Treeω Γ | ∆2 ` M2 : Treeω

Γ | ∆1, ∆2 ` mnode M1 M2 : Treeω
(T-MNode)

Γ | ∆1 ` M : Treeω Γ, x : Int | ∆2 ` M1 : τ Γ, x1 : Treeω, x2 : Treeω | ∆2 ` M2 : τ

Γ | ∆1, ∆2 ` mcase M of mleaf x ⇒ M1 | mnode x1 x2 ⇒ M2 : τ

(T-MCase)

A(mleaf M) = mleaf A(M)
A(mnode M1 M2) = mnode A(M1) A(M2)
A(mcase M of mleaf x ⇒ M1 | mnode x1 x2 ⇒ M2) =

mcase A(M) of mleaf x ⇒ A(M1) | mnode x1 x2 ⇒ A(M2)

Figure 5.1: Extended languages, type system and translation algorithm
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fix strm to mem.

λt.case t of leaf x ⇒ mleaf x

| node x1 x2 ⇒ mnode (strm to mem x1) (strm to mem x2)
fix mem to strm.

λt.mcase t of mleaf x ⇒ leaf x

| mnode x1 x2 ⇒ node (mem to strm x1) (mem to strm x2)

Figure 5.2: Definition of strm to mem and mem to strm

let mswap =
fix f.λ t.mcase t of mleaf x ⇒ leaf x

| mnode x1 x2 ⇒ node (f x2) (f x1) in

fix swap deep.λn.λt.

if n = 0 then mswap (strm to mem t)
else

case t of

leaf x ⇒ leaf x

| node x1 x2 ⇒ node (swap deep (n− 1) x1) (swap deep (n− 1) x2)

Figure 5.3: A program which swaps children of nodes whose depth is more than n

• Tr-Node1 and Tr-Node2: A program node M1 M2 can be translated in two
ways: into an ordinary tree or into a buffered tree. We can deal with programs
that apply a function to Tree+ value with these rules.

• Tr-Skip: We can deal with a program M which does not use the top of the
ordered linear type environment x : Tree1, ∆ by inserting skip operation on x.

• Tr-Copy and Tr-MemToStream: We can coerce a value of type Tree1 and a
value of type Treeω to type Tree+ by applying copy tree() and strm to mem()
to the value.

• Tr-StreamToMem: We can buffer a tree bound to x with strm to mem()
function before it is used if x is at the top of the ordered linear type environment.

The following theorem states that the judgment defines a correct translation:

Theorem 5.1 If x1 : τ1, . . . , xn : τn | 〈〈δ〉〉 ` M ; M ′ : τ holds, then:

• x1 : τ1, . . . , xn : τn | 〈〈δ〉〉 ` M ′ : τ
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Γ | ∆ ` i ; i : Int (Tr-Int)

Γ | ∆1 ` M1 ; M ′
1 : Int Γ | ∆2 ` M2 ; M ′

2 : Int

Γ | ∆1,∆2 ` M1 + M2 ; M ′
1 + M ′

2 : Int
(Tr-Plus)

x : τ, Γ | ∅ ` x ; x : τ (Tr-Var1)

Γ | x : Tree1 ` x ; x : Tree1 (Tr-Var2)

f : τ1 → τ2, x : τ1,Γ | ∅ ` M ; M ′ : τ2

Γ | ∅ ` fix (f, x, M) ; fix (f, x,M ′) : τ1 → τ2

(Tr-Fix1)

f : Tree1 → τ, Γ | x : Tree1 ` M ; M ′ : τ

Γ | ∅ ` fix (f, x, M) ; fix (f, x,M ′) : Tree1 → τ
(Tr-Fix2)

Γ | ∆1 ` M1 ; M ′
1 : τ ′ → τ Γ | ∆2 ` M2 ; M ′

2 : τ ′

Γ | ∆1, ∆2 ` M1 M2 ; M ′
1 M ′

2 : τ
(Tr-App)

Γ | ∆ ` M ; M ′ : Int

Γ | ∆ ` leaf M ; leaf M ′ : Tree+
(Tr-Leaf1)

Γ | ∆ ` M ; M ′ : Int

Γ | ∆ ` leaf M ; mleaf M ′ : Treeω
(Tr-Leaf2)

Γ | ∆1 ` M1 ; M ′
1 : Tree+ Γ | ∆2 ` M2 ; M ′

2 : Tree+

Γ | ∆1,∆2 ` node M1 M2 ; node M ′
1 M ′

2 : Tree+
(Tr-Node1)

Γ | ∆1 ` M1 ; M ′
1 : Treeω Γ | ∆2 ` M2 ; M ′

2 : Treeω

Γ | ∆1, ∆2 ` node M1 M2 ; mnode M ′
1 M ′

2 : Treeω
(Tr-Node2)

Γ | ∆1 ` M ; M ′ : Tree1

x : Int, Γ | ∆2 ` M1 ; M ′
1 : τ x1 : Treeω, x2 : Treeω,Γ | ∆2 ` M2 ; M ′

2 : τ

Γ | ∆1, ∆2 ` case M of leaf x ⇒ M1 | node x1 x2 ⇒ M2

; case M ′ of leaf x ⇒ M ′
1 | node x1 x2 ⇒ M ′

2 : τ

(Tr-Case1)

Γ | ∆1 ` M ; M ′ : Treeω

x : Int, Γ | ∆2 ` M1 ; M ′
1 : τ x1 : Treeω, x2 : Treeω,Γ | ∆2 ` M2 ; M ′

2 : τ

Γ | ∆1, ∆2 ` case M of leaf x ⇒ M1 | node x1 x2 ⇒ M2

; mcase M ′ of mleaf x ⇒ M ′
1 | mnode x1 x2 ⇒ M ′

2 : τ

(Tr-Case2)

Figure 5.4: Rules for source-to-source translation (1 of 2).
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Γ | ∆ ` M ; M ′ : τ

Γ | x : Tree1,∆ ` M ; skip tree(x); M ′ : τ
(Tr-Skip)

Γ | ∆ ` M ; M ′ : Tree1

Γ | ∆ ` M ; copy tree(M ′) : Tree+
(Tr-Copy)

x : Treeω, Γ | ∆ ` M ; M ′ : τ

Γ | x : Tree1, ∆ ` M ; let x = strm to mem(x) in M ′ : τ
(Tr-StreamToMem)

Γ | ∆ ` M ; M ′ : Treeω

Γ | ∆ ` M ; mem to strm(M ′) : Tree+
(Tr-MemToStream)

Figure 5.5: Rules for source-to-source translation (2 of 2).

• If ([W1/x1, . . . , Wn/xn]M, δ) −→ W and ([W1/x1, . . . ,Wn/xn]M ′, δ) −→ W ′,
then W ≈s W ′ for all values W1, . . . , Wn that respect τ1, . . . , τn.

≈s is defined as the least equivalence relation that satisfies the following rules:

leaf i ≈s mleaf i

V1 ≈s V ′
1 V2 ≈s V ′

2

node V1 V2 ≈s mnode V ′
1 V ′

2

5.2.2 Automatic Insertion Algorithm

As we saw in the examples in Section 5.2.1, given Γ, ∆ and M , there are many possible
M ′ and τ that satisfy Γ | ∆ ` M ; M ′ : τ . We next present an algorithm I which
chooses one among those possibilities.

Note that the algorithm I defined in the following is not optimal one because it
use some approximations. Designing a better algorithm is left as future work.

The rules in Figure 5.4 and Figure 5.5 are not convenient for designing I because:

• they are not syntax-directed. For example, Tr-Skip can be applied to terms of
any form.

• they use two kind of type environment. I cannot determine in which environment
a variable of tree type is to be stored because use of a tree is not known until
constraints are solved.
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To solve those difficulty, we introduce a new type environment Θ and a new typing
judgment Θ ` M ; M ′ : τ . Before defining Θ and Θ ` M ; M ′ : τ , we need to
define use of types, a relation º and a predicate merge(Θ, Θ1, Θ2).

Definition 5.1 The relation d1 ≥ d2 is the least reflexive transitive relation that
satisfies ω ≥ 1. |·| is a function defined as follows:

|Int| = ω

|τ1 → τ2| = ω

|Treed| = d

We write |Θ| ≥ d for ∀x ∈ dom(Θ). |Θ(x)| ≥ d. |Θ| ≤ d is defined in the same way.

Definition 5.2 (Semi-ordered type environment) A semi-ordered type environ-
ment, represented by Θ, is a sequence x1 : τ1, . . . , xn : τn that satisfies |τi| ≥ |τj | if
i ≤ j. We write xmΘ y if x occurs before y in Θ.

A semi-ordered type environment Θ represents that variables bound to Tree1 in
Θ have to be accessed in the order specifies by Θ and other variables can be freely
used. We put the restriction i ≤ j =⇒ |τi| ≥ |τj | in order to let constraint solving
tractable.

Definition 5.3 The relation º is the smallest reflexive transitive relation which sat-
isfies Θ1, x : Treeω, Θ2 º Θ1, x : Tree1, Θ2 and |Θ1| ≥ ω.

Θ1 º Θ2 intuitively means that Θ1 is obtained by buffering some trees in Θ2.
Because only the first tree can be buffered, we need |Θ1| ≥ ω in the definition above.

