
Virtualizing a Multiprocessor Machine on a Network of Computers

Kenji Kaneda Yoshihiro Oyama Akinori Yonezawa

1 Introduction

The fundamental goal of Grid computing is
to seamlessly multiplex heterogeneous resources
spread over multiple computing sites. For exam-
ple, the Globus toolkit [8] aims to build a mid-
dleware for harnessing thousands of machines that
have a variety of different hardware/software con-
figurations such as CPU architectures or operat-
ing systems. Another example is SETI@home [1],
which searches extraterrestrial intelligence using
idle CPU cycles contributed by users.

One of major issues of the deployment of com-
putational Grids is to provide execution environ-
ments that are customizable as well as safe. A
customizable platform is necessary since the het-
erogeneity of underlying hardware/software config-
urations makes it difficult to run popular programs
that may depend on specific operating systems or
libraries. Furthermore, it is important to offer iso-
lation and security mechanisms complementary to
operating systems because an application that runs
on volunteers’ machines is usually untrusted and
may destroy the machines.

One approach for deploying computational Grids
is to use classic operating system concept of a Vir-
tual Machine Monitor (VMM) [13] as the basis for
resource sharing. A VMM virtualizes the real ma-
chine at the hardware layer (e.g., processor, mem-
ory, I/O devices), and exports a virtual machine
(VM), which mimics exactly what a real machine
would look like. The VMM facilitates the deploy-
ment of computational Grids as follows. First,
the VMM allows a user to access consistent, cus-
tomized application environments that are decou-
pled from physical resources. Second, the VMM en-
sures that an untrusted user or application can only
compromise their own operating system within a
virtual machine, not physical resources.

Recently the research community have been ex-
ploring several approaches for virtual machines for

Grid computing [4, 5, 9, 12]. For example, VM-
Plant [9] is a Grid service that provide homoge-
neous execution environments across distributed
Grid resources by supporting automated configu-
ration and creation of flexible VMs.

These existing systems are, however, not yet fea-
sible for Grid environments with respect to execu-
tion environments for parallel applications. More
specifically, these systems themselves lack a special
framework for parallel computing such as job sub-
mission or job scheduling mechanism. Since the use
of these middlewares breaks the abstraction level of
a VMM provides and sacrifices the simplicity of re-
source management, a user who want to execute
parallel programs on multiple hosts faces difficul-
ties.

To address the problem above, we propose a par-
allel computing environment which keeps the ab-
straction level that a VMM provides. In this paper,
we present a software layer that emulates a multi-
processor machine on a network of computers. Like
existing virtual machine monitors (VMMs), this
software layer takes complete control of the ma-
chine hardware and creates virtual machines, each
of which behaves like a complete physical machine
that can run its own operating system. In con-
trast to the existing VMMs, our system creates a
virtual multi-processor machine on