Definition 5.4 (Merge of semi-ordered type environments) Θ is a merge of
Θ1 and Θ2, represented by merge(Θ,Θ1,Θ2), if and only if the following properties
are satisfied:

1. dom(Θ1) ∪ dom(Θ2) ⊆ dom(Θ) and Θ1(x) = Θ(x) and Θ2(y) = Θ(y) for all
x ∈ dom(Θ1) and y ∈ dom(Θ2)

2. xmΘ1 y =⇒ xmΘ y and xmΘ2 y =⇒ xmΘ y

3. x ∈ dom(Θ1) ∩ dom(Θ2) =⇒ |Θ(x)| ≥ ω

4. x ∈ dom(Θ)\(dom(Θ1) ∪ dom(Θ2)) =⇒ |Θ(x)| ≥ ω

5. If there exists y ∈ dom(Θ1) such that xmΘy then |Θ(x)| ≥ ω for all x ∈ dom(Θ2).
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coerceΘ→Θ(M) = M

coerce(Θ1,x:Tree1,Θ2)→(Θ1,x:Treeω,Θ′2)(M) =
let x = strm to mem(x) in

coerceΘ2→Θ′2(M)

Figure 5.6: Definition of the meta-level function coerceΘ→Θ′().

merge(Θ,Θ1,Θ2) means that Θ is obtained by (1) concatenating Θ1 and Θ2 (con-
dition 1, 2 and 3 in Definition 5.4), (2) adding some variables whose types have use
ω (condition 4) and (3) reordering some variables whose types have use ω (condition
5). Note that the condition 4 in Definition 5.4 is not optimal because trees that can
be skipped are buffered with the condition.

Definition 5.5 A relation Θ ` M ; M ′ : τ is the least relation that satisfies the
rules in Figure 5.7.

coerceΘ→Θ′(), defined in Figure 5.6 is a meta-level function which inserts strm to mem()
in order to convert Θ to Θ′. Note that we use Treeω in place of Tree+ for the sim-
plicity of the presentation.

Those rules are obtained from the rules in Figure 5.4 and 5.5 simply by (1) replac-
ing concatenation with merging and (2) applying the following rule for buffering to
premises of each rule:

Θ′ ` M ; M ′ : τ Θ′ º Θ

Θ ` M ; coerceΘ→Θ′(M ′) : τ

The following theorem guarantees the correctness of Θ ` M ; M ′ : τ .

Theorem 5.2 If Θ ` M ; M ′ : τ holds, then there exist Γ and ∆ that satisfy
Γ | ∆ ` M ; M ′ : τ and Θ = Γ,∆.

Now, we define our algorithm I. The algorithm I works as follows:

1. The type of each subterm is reconstructed ignoring the use d of tree type. We
use the type reconstruction algorithm for λ→ [21]. An use variable, represented
by meta-variable u, is assigned to each tree types.

2. I constructs a derivation tree according to the rules of Figure 5.7. I also gener-
ates constraints among use variables in this phase.
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∀y ∈ dom(Θ′)\{x}. |Θ′(y)| ≥ ω Θ′ º Θ τ = Θ′(x)

Θ ` x ; coerceΘ→Θ′(x) : τ
(T-SD-Var)

∀x ∈ dom(Θ′). |Θ′(x)| ≥ ω Θ′ º Θ τ = Θ′(x)

Θ ` i ; coerceΘ→Θ′(i) : Int
(T-SD-Int)

Θ1 ` M1 ; M ′
1 : Int Θ2 ` M2 ; M ′

2 : Int

Θ1 º Θ′1 Θ2 º Θ′2 merge(Θ, Θ′1, Θ
′
2)

Θ ` M1 + M2 ; coerceΘ′1→Θ1(M ′
1) + coerceΘ′2→Θ2(M ′

2) : Int
(T-SD-Plus)

f : τ1 → τ2, Θ′, x : τ1 ` M ; M ′ : τ2

f : τ1 → τ2, Θ′, x : τ1 º f : τ1 → τ2,Θ, x : τ ′1 ∀y ∈ dom(Θ). |Θ(y)| ≥ ω

Θ ` fix (f, x, M) ; fix (f, x, coerce(f :τ1→τ2,Θ′,x:τ1)→(f :τ1→τ2,Θ,x:τ ′1)(M ′)) : τ1 → τ2

(T-SD-Fix)

Θ′1 ` M1 ; M ′
1 : τ1 → τ2 Θ′2 ` M2 ; M ′

2 : τ1

Θ′1 º Θ1 Θ′2 º Θ2 merge(Θ, Θ1, Θ2)

Θ ` M1 M2 ; coerceΘ1→Θ′1(M ′
1) coerceΘ2→Θ′2(M ′

2) : τ2

(T-SD-App)

Θ′ ` M ; M ′ : Int Θ′ º Θ

Θ ` leaf M ; mleaf coerceΘ→Θ′(M ′) : Treeω
(T-SD-Leaf)

Θ′1 ` M1 ; M ′
1 : Treeω Θ′2 ` M2 ; M ′

2 : Treeω

Θ′1 º Θ1 Θ′2 º Θ2 merge(Θ, Θ1, Θ2)

Θ ` node M1 M2 ; mnode coerceΘ1→Θ′1(M ′
1) coerceΘ2→Θ′2(M ′

2) : Treeω
(T-SD-Node)

Θ′1 ` M ; M ′ : Treed Θ′2 ` M1 ; M ′
1 : τ Θ′3 ` M2 ; M ′

2 : τ

Θ′1 º Θ1 Θ′2 º x : Int,Θ2L, Θ2R Θ′3 º Θ2L, x1 : Treed, x2 : Treed,Θ2R

merge(Θ, Θ1, (Θ2L, Θ2R))

Θ `
case M of

leaf x ⇒ M1

| node x1 x2 ⇒ M2

;

case M ′ of

leaf x ⇒ coerce(Θ2L,Θ2R)→(Θ′2\{x:Int})(M ′
1)

| node x1 x2 ⇒ coerce(Θ2L,x1:Treed,x2:Treed,Θ2R)→Θ′3(M ′
2)

: τ

(T-SD-Case)

Figure 5.7: Typing rules for the judgment Θ ` M ; M ′ : τ .
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rename(Treed) = Treed′ where (d′ is fresh)
rename(τ) = τ where τ 6= Treed

left than right(∅) = ∅
left than right(x : τ) = ∅
left than right(x1 : τ1, x2 : τ2, Θ) = {|τ1| ≥ |τ2|} ∪ left than right(x2 : τ2,Θ)

above than below(∅, ∅) = ∅
above than below((x : τ1, Θ1), (x : τ2, Θ2)) = {|τ1| ≥ |τ2|} ∪ above than below(Θ1, Θ2)

skip unused(Θ1, S) = {|Θ1(x)| ≥ ω|x ∈ dom(Θ1)\S}

mem permut(Θ, ∅, Θ′) = ∅
mem permut((ΘL, x : τ ′,ΘR), (Θ1, x : τ), Θ2) = {|ΘL(y)| ≥ ω|y ∈ dom(ΘL) ∩ dom(Θ2)}

merge constr(Θ, Θ1, Θ2) = skip unused(Θ, dom(Θ1) ∪ dom(Θ2))∪
mem permut(Θ, Θ1, Θ2)∪
{|Θ(x)| ≥ ω|x ∈ dom(Θ1) ∩ dom(Θ2)}

Figure 5.8: Definition of helper functions for automatic insertion algorithm I.

3. I solves the constraints generated in the previous phase and determine in which
point, which trees are to be buffered. Because constraints are inequalities be-
tween uses, we can use the constraint solving algorithm of [24]. According to the
result, I appropriately inserts the buffering primitives.

Figure 5.9, 5.10, 5.11 and 5.12 are the definition of I. We give some remarks on
the definition.

• above than below(Θ1, Θ2) and merge constr(Θ, Θ1, Θ2) defined in Figure 5.8 gen-
erate constraints that corresponds to Θ1 º Θ2 and merge(Θ, Θ1, Θ2) respec-
tively.

• left than right(Θ) generates constraints that guarantees that xmΘy =⇒ |Θ(x)| ≥
|Θ(y)|.

• The case of case expression only deal with case analysis for a variable. The defini-
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I(Θ, x, τ) = M,C

where Θ′ = rename(Θ)
C0 = left than right(Θ′)
C1 = above than below(Θ′,Θ)
C2 = skip unused(Θ, {x})
C = C0 ∪ C1 ∪ C2 ∪ {τ = Θ′(x)}
M = coerceΘ→Θ′(x)

I(Θ, i, Int) = M,C

where Θ′ = rename(Θ)
C0 = left than right(Θ′)
C1 = above than below(Θ′,Θ)
C2 = skip unused(Θ, ∅)
C = C0 ∪ C1 ∪ C2

M = coerceΘ→Θ′(x)
I(Θ, M1 + M2, Int) = M ′′

1 + M ′′
2 , C

where Θ1 = Θ|FV(M1)

Θ2 = Θ|FV(M2)

Θ′1 = rename(Θ1)
Θ′2 = rename(Θ2)
C0 = left than right(Θ′1)
C1 = left than right(Θ′2)
C2 = above than below(Θ′1, Θ1)
C3 = above than below(Θ′2, Θ2)
M ′

1, C4 = I(Θ′1,M1, Int)
M ′

2, C5 = I(Θ′2,M2, Int)
C6 = merge constr(Θ, Θ1, Θ2)
M ′′

1 = coerceΘ1→Θ′1(M ′
1)

M ′′
2 = coerceΘ2→Θ′2(M ′

2)
C = C0 ∪ C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 ∪ C6

Figure 5.9: Automatic insertion algorithm (1 of 4).
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I(Θ,fix (f, x,M), τ → τ ′) = M ′, C

where Θ′ = f : τ → τ ′, Θ, x : τ

Θ′′ = rename(Θ′)
C0 = {|τ | ≥ ω|(x : τ) ∈ Θ}
C1 = left than right(Θ′′)
C2 = above than below(Θ′′, Θ′)
C3 = I(Θ′′,M, τ ′)
C = C0 ∪ C1 ∪ C2 ∪ C3

M ′ = fix (f, x, coerceΘ′→Θ′′(M))
I(Θ,M1 M2, τ) = M, C

where Θ1 = Θ|FV(M1)

Θ2 = Θ|FV(M2)

Θ′1 = rename(Θ1)
Θ′2 = rename(Θ2)
C0 = left than right(Θ′1)
C1 = left than right(Θ′2)
C2 = above than below(Θ′1, Θ1)
C3 = above than below(Θ′2, Θ2)
τ ′ = typeof (M2)
M ′

1, C4 = I(Θ′1, M1, τ
′ → τ)

M ′
2, C5 = I(Θ′2, M2, τ

′)
C6 = merge constr(Θ, Θ1, Θ2)
M ′′

1 = coerceΘ1→Θ′1(M ′
1)

M ′′
2 = coerceΘ2→Θ′2(M ′

2)
C = C0 ∪ C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 ∪ C6

I(Θ, leaf M,Treed) = M ′, C

where Θ′ = rename(Θ)
C0 = left than right(Θ′)
C1 = above than below(Θ′, Θ)
M ′′, C2 = I(Θ′,M, Int)
M ′ = mleaf coerceΘ→Θ′(M ′′)
C = C0 ∪ C1 ∪ C2 ∪ {d ≥ ω}

Figure 5.10: Automatic insertion algorithm (2 of 4). typeof (M) returns the type of
M inferred by the type reconstruction algorithm for λ→
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I(Θ,node M1 M2,Treed) = M,C

where Θ1 = Θ|FV(M1)

Θ2 = Θ|FV(M2)

Θ′1 = rename(Θ1)
Θ′2 = rename(Θ2)
C0 = left than right(Θ′1)
C1 = left than right(Θ′2)
C2 = above than below(Θ′1, Θ1)
C3 = above than below(Θ′2, Θ2)
M ′

1, C4 = I(Θ′1,M1,Treeω)
M ′

2, C5 = I(Θ′2,M2,Treeω)
C6 = merge constr(Θ, Θ1, Θ2)
M ′′

1 = coerceΘ1→Θ′1(M ′
1)

M ′′
2 = coerceΘ2→Θ′2(M ′

2)
M = mnode M ′′

1 M ′′
2

C = C0 ∪ C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 ∪ C6 ∪ {d ≥ ω}

Figure 5.11: Automatic insertion algorithm (3 of 4).

tion does not lose generality by that restriction because
case M of

leaf x ⇒ M1

| node x1 x2 ⇒ M2

is equivalent to let y = M in
case y of

leaf x ⇒ M1

| node x1 x2 ⇒ M2

for a fresh variable y. By

putting the restriction, we make it easy to determine where to insert x1 and x2.

The following theorem states the correctness of I:

Theorem 5.3 If I(Ω,M, τ) = M ′, C, and if a substitution θ to use variables is ob-
tained by solving constraints C, then θΩ ` M ; θM ′ : θτ holds.
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I(Θ,

case y of

leaf x ⇒ M1

| node x1 x2 ⇒ M2

, τ) = M, C

where Θ0 = Θ|{y}
S = (FV(M1)\{x}) ∪ (FV(M2)\{x1, x2})
Θ1 = (x : Int,Θ|S)
Θ2 = (Θ2L; y : Treed; Θ2R) = Θ|S∪{y}
Θ′0 = rename(Θ0)
Θ′1 = rename(Θ1)
Θ′2 = rename([Θ2L; x1 : Treed′ ;x2 : Treed′ ; Θ2R])

(d′ is fresh)
C0 = left than right(Θ′0)
C1 = left than right(Θ′1)
C2 = left than right(Θ′2)
C3 = above than below(Θ′0,Θ0)
C4 = above than below(Θ′1,Θ1)
C5 = above than below(Θ′2,Θ2)
M ′, C6 = I(Θ′0, y,Treed′)
M ′

1, C7 = I(Θ′1,M1, τ)
M ′

2, C8 = I(Θ′2,M2, τ)
C9 = merge constr(Θ, Θ0, Θ|S)
M ′′ = coerceΘ0→Θ′0(M ′)
M ′′

1 = coerceΘ1→Θ′1(M ′
1)

M ′′
2 = coerceΘ2→Θ′2(M ′

2)

M =
cased′ M ′′ of

leaf x ⇒ M ′′
1

| node x1 x2 ⇒ M ′′
2

C = C0 ∪ · · · ∪ C9

Figure 5.12: Automatic insertion algorithm (4 of 4).
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Chapter 6

Related Work

We dealt with only binary trees in this paper. Koichi Kodama [14] extended our
framework to general XML documents. He also performed some experiments and
confirmed the effectiveness of our method.

Nakano and Nishimura [17–19] proposed a method for translating tree-processing
programs to stream-processing programs using attribute grammars. In their method,
programmers write XML processing with XTiSP [18], a XML processing language
with iteration constructs that utilize XPath [4]. Then, the program is translated to an
attributed grammar After that, the grammar is composed with parsing and unparsing
grammars by using the descriptional composition [8] and translated to a grammar that
directly deals with streams. Quasi-SSUR condition in [19] and single use requirement
in [17], which force attributes of non-terminal symbols to be used at most once, seems
to correspond to our linearity restriction on variables of tree types, but there seems to
be no restriction that corresponds to our order restriction. A program that violates
the order restriction is translated into stream-processor that stores a part of tokens
in the input stream. However, the relation between their method and our source-to-
source translation method in Chapter 5.2 is not clear. An advantage of our method is
that programmers can use higher-order functions in our language, while they cannot
in XTiSP. Another advantage of our method is that we can deal with source programs
that involve side-effects (e.g. programs that print the value of every leaf) while that
seems difficult in their method based on attribute grammars (since programmers seems
not to be able to specify evaluation order of their programs).

The class of well-typed programs that does not use buffered trees in our language
seems to be closely related to the class of L-attributed grammars [1]. In fact, any
L-attributed grammar over the binary tree can be expressed as a program as shown
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N → node N1 N2

N1.inh = f1 N.inh; N2.inh = f2 N.inh N1.syn N1.inh
N.syn = f3 N.inh N1.syn N1.inh N2.syn N2.inh

N → leaf i

N.syn = f4 N.inh i

fix f.λinh.λt.case t of

leaf x ⇒ f4 inh x

node x1 x2 ⇒ let N1.inh = f1 inh in

let N1.syn = f N1.inh x1 in

let N2.inh = f2 N.inh N1.syn N1.inh in

let N2.syn = f N2.inh x2 in

f3 N.inh N1.syn N1.inh N2.syn N2.inh

Figure 6.1: L-attributed grammar over binary trees and corresponding program.

N → node N1 N2

N1.depth = N.depth + 1
N2.depth = N.depth + 1
N.result = node N1.result N2.result

N → leaf i

if N.depth mod 2 = 0 then N.result = leaf (i + 1)
else N.result = leaf i

Figure 6.2: L-attributed grammar that corresponds to inc alt in Figure 3.3.

in Figure 6.1. If output trees are not used in attributes, the program is well-typed.
Conversely, any program that is well-typed and does not use buffered trees in our lan-
guage seems to be definable as an L-attribute grammar. The corresponding attribute
grammar may, however, be awkward, since one has to encode control information into
attributes. For example, the attribute grammar corresponding to inc alt is shown in
Figure 6.2.

There are other studies on translation of tree-processing programs into stream-
processing programs. Some of them [2, 9, 10] deal with XPath expressions [4, 23] and
others [15] deal with XQuery [5, 7]. Those translations are more aggressive than ours
in the sense that the structure of source programs is changed so that input trees can
be processed in one path. On the other hand, their target languages (XPath and
XQuery languages) are restricted in the sense that they do not contain functions and
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side-effects.
There are many studies on program transformation [16, 25] for eliminating inter-

mediate data structures of functional programs, known as deforestation or fusion. Al-
though the goal of our translation is also to remove intermediate data structures from
unparse ◦ f ◦ parse, the previous methods are not directly applicable since those meth-
ods do not guarantee that transformed programs access inputs in a stream-processing
manner. In fact, swap in Figure 1.2, which violates the access order, can be expressed
as a treeless program [25] or a catamorphism [16], but the result of deforestation is
not an expected stream-processing program.

Actually, there are many similarities between the restriction of treeless program [25]
and that of our type system. In treeless programs, (1) variables have to occur only
once, and (2) only variables can be passed to functions. (1) corresponds to the linearity
restriction of our type system. (2) is the restriction for prohibiting trees generated in
programs to be passed to functions, which corresponds to the restriction that functions
cannot take values of type Tree+ in our type system. The main differences are:

• Our type system additionally imposes a restriction on the access order. This is
required to guarantee that translated programs read input streams sequentially.

• We restrict programs with a type system, while the restriction on treeless pro-
grams is syntactic. Our type-based approach enables us to deal with higher-order
functions. The type-based approach is also useful for automatic inference of se-
lective buffering of trees, as discussed in Section 5.2.

The type system we used in this paper is based on the ordered linear logic proposed
by Polakow [22]. He proposed a logic programming language Olli, logical framework
OLF and ordered lambda calculus based on the logic. There are many similarities
between our typing rules and his derivation rules for the ordered linear logic. For
example, our type judgment Γ | ∆ ` M : τ corresponds to the judgment Γ; ·;∆ ` A of
ordered linear logic. The rule T-Abs1 corresponds to a combination of the rules for an
ordered linear implication and the modality (!). However, we cannot use ordered linear
logic directly since it would make our type system unsound. Petersen et al. [20] used
ordered linear types to guarantee correctness of memory allocation and data layout.
While they used an ordered linear type environment to express a spatial order, we
used it to express a temporal order.
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Chapter 7

Conclusion

We have proposed a type system based on ordered linear types to enable translation of
tree-processing programs into stream-processing programs, and proved the correctness
of the translation.

Since our translation algorithm preserves the structure of source programs, the
translation works in the presence of side effects other than stream inputs/outputs. Our
framework can also be easily extended to deal with multiple input trees, by introducing
pair constructors and refining the type judgment form to Γ | {s1 : ∆1, . . . , sn : ∆n} `
M : τ where s1, . . . , sn are the names of input streams and each of ∆1, . . . , ∆ is an
ordered linear type environment. In Appendix A, we present examples of programs
that take multiple input trees and use side effects.

We presented an algorithm I that automatically inserts buffering primitives. How-
ever, I has the following limitations:

• I stores output trees on memory.

• I cannot skip input trees. When I needs to skip an input tree, it stores the tree
on memory.

We are currently studying how to solve those problems and improve the algorithm.
In addition to application to XML processing, our translation framework may

also be useful for optimization of distributed programs that process and communicate
complex data structures. Serialization/unserialization of data correspond to unpars-
ing/parsing in Figure 1.1, so that our translation framework can be used for eliminating
intermediate data structures and processing serialized data directly.
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Appendix A

Examples of programs that

use side effects and take

multiple input trees

Figure A.1 shows a program that prints out integer elements to standard error output
in right-to-left, depth-first manner.

Figure A.2 shows a program that takes two input trees and returns whether they
are identical. Note that the structure-preserving translation works.
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Source program
let f ’ = fix f ′.λt.mcase t of mleaf x ⇒ print err x | mnode x1 x2 ⇒ (f ′ x2); (f ′ x1) in

fix f.λt.case t of

leaf x ⇒ print err x

| node x1 x2 ⇒ let mt = strm to mem x1 in (f x2); (f ′ mt)

Target program
let f ’ = fix f ′.λt.mcase t of mleaf x ⇒ print err x | mnode x1 x2 ⇒ (f ′ x2); (f ′ x1) in

fix f.λt.case read () of

leaf ⇒ let x = read() in print err x

| node ⇒ let mt = strm to mem () in (f ()); (f ′ mt)

Figure A.1: A program that prints out integer elements to standard error output in
right-to-left, depth-first manner.

Source program
fix eq.λ(t1, t2).

case t1 of

leaf x ⇒ (case t2 of leaf y ⇒ x = y | node x1 x2 ⇒ false)
| node x1 x2 ⇒

(case t2 of leaf y ⇒ false | node y1 y2 ⇒ eq (x1, y1) && eq (x2, y2))

Target program
fix eq.λ(t1, t2).

case read(t1) of

leaf ⇒ let x = read(t1)in
(case read(t2) of leaf ⇒ let y = read(t2) in x = y | node ⇒ false)

| node ⇒ (case read(t2) of leaf ⇒ let y = read(t2) in false

| node ⇒ eq (t1, t2) && eq (t1, t2))

Figure A.2: A program that takes two input trees and returns whether they are
identical
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Appendix B

The Proof of Theorem 4.2

In this chapter, we prove Theorem 4.2. We prepare the following lemma to prove the
theorem. The proof of that lemma is due to Koichi Kodama. The proof of Theorem 4.2
is done by the author.

Lemma B.1 (type substitution) If Γ, x : τ ′ | ∆ ` M : τ and Γ | ∅ ` N : τ ′ hold,
Γ | ∆ ` [N/x]M : τ .

Proof We use induction on the derivation tree of Γ, x : τ ′ | ∆ ` M : τ .

• Case T-Var1:
M = z

∆ = z : Tree1

Since [N/x]z = z, we have Γ | ∆ ` [N/x]M : τ .

• Case T-Var2:
M = z

z : τ ′ ∈ {Γ, x : τ ′}
∆ = ∅

If z = x, then [N/x]M = N and τ = τ ′. Thus, Γ | ∆ ` [N/x]M :τ holds from the
assumption Γ | ∅ ` N : τ ′. If z 6= x, then [N/x]M = z. Thus, Γ | ∆ ` [N/x]M : τ
holds.

• Case T-Int:
M = i

τ = Int,
∆ = ∅

Since [N/x]M = M , we have Γ | ∆ ` [N/x]M : τ .
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• Case T-Abs1:
M = λz.M2

τ = Tree1 → τ2

Γ, x : τ ′ | z : Tree1 ` M2 : τ2

∆ = ∅
Γ | z : Tree1 ` [N/x]M2 : τ2 follows from the induction hypothesis. Thus,
Γ | ∅ ` λz.[N/x]M2 : Tree1 → τ2 follows from T-Abs1. Because [N/x]M =
λz.[N/x]M2 (Note that we assume that every bound variable be different as we
mentioned in Section 2.1), we have Γ | ∆ ` [N/x]M : τ as required.

• Case T-Abs2:
M = λz.M1

τ = τ1 → τ2

Γ, x : τ ′, z : τ1 | ∅ ` M1 : τ2

∆ = ∅
Γ, z : τ1 | ∅ ` [N/x]M1 : τ2 follows from the induction hypothesis. Thus, Γ | ∅ `
λz.[N/x]M2 : τ1 → τ2 follows from T-Abs2. Because [N/x]M = λz.[N/x]M2,
we have Γ | ∆ ` [N/x]M : τ as required.

• Case T-App:
M = M1M2

Γ, x : τ ′ | ∆1 ` M1 : τ2 → τ

Γ, x : τ ′ | ∆2 ` M2 : τ2

∆ = ∆1, ∆2

Γ | ∆1 ` [N/x]M1 : τ2 → τ and Γ | ∆2 ` [N/x]M2 : τ2 follow from the
induction hypothesis. Because ([N/x]M1 [N/x]M2) = [N/x](M1 M2), we have
Γ | ∆ ` [N/x]M : τ from T-App as required.

• Case T-Plus:
M = M1 + M2

τ = Int

Γ, x : τ ′ | ∆1 ` M1 : Int

Γ, x : τ ′ | ∆2 ` M2 : Int

∆ = ∆1, ∆2

Γ | ∆1 ` [N/x]M1 : Int and Γ | ∆2 ` [N/x]M2 : Int follow from the induction
hypothesis. Because [N/x]M1 + [N/x]M2 = [N/x](M1 + M2), we have Γ | ∆ `
[N/x]M : τ from T-Plus.

• Case T-Leaf:
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M = leaf M1

τ = Tree+

Γ, x : τ ′ | ∆ ` M1 : Int

Γ | ∆ ` [N/x]M1 : Int follows from the induction hypothesis. Because leaf [N/x]M1 =
[N/x](leaf M1), we have Γ | ∆ ` [N/x]M : τ from T-Leaf.

• Case T-Node:
M = node M1 M2

τ = Tree+

Γ, x : τ ′ | ∆1 ` M1 : Tree+

Γ, x : τ ′ | ∆2 ` M2 : Tree+

∆ = ∆1, ∆2

Γ | ∆1 ` [N/x]M1 : Tree+ and Γ | ∆2 ` [N/x]M2 : Tree+ follow from the
induction hypothesis. Because node [N/x]M1 [N/x]M2 = [N/x](node M1 M2),
we have Γ | ∆ ` [N/x]M : τ from T-Node.

• Case T-Case:
M = case M0 of leaf z ⇒ M1 | node z1 z2 ⇒ M2

Γ, x : τ ′ | ∆1 ` M0 : Tree1

Γ, x : τ ′, z : Int | ∆1 ` M1 : τ

Γ, x : τ ′ | z1 : Tree1, z2 : Tree1, ∆2 ` M2 : τ

∆ = ∆1, ∆2

Γ | ∆1 ` [N/x]M0 : Tree1 and Γ, z : Int | ∆2 ` [N/x]M1 : τ and Γ | z1 :
Tree1, z2 : Tree1,∆2 ` M2 : τ follow from the induction hypothesis. Because
case [N/x]M0 of leaf z ⇒ [N/x]M1 | node z1 z2 ⇒ [N/x]M2 = [N/x]M , we
have Γ | ∆ ` [N/x]M : τ from T-Case.

• Case T-Fix:
M = fix f.M1,
τ = τ1 → τ2

Γ, x : τ ′, f : τ1 → τ2 | ∆ ` M1 : τ1 → τ2

Γ, f : τ1 → τ2 | ∆ ` [N/x]M1 : τ1 → τ2 follows from the induction hypothesis.
Because fix f.[N/x]M1 = [N/x](fix f.M1), we have Γ | ∆ ` [N/x]M : τ from
T-Fix.

2

Proof of Theorem 4.2. The first condition can be easily proved by induction on the
derivation tree of Γ | 〈〈δ〉〉 ` M :τ . Here we only show the proof of the second condition.
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From the assumption (M, δ) −→ (M ′, δ′), there exist Es and I that satisfy M =
Es[I]. We use structural induction on Es.

• Case Es = [ ].

– Case I = i1 + i2.
〈〈δ〉〉 = ∅ and τ = Int follow from the assumption Γ | 〈〈δ〉〉 ` M : τ and
T-Plus and T-Int. M ′ = plus(i1, i2) and δ′ = δ (and thus, δ′ = ∅) follow
from Es2-Plus. Thus, Γ | 〈〈δ′〉〉 ` plus(i1, i2) : Int holds from T-Int as
required.

– Case I = (λx.N) U .
First, suppose U = i or U = λy.N ′ for some i or y and N ′. Then, δ = ∅
and Γ | ∅ ` U : τ ′ and Γ, x : τ ′ | ∅ ` N : τ follow from the assumption
Γ | 〈〈δ〉〉 ` M : τ and T-App and T-Abs2. M ′ = [U/x]N and δ′ = δ (and
thus, δ′ = ∅) follow from Es2-App. Thus, Γ | 〈〈δ′〉〉 ` M ′ : τ follows from
Lemma B.1 as required.

Next, suppose U = y for some y. Then, M ′ = [y/x]N and δ′ = δ follow
from Es2-App. 〈〈δ〉〉 = y : Tree1 and Γ | x : Tree1 ` N : τ follow from the
assumption Γ | 〈〈δ〉〉 ` M :τ and T-App and T-Abs1. Thus, as easily seen,
Γ | y : Tree1 ` [y/x]N : τ . Thus, Γ | 〈〈δ′〉〉 ` M ′ : τ follows as required.

– Case I = (case y of leaf x ⇒ M1 | node x1 x2 ⇒ M2) with δ = (y 7→
leaf i, δ′′).
Γ | 〈〈δ〉〉 ` M : τ must have been derived by using T-Case. Thus, we have
Γ, x : Int | 〈〈δ′′〉〉 ` M1 : τ . Because Γ | ∅ ` i : Int, we have Γ | 〈〈δ′′〉〉 `
[i/x]M1 : τ from Lemma B.1. Because M ′ = [i/x]M1 and δ′ = δ′′ follow
from Es2-Case1, we have Γ | 〈〈δ′〉〉 ` M ′ : τ as required.

– Case I = (case y of leaf x ⇒ M1 | node x1 x2 ⇒ M2) with δ = (y 7→
(node V1 V2), δ′′).
Γ | 〈〈δ〉〉 ` M : τ must have been derived by using T-Case. Thus, we have
Γ | x1 : Tree1, x2 : Tree1, 〈〈δ′′〉〉 ` M2 : τ . Because M ′ = M2 and δ′ =
x1 7→ V1, x2 7→ V2, δ

′′ follow from Es2-Case2, we have Γ | 〈〈δ′〉〉 ` M ′ : τ

as required.

– Case I = fix f.N .
Γ | 〈〈δ〉〉 ` M : τ must have been derived by using T-Fix. Thus, we have
δ = ∅ and Γ, f : τ | ∅ ` N : τ . M ′ = [fix f.N/f ]N and δ′ = δ follow from
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Es2-Fix. Because Γ | ∅ ` fix f.N : τ , we have Γ | ∅ ` [fix f.N/f ]N : τ from
Lemma B.1. Thus, we have Γ | 〈〈δ′〉〉 ` M ′ : τ as required.

• Case Es = E′
s N .

Γ | 〈〈δ〉〉 ` M : τ must have been derived by using T-App. Thus, we have
Γ | 〈〈δ1〉〉 ` E′

s[I] : τ ′ → τ and Γ | 〈〈δ2〉〉 ` N : τ ′ and δ = δ1, δ2 for some
δ1, δ2 and τ ′. From the induction hypothesis, there exist δ′1 and M ′′ that satisfy
Γ | 〈〈δ′1〉〉 ` M ′′ : τ ′ → τ and (E′

s[I], δ1) −→ (M ′′, δ′1). Because M ′ = M ′′ N and
δ′ = δ′1, δ2, we have Γ | 〈〈δ′〉〉 ` M ′ : τ from T-App as required.

• Case Es = (λx.N)E′
s.

Γ | 〈〈δ〉〉 ` M : τ must have been derived by using T-App. Thus, we have
Γ | ∅ ` λx.N : τ ′ → τ and Γ | 〈〈δ〉〉 ` E′

s[I] : τ ′ for some τ ′. From the induction
hypothesis, there exists M ′′ that satisfies Γ | 〈〈δ′〉〉 ` M ′′ : τ ′ and (E′

s[I], δ) −→
(M ′′, δ′). Because M ′ = (λx.N) M ′′, we have Γ | 〈〈δ′〉〉 ` M ′ : τ from T-App as
required.

• Case Es = E′
s + N .

Γ | 〈〈δ〉〉 ` M : τ must have been derived by using T-Plus. Thus, we have
τ = Int and Γ | 〈〈δ1〉〉 ` E′

s[I] : Int and Γ | 〈〈δ2〉〉 ` N : Int and δ = δ1, δ2 for
some δ1, δ2. From the induction hypothesis, there exist δ′1 and M ′′ that satisfy
Γ | 〈〈δ′1〉〉 ` M ′′ : Int and (E′

s[I], δ1) −→ (M ′′, δ′1). Because M ′ = M ′′ + N and
δ′ = δ′1, δ2, we have Γ | 〈〈δ′〉〉 ` M ′ : τ from T-App as required.

• Case Es = i + E′
s.

Γ | 〈〈δ〉〉 ` M : τ must have been derived by using T-Plus. Thus, we have
τ = Int and Γ | 〈〈δ〉〉 ` E′

s[I] : Int. From the induction hypothesis, there exists
M ′′ that satisfies Γ | 〈〈δ′〉〉 ` M ′′ : Int and (E′

s[I], δ) −→ (M ′′, δ′). Because
M ′ = i + M ′′, we have Γ | 〈〈δ′〉〉 ` M ′ : τ from T-Plus as required.

• Case Es = leaf E′
s.

Γ | 〈〈δ〉〉 ` M : τ must have been derived by using T-Leaf. Thus, we have
τ = Tree+ and Γ | 〈〈δ〉〉 ` E′

s[I] : Int. From the induction hypothesis, there
exists M ′′ that satisfies Γ | 〈〈δ′〉〉 ` M ′′ :Int and (E′

s[I], δ) −→ (M ′′, δ′). Because
M ′ = leaf M ′′, we have Γ | 〈〈δ′〉〉 ` M ′ : τ from T-Leaf as required.

• Case Es = node E′
s N .

Γ | 〈〈δ〉〉 ` M : τ must have been derived by using T-Node. Thus, we have
τ = Tree+ and Γ | 〈〈δ1〉〉 ` E′

s[I] : Tree+ and Γ | 〈〈δ2〉〉 ` N : Tree+ and
δ = δ1, δ2 for some δ1, δ2. From the induction hypothesis, there exist δ′1 and
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M ′′ that satisfy Γ | 〈〈δ′1〉〉 ` M ′′ : Tree+ and (E′
s[I], δ1) −→ (M ′′, δ′1). Because

M ′ = node M ′′ N and δ′ = δ′1, δ2, we have Γ | 〈〈δ′〉〉 ` M ′ : τ from T-Node as
required.

• Case Es = node V E′
s.

Γ | 〈〈δ〉〉 ` M : τ must have been derived by using T-Node. Thus, we have
τ = Tree+ and Γ | 〈〈δ〉〉 ` E′

s[I] : Tree+. From the induction hypothesis, there
exists M ′′ that satisfies Γ | 〈〈δ′〉〉 ` M ′′ : Tree+ and (E′

s[I], δ) −→ (M ′′, δ′).
Because M ′ = node V M ′′, we have Γ | 〈〈δ′〉〉 ` M ′ : τ from T-Node as
required.

• Case Es = (case E′
s of leafx ⇒ M1 | node x1 x2 ⇒ M2).

Γ | 〈〈δ〉〉 ` M : τ must have been derived by using T-Case. Thus, we have
Γ | 〈〈δ1〉〉 ` E′

s[I] : Tree1 and Γ, x : Int | 〈〈δ2〉〉 ` M1 : τ and Γ | x1 : Tree1, x2 :
Tree1, 〈〈δ2〉〉 ` M2 : τ and δ = δ1, δ2 for some δ1 and δ2. From the induc-
tion hypothesis, there exist δ′1 and M ′′ that satisfy Γ | 〈〈δ′1〉〉 ` M ′′ : Tree1

and (E′
s[I], δ1) −→ (M ′′, δ′1). Because M ′ = (case M ′′ of leaf x ⇒ M1 |

node x1 x2 ⇒ M2) and δ′ = δ′1, δ2, we have Γ | 〈〈δ′〉〉 ` M ′ : τ from T-Case as
required.

2
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Appendix C

The Proof of Lemma 4.1

For the proof of Lemma 4.1, we prepare the following lemma.

Lemma C.1 If x 6∈ γ, then Aγ([M1/x]M2) = [Aγ(M1)/x]Aγ(M2).

Proof This follows from straightforward induction on the structure of M2.

2

Proof of Lemma 4.1. To prove (M, δ) ∼ (e, Si, So), it is sufficient to prove M ∼FV(M)

(e, So). We hereafter write γ for FV(M) and S for So.
First, suppose that M is not reducible. Then, M = U or M = V .

• Case M = U .
Let e = Aγ(M) and S = ∅. Then M ∼γ (e, S) follows from C-Value. (Aγ(M), 〈δ〉, ∅) −→∗

(e, 〈δ〉, S) is obvious.

• Case M = V .
Let e = () and S = [[V ]]. Then M ∼γ (e, S) follows from C-Tree. (Aγ(M), 〈δ〉, ∅) −→∗

(e, 〈δ〉, S) follows from the structural induction on V below:

– Case V = leaf i.
In this case, Aγ(M) = (write(leaf);write(i)). Thus, (Aγ(M), 〈δ〉, ∅) −→∗

(e, 〈δ〉, S) holds.

– Case V = node V1 V2.
In this case, Aγ(M) = (write(node);Aγ(V1);Aγ(V2)) and S = node; [[V1 ]]; [[V2 ]].
Because ∅ | ∅ ` V1:Tree+ and ∅ | ∅ ` V2:Tree+, we have (Aγ(V1), ∅, ∅) −→∗
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((), ∅, [[ V1 ]]) and (Aγ(V2), ∅, ∅) −→∗ ((), ∅, [[V2 ]]) from the induction hy-
pothesis. Thus, (Aγ(M), 〈δ〉, ∅) −→∗ (e, 〈δ〉, S). (Note that δ = ∅ because
∅ | ∅ ` V : Tree+.)

Next, suppose that M is reducible. Then, there exist Es and I such as M = Es[I].
We use structural induction on Es.

• Case Es = [ ].
In this case, M = I. Let e = Aγ(M) and S = ∅. Then, M ∼γ (e, S) follows
from C-Inst. (Aγ(M), 〈δ〉, ∅) −→∗ (e, 〈δ〉, S) is obvious.

• Case Es = E′
s M ′.

In this case, M = E′
s[I] M ′. ∅ | 〈〈δ1〉〉 ` E′

s[I] : τ ′ → τ and ∅ | 〈〈δ2〉〉 ` M ′ : τ ′

and δ = δ1, δ2 follow for some δ1 and δ2 from the assumption ∅ | 〈〈δ〉〉 ` M : τ .
Thus, E′

s[I] ∼γ (e′, S′) and (Aγ(E′
s[I]), 〈δ1〉, ∅) −→∗ (e′, 〈δ1〉, S′) follow for some

e′ and S′ from the induction hypothesis. Let e be e′ Aγ(M ′) and S be S′. Then,
M ∼γ (e, S) follows from C-App1. Because Aγ(M) = Aγ(E′

s[I]) Aγ(M ′), we
have (Aγ(M), 〈δ〉, ∅) −→∗ (e, 〈δ〉, S).

• Case Es = (λx.M ′) E′
s.

In this case, M = (λx.M ′) E′
s[I]. ∅ | ∅ ` (λx.M ′) : τ ′ → τ and ∅ | 〈〈δ〉〉 `

E′
s[I] : τ ′ follow for some τ ′ from the assumption ∅ | 〈〈δ〉〉 ` M : τ . Thus,

E′
s[I] ∼γ (e′, S′) and (Aγ(E′

s[I]), 〈δ〉, ∅) −→∗ (e′, 〈δ〉, S′) follow for some e′ and
S′ from the induction hypothesis. Let e be (λx.Aγ(M ′)) e′ and S be S′. Then,
M ∼γ (e, S) follows from C-App2. Because Aγ(M) = (λx.Aγ(M ′)) Aγ(E′

s[I]),
we have (Aγ(M), 〈δ〉, ∅) −→∗ (e, 〈δ〉, S).

• Case Es = E′
s + M ′.

In this case, M = E′
s[I]+M ′. ∅ | 〈〈δ1〉〉 ` E′

s[I] :Int and ∅ | 〈〈δ2〉〉 ` M ′ :Int and
δ = δ1, δ2 follow for some δ1 and δ2 from the assumption ∅ | 〈〈δ〉〉 ` M : τ . Thus,
E′

s[I] ∼γ (e′, S′) and (Aγ(E′
s[I]), 〈δ1〉, ∅) −→∗ (e′, 〈δ1〉, S′) follows for some e′

and S′ from the induction hypothesis. Let e be e′+Aγ(M ′) and S be S′. Then,
M ∼γ (e, S) follows from C-Plus1. Because Aγ(M) = Aγ(E′

s[I])+Aγ(M ′), we
have (Aγ(M), 〈δ〉, ∅) −→∗ (e, 〈δ〉, S).

• Case Es = i + E′
s.

In this case, M = i + E′
s[I]. ∅ | 〈〈δ〉〉 ` E′

s[I] : Int follow from the assumption
∅ | 〈〈δ〉〉 ` M : τ . Thus, E′

s[I] ∼γ (e′, S′) and (Aγ(E′
s[I]), 〈δ〉, ∅) −→∗ (e′, 〈δ〉, S′)

follow for some e′ and S′ from the induction hypothesis. Let e be i+e′ and S be

57



S′. Then, M ∼γ (e, S) follows from C-Plus2. Because Aγ(M) = i+Aγ(E′
s[I]),

we have (Aγ(M), 〈δ〉, ∅) −→∗ (e, 〈δ〉, S).

• Case Es = leaf E′
s.

In this case, M = leaf E′
s[I]. ∅ | 〈〈δ〉〉 ` E′

s[I] : Tree+ follows from the assump-
tion ∅ | 〈〈δ〉〉 ` M : τ . Thus, E′

s[I] ∼γ (e′, S′) and (Aγ(E′
s[I]), 〈δ〉, ∅) −→∗

(e′, 〈δ〉, S′) follow for some e′ and S′ from the induction hypothesis. Let e

be write(e′) and S be leaf ; S′. Then, M ∼γ (e, S) follows from C-Leaf.
(Aγ(M), 〈δ〉, ∅) −→∗ (e, 〈δ〉, S) follows fromAγ(M) = write(leaf);write(Aγ(E′

s[I])).

• Case Es = node E′
s M ′.

In this case, M = node E′
s[I] M ′. ∅ | 〈〈δ1〉〉 ` E′

s[I] : Tree+ and ∅ | 〈〈δ2〉〉 `
M ′ : Tree+ and δ = δ1, δ2 follow for some δ1 and δ2 from the assumption ∅ |
〈〈δ〉〉 ` M : τ . Thus, E′

s[I] ∼γ (e′, S′) and (Aγ(E′
s[I]), 〈δ1〉, ∅) −→∗ (e′, 〈δ1〉, S′)

follows for some e′ and S′ from the induction hypothesis. Let e be e′;Aγ(M ′) and
S be node;S′. Then, M ∼γ (e, S) follows from C-Node1. Because Aγ(M) =
write(node);Aγ(E′

s[I]);Aγ(M ′), we have (Aγ(M), 〈δ〉, ∅) −→∗ (e, 〈δ〉, S).

• Case Es = node V E′
s.

In this case, M = node V E′
s[I]. ∅ | 〈〈δ〉〉 ` E′

s[I] : Tree+ follows from the
assumption ∅ | 〈〈δ〉〉 ` M : τ . Thus, E′

s[I] ∼γ (e′, S′) and (Aγ(E′
s[I]), 〈δ〉, ∅) −→∗

(e′, 〈δ〉, S′) follow for some e′ and S′ from the induction hypothesis. Let e be e′

and S be node; [[V ]];S′. Then, M ∼γ (e, S) follows from C-Node2. Because
Aγ(M) = write(node);
Aγ(V );Aγ(E′

s[I]), we have (Aγ(M), 〈δ〉, ∅) −→∗ (e, 〈δ〉, S).

• Case Es = (case E′
s of leaf x ⇒ M1 | node x1 x2 ⇒ M2).

In this case, (M = (case E′
s[I] of leaf x ⇒ M1 | node x1 x2 ⇒ M2)).

∅ | 〈〈δ1〉〉 ` E′
s[I] : Tree1 and x : Int | 〈〈δ2〉〉 ` M1 : τ and ∅ | x1 : Tree1, x2 :

Tree1, 〈〈δ2〉〉 ` M1 : τ and δ = δ1, δ2 follow for some δ1 and δ2 from the as-
sumption ∅ | 〈〈δ〉〉 ` M : τ . Thus, E′

s[I] ∼γ (e′, S′) and (Aγ(E′
s[I]), 〈δ1〉, ∅) −→∗

(e′, 〈δ1〉, S′) follows for some e′ and S′ from the induction hypothesis. Let e be
case e′; read() of leaf ⇒ let x = read() in Aγ(M1) | node ⇒ [()/x1, ()/x2]Aγ(M2)
and S be S′. Then, M ∼γ (e, S) follows from C-Case. Because Aγ(M) =
caseAγ(E′

s[I]); read() of leaf ⇒ let x = read() in Aγ(M1) | node ⇒ [()/x1, ()/x2]Aγ(M2).
(Aγ(M), 〈δ〉, ∅) −→∗ (e, 〈δ〉, S) holds.

2
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Appendix D

The Proof of Lemma 4.2

We prove Lemma 4.2 in this chapter.

Proof The second property follows immediately from the definition of M ∼γ (e, S).
(If M is irreducible, then M ∼γ (e, S) must follow either from C-Value or C-Tree,
which implies that e is irreducible too.)

We prove the first property below. To prove (M ′, δ′) ∼ (e′, S′i, S
′
o), it is sufficient

to prove M ′ ∼FV(M) (e′, S′o). We hereafter write γ for FV(M) and S′ for S′o.
Suppose (M, δ) −→ (M ′, δ′). Then, M = Es[I] for some Es and I. We use

structural induction on Es.

• Case Es = [ ].

– Case I = i1 + i2.
In this case, (M, δ) −→ (M ′, δ′) must have been derived by using Es2-Plus.
Thus, M ′ = plus(i1)i2(= i) and δ′ = δ. M ∼γ (e, S) implies e = Aγ(I) =
i1 + i2 and S = ∅. Let e′ = i and S′ = ∅. Then (e, 〈δ〉, S) −→+ (e′, 〈δ′〉, S′)
and M ′ ∼γ (e′, S′) hold as required.

– Case I = (λx.M1)U .
(M, δ) −→ (M ′, δ′) must have been derived by using Es2-App. So, it must
be the case that M ′ = [U/x]M1 and δ′ = δ. M ∼γ (e, S) implies e =
Aγ(I) = (λx.Aγ(M1))Aγ(U) and S = ∅. By Lemma C.1, we have:

(e, 〈δ〉, ∅) −→ ([Aγ(U)/x]Aγ(M1), 〈δ〉, ∅)
= (Aγ(M ′), 〈δ〉, ∅).
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By Lemma 4.1, there exist e′′ and S′′ that satisfy (Aγ(M ′), 〈δ〉, ∅) −→∗

(e′′, 〈δ〉, S′′) and M ′ ∼γ (e′′, S′′). Let e′ be e′′ and S′ be S′′. Then,
(e, 〈δ〉, S) −→+ (e′, 〈δ′〉, S′) and M ′ ∼γ (e′, S′) hold as required.

– Case I = case y of leaf x ⇒ M1 | node x1 x2 ⇒ M2 with δ = (y 7→
leaf i, δ1).
(M, δ) −→ (M ′, δ′) must have been derived by using Es2-Case1. So, it
must be the case that M ′ = [i/x]M1 and δ′ = δ1. M ∼γ (e, S) implies e =
Aγ(I) = case (); read() of leaf ⇒ let x = read() in Aγ(M1) | node ⇒
[()/x1, ()/x2]Aγ(M2) and S = ∅. (e, leaf ; i; 〈δ1〉, ∅) −→+ (Aγ(M ′), 〈δ1〉, ∅)
follows from Lemma C.1. By Lemma 4.1, there exist e′′ and S′′ that satisfy
(Aγ(M ′), 〈δ1〉, ∅) −→ (e′′, 〈δ1〉, S′′) and M ′ ∼γ (e′′, S′′). Let e′ be e′′ and
S′ be S′′. Then, we have (e, 〈δ〉, S) −→+ (e′, 〈δ′〉, S′) and M ′ ∼γ (e′, S′) as
required.

– Case I = case y of leaf x ⇒ M1 | node x1 x2 ⇒ M2 with δ = (y 7→
node V1 V2, δ1).
(M, δ) −→ (M ′, δ′) must have been derived by using Es2-Case2. So, it
must be the case that M ′ = M2 and δ′ = x1 7→ V1, x2 7→ V2, δ1. M ∼γ (e, S)
implies e = Aγ(I) = case (); read() of leaf ⇒ let x = read() in Aγ(M1) |
node ⇒ [()/x1, ()/x2]Aγ(M2) and S = ∅. As easily seen, [()/x1, ()/x2]Aγ(M2) =
Aγ∪{x1,x2}(M2).Thus, (e,node; [[V1 ]]; [[V2 ]]; 〈δ1〉, ∅) −→+ (Aγ∪{x1,x2}(M2), [[ V1 ]]; [[V2 ]]; 〈δ1〉, ∅).
By Lemma4.1, there exist e′′ and S′′ that satisfy
(Aγ∪{x1,x2}(M2), [[V1 ]]; [[ V2 ]]; 〈δ1〉, ∅) −→∗

(e′′, [[V1 ]]; [[V2 ]]; 〈δ1〉, S′′) and M2 ∼γ (e′′, S′′). Let e′ = e′′ and S′ = S′′.
Then, we have (e, 〈δ〉, S) −→+ (e′, 〈δ′〉, S′) and M ′ ∼γ (e′, S′) as required.

– Case I = fix f.M1.
(M, δ) −→ (M ′, δ′) must have been derived by using Es2-Fix. So, it must
be the case that M ′ = [fix f.M1/f ]M1 and δ′ = δ. M ∼γ (e, S) implies
e = Aγ(I) = fix f.Aγ(M1) and S = ∅. By LemmaC.1, we have:

(e, 〈δ〉, ∅) −→ ([fix f.Aγ(M1)/f ]Aγ(M1), 〈δ〉, ∅)
= (Aγ(M ′), 〈δ〉, ∅).

By Lemma4.1, there exsist e′′ and S′′ that satisfy (Aγ(M ′), 〈δ〉, ∅) −→∗

(e′′, 〈δ〉, S′′) and M ′ ∼γ (e′′, S′′). Let e′ be e′′ and S′ be S′′ Then, we have
(e, 〈δ〉, S) −→+ (e′, 〈δ′〉, S′) and M ′ ∼γ (e′, S′) as required.

• Case Es = E1M2.
There exists M ′

1 that satisfies M ′ = M ′
1 M2 and (E1[I], δ) −→ (M ′

1, δ
′). M ∼γ
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(e, S) must have been derived from C-App1. Thus, there exists e1 that satisfies
e = e1 Aγ(M2) and E1[I] ∼γ (e1, S). Because M is well-typed, E1[I] is also well-
typed. Thus, from the induction hypothesis, we have (e1 Aγ(M2), 〈δ〉, S) −→+

(e′1 Aγ(M2), 〈δ′〉, S1) and M ′
1 ∼γ (e′1, S1) for some e′1 and S1.

First, suppose that M ′
1 is reducible. Let e′ be e′1 Aγ(M2) and S′ be S1. Then,

M ′ ∼γ (e′, S′) follows from C-App1 as required.

Next, suppose that M ′
1 is not reducible. Because M ′

1 is a function-typed term,
M ′

1 ∼γ (e′1, S1) must have been derived from C-Value. Thus, e′1 = Aγ(M ′
1) and

thus, e′1 Aγ(M2) = Aγ(M ′). From Lemma 4.1, there exist e′′ and S′′ that satisfy
(e′1 Aγ(M2), 〈δ′〉, S1) −→∗ (e′′, 〈δ′〉, S′′) and M ′ ∼γ (e′′, S′′). Let e′ be e′′ and S′

be S′′. Then, (e, 〈δ〉, S) −→+ (e′, 〈δ′〉, S′) and M ′ ∼γ (e′, S′) follow as required.

• Case Es = (λx.M2) E1.
There exists M ′

1 such that M ′ = (λx.M2) M ′
1 and (E1[I], δ) −→ (M ′

1, δ
′).

M ∼γ (e, S) must have been derived from C-App2. Thus, there exists e1

that satisfies e = (λx.Aγ(M2)) e1 and E1[I] ∼γ (e1, S). Because M is well-
typed, E1[I] is also well-typed. Thus, from the induction hypothesis, we have
((λx.Aγ(M2)) e1, 〈δ〉, S) −→+ ((λx.Aγ(M2)) e′1, 〈δ′〉, S1) and M ′

1 ∼γ (e′1, S1) for
some e′1 and S1.

First, suppose that M ′
1 is reducible. Let e′ be (λx.Aγ(M2)) e′1 and S′ be S1.

Then, M ′ ∼γ (e′, S′) follows from C-App2 as required.

Next, suppose that M ′
1 is a value. Because a tree-typed value cannot be passed to

a function, M ′
1 ∼γ (e′1, S1) must have been derived from C-Value, not from

C-Tree. Thus, e′1 = Aγ(M ′
1) and thus, (λx.Aγ(M2)) e′1 = Aγ(M ′) From

Lemma 4.1, there exist e′′ and S′′ that satisfy ((λx.Aγ(M2)) e′1, 〈δ′〉, S1) −→∗

(e′′, 〈δ′〉, S′′) and M ′ ∼γ (e′′, S′′). Let e′ be e′′ and S′ be S′′. Then, (e, 〈δ〉, S) −→+

(e′, 〈δ′〉, S′) and M ′ ∼γ (e′, S′) follow as required.

• Case Es = E1 + M2.
There exists M ′

1 that satisfies M ′ = M ′
1 + M2 and (E1[I], δ) −→ (M ′

1, δ
′).

M ∼γ (e, S) must have been derived from C-Plus1. Thus, there exists e1

that satisfies e = e1 + Aγ(M2) and E1[I] ∼γ (e1, S). Because M is well-
typed, E1[I] is also well-typed. Thus, from the induction hypothesis, we have
(e1 +Aγ(M2), 〈δ〉, S) −→+ (e′1 +Aγ(M2), 〈δ′〉, S1) and M ′

1 ∼γ (e′1, S1) for some
e′1 and S1.

First, suppose that M ′
1 is reducible. Let e′ be e′1 +Aγ(M2) and S′ be S1. Then,

M ′ ∼γ (e′, S′) follows from C-Plus1 as required.
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Next, suppose that M ′
1 is not reducible. Because M ′

1 is an integer, M ′
1 ∼γ (e′1, S1)

must have been derived from C-Value. Thus, e′1 = Aγ(M ′
1) and thus, e′1 +

Aγ(M2) = Aγ(M ′). From Lemma 4.1, there exist e′′ and S′′ that satisfy (e′1 +
Aγ(M2), 〈δ′〉, S1) −→∗ (e′′, 〈δ′〉, S′′) and M ′ ∼γ (e′′, S′′). Let e′ be e′′ and S′ be
S′′. Then, (e, 〈δ〉, S) −→+ (e′, 〈δ′〉, S′) and M ′ ∼γ (e′, S′) follow as required.

• Case E = i2 + E1.
There exists M ′

1 that satisfies M ′ = i2 + M ′
1 and (E1[I], δ) −→ (M ′

1, δ
′). M ∼γ

(e, S) must have been derived from C-Plus2. Thus, there exists e1 that satisfies
e = i2 + e1 and E1[I] ∼γ (e1, S). Because M is well-typed, E1[I] is also well-
typed. Thus, from the induction hypothesis, we have (i2 + e1, 〈δ〉, S) −→+ (i2 +
e′1, 〈δ′〉, S1) and M ′

1 ∼γ (e′1, S1) for some e′1 and S1.

First, suppose that M ′
1 is reducible. Let e′ be i2 + e′1 and S′ be S1. Then,

M ′ ∼γ (e′, S′) follows from C-Plus2 as required.

Next, suppose that M ′
1 is a value. M ′

1 ∼γ (e′1, S1) must have been derived from
C-Value. Thus, e′1 = Aγ(M ′

1) and thus, i2 + e′1 = Aγ(M ′) From Lemma 4.1,
there exist e′′ and S′′ that satisfy (i2 + e′1, 〈δ′〉, S1) −→∗ (e′′, 〈δ′〉, S′′) and M ′ ∼γ

(e′′, S′′). Let e′ be e′′ and S′ be S′′. Then, (e, 〈δ〉, S) −→+ (e′, 〈δ′〉, S′) and
M ′ ∼γ (e′, S′) follow as required.

• Case Es = leaf E1.
There exists M ′

1 that satisfies M ′ = leaf M ′
1 and (E1[I], δ) −→ (M ′

1, δ
′). M ∼γ

(e, S) must have been derived from C-Leaf. Thus, there exist e1 and S1 that
satisfies e = write(e1) and E1[I] ∼γ (e1, S1) and S = leaf ; S1. Because M is
well-typed, E1[I] is also well-typed. Thus, from the induction hypothesis, we have
(e1, 〈δ〉, S1) −→+ (e′1, 〈δ′〉, S′1) and M ′

1 ∼γ (e′1, S
′
1) for some e′1 and S′1.

First, suppose that M ′
1 is reducible. Let e′ be write(e′1) and S′ be leaf ; S1. Then,

M ′ ∼γ (e′, S′) follows from C-Leaf as required.

Next, suppose that M ′
1 is a value. Because M is well-typed, M ′

1 is an integer (let
the integer be i′1) and M ′

1 ∼γ (e′1, S
′
1) must have been derived from C-Value.

Thus, e′1 = i′1 and S′1 = ∅. Let e′ be () and S′ be leaf ; i′1. Then, M ′ ∼γ (e′, S′)
follows from C-Tree and (write(e′1), 〈δ′〉, leaf ; S′1) −→ (e′, 〈δ′〉, S′) holds.

• Case Es = node E1 M2.
There exists M ′

1 that satisfies M ′ = node M ′
1 M2 and (E1[I], δ) −→ (M ′

1, δ
′).

M ∼γ (e, S) must have been derived from C-Node1. Thus, there exist e1 and
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S1 that satisfies e = e1;Aγ(M2) and E1[I] ∼γ (e1, S1) and S = node;S1. Be-
cause we assume that M is well-typed, E1[I] is also well-typed. Thus, from the
induction hypothesis, we have (e1;Aγ(M2), 〈δ〉,node; S1) −→+

(e′1;Aγ(M2), 〈δ′〉,node; S′1) and M ′
1 ∼γ (e′1, S

′
1) for some e′1 and S′1.

First, suppose that M ′
1 is reducible. Let e′ be e′1;Aγ(M2) and S′ be node; S′1.

Then, M ′ ∼γ (e′, S′) follows from C-Node1 as required.

Next, suppose that M ′
1 is a value (let the value be V ′

1). M ′
1 ∼γ (e′1, S1) must have

been derived from C-Tree. Thus, e′1 = () and S1 = [[V ′
1 ]]. Thus, (e, 〈δ〉, S) −→+

(Aγ(M2), 〈δ′〉,node; [[ V ′
1 ]]). From Lemma 4.1, there exist e2 and S2 that satisfy

M2 ∼γ (e2, S2) and
(Aγ(M2), 〈δ′〉,node; [[ V ′

1 ]]) −→∗ (e2, 〈δ′〉,node; [[ V ′
1 ]];S2). Let e′ be e2 and S′ be

node; [[ V ′
1 ]]; S2. Then, M ′ ∼γ (e′, S′) follows from C-Node2 and (e, 〈δ〉, S) −→+

(e′, 〈δ′〉, S′) holds.

• Case Es = node V2 E1.
There exists M ′

1 that satisfies M ′ = node V2 M ′
1 and (E1[I], δ) −→ (M ′

1, δ
′).

M ∼γ (e, S) must have been derived from C-Node2. Thus, there exist e1 and S1

that satisfies e = e1 and E1[I] ∼γ (e1, S1) and S = node; [[ V2 ]]; S1. Because M

is well-typed, E1[I] is also well-typed. Thus, from the induction hypothesis, we
have (e1, 〈δ〉,node; [[V2 ]];S1) −→+ (e′1, 〈δ′〉,node; [[V2 ]];S′1) and M ′

1 ∼γ (e′1, S
′
1)

for some e′1 and S′1.

First, suppose that M ′
1 is reducible. Let e′ be e′1 and S′ be node; [[ V2 ]]; S′1. Then,

M ′ ∼γ (e′, S′) follows from C-Node1 as required.

Next, suppose that M ′
1 is a value (let the value be V ′

1). M ′
1 ∼γ (e′1, S1) must

have been derived from C-Tree. Thus, e′1 = () and S1 = [[V ′
1 ]], and thus,

(e, 〈δ〉, S) −→+ ((), 〈δ′〉,node; [[ V2 ]]; [[ V ′
1 ]]). Let e′ be () and S′ be node; [[ V2 ]]; [[ V ′

1 ]].
Then, M ′ ∼γ (e′, S′) follows from C-Tree as required.

• Case Es = (case E1 of leaf x ⇒ M1 | node x1 x2 ⇒ M2).
There exists M ′

1 that satisfies M ′ = (case M ′
1 of leaf x ⇒ M1 | node x1 x2 ⇒

M2) and (E1[I], δ) −→ (M ′
1, δ

′). M ∼γ (e, S) must have been derived from
C-Case. Thus, there exists e1 that satisfies e = (case e1; read() of leaf ⇒
let x = read() in M1 | node ⇒ [()/x1, ()/x2]Aγ(M2)) and E1[I] ∼γ (e1, S).
Because M is well-typed, E1[I] is also well-typed. Thus, from the induction hy-
pothesis, we have ((case e1; read() of leaf ⇒ let x = read() in M1 | node ⇒
[()/x1, ()/x2]Aγ(M2)), 〈δ〉, S) −→+
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((case e′1; read() of leaf ⇒ let x = read() in M1 | node ⇒ [()/x1, ()/x2]Aγ(M2)), 〈δ′〉, S′′)
and M ′

1 ∼γ (e′1, S
′′) for some e′1 and S′′.

First, suppose that M ′
1 is reducible. Let e′ be

(case e′1; read() of leaf ⇒ let x = read() in M1 | node ⇒ [()/x1, ()/x2]Aγ(M2))
and S′ be S′′. Then, M ′ ∼γ (e′, S′) follows from C-Case.

Next, suppose that M ′
1 is not reducible. Because M ′

1 is a tree-typed term, M ′
1

is a variable (let it be y′1). Because M ′
1 ∼γ (e′1, S

′′) must have been derived
from C-Value, e′1 = Aγ(y′1). Thus, (e, 〈δ〉, S) −→+ (Aγ(M ′), 〈δ′〉, S′′). From
Lemma 4.1, there exist e′′ and S1 that satisfy M ′ ∼γ (e′′, S1) and (Aγ(M ′), 〈δ′〉, S′′) −→∗

(e′′, 〈δ′〉, S1). Let e′ be e′′ and S′ be S1. Then, (e, 〈δ〉, S) −→+ (e′, 〈δ′〉, S′) and
M ′ ∼γ (e′, S′) hold as required.
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Appendix E

Proof of Theorem 4.3

This chapter proves Theorem 4.3. The proof of this chapter is due to Naoki Kobayashi.

Proof First of all, note that ∅ | x : Tree1 ` M x : τ follows an assumption ∅ | ∅ `
M : Tree1 → τ and ∅ | x : Tree1 ` x : Tree1.

We prove only (ii) hereafter. (i) can be proved in the same way.
Assume ((M x), x 7→ V ) →∗ (V ′, ∅). Because ∅ | x : Tree1 ` (M x) : τ holds,

there exist e, Si and So such that ((M x), x 7→ V ) ∼ (e, Si, So) and (A(M)(), Si, ∅) →∗

(e, Si, So) from Lemma 4.1 1. From the definition of ∼, Si = [[V ]]. Because of Theorem
4.2 and Lemma 4.2, there exists a sequence of reduction (e, [[ V ]], So) →∗ (e′, ∅, S′o) that
satisfies (V ′, ∅) ∼ (e′, ∅, S′o). From the definition of ∼, e′ = () and S′o = [[V ′ ]]. Thus,
(A(M)(), [[V ]], ∅) →∗ ((), ∅, [[ V ′ ]]) holds.

Next, assume (A(M)(), [[V ]], ∅) →∗ ((), ∅, [[V ′ ]]). As we stated above, there exist
e, Si and So such that ((M x), x 7→ V ) ∼ (e, [[ V ]], So) and (A(M)(), [[ V ]], ∅) →∗

(e, [[ V ]], So). Because applicable reduction rule can be uniquely determined at each
step of reduction, (e, [[V ]], So) →∗ ((), ∅, [[ V ′ ]]) holds.

In the following, we prove “if ∅ | 〈〈δ〉〉 ` M ′:Tree+ and (e, 〈δ〉, S′o) −→∗ ((), ∅, [[V ′ ]]))
and (M ′, δ) ∼ (e, S′i, S

′
o) hold, (M ′, δ) −→∗ (V ′, ∅) holds”. We use mathematical in-

duction on the number of reduction step of (e, 〈δ〉, S′o) −→∗ ((), ∅, [[V ′ ]])). With this
fact, by letting M ′ be M x and δ be x 7→ V , ((M x), x 7→ V ) −→∗ (V ′, ∅) holds because
∅ | x : Tree1 ` (M x) : Tree+ follows ((M x), x 7→ V ) →∗ (V, ∅) and Theorem 4.2.

• In the case of n = 0, M ′ = V ′ and δ = ∅ hold because e = (), 〈δ〉 = ∅, S′o = [[V ′ ]]
and (M ′, ∅) ∼ (e, ∅, S′o) hold. Thus, (M ′, δ) −→∗ (V ′, ∅) holds.

1Because ∅ | ∅ ` M : Tree1 → τ holds, FV(M) = ∅. Thus, AFV(M)∪{x}(M x) = A(M)().
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• In the case of n ≥ 1, there exist e′, Si, S
′′
o that satisfies

(e, 〈δ〉, S′o) −→ (e′, Si, S
′′
o ) −→∗ ((), ∅, [[ V ′ ]]))

From Lemma 4.2, there exist M ′′, δ′, S′′′o that satisfies

– (M ′, δ) −→ (M ′′, δ′)

– (M ′′, δ′) ∼ (e′′, 〈δ′〉, S′′′o )

– (e, 〈δ〉, S′o) −→+ (e′′, 〈δ′〉, S′′′o )

Since the reduction is deterministic, (e′′, 〈δ′〉, S′′′o ) −→∗ ((), ∅, [[ V ′ ]])) holds. From
the induction hypothesis, (M ′′, δ′) −→∗ (V ′, ∅). Thus, (M ′, δ) −→∗ (V ′, ∅) holds.
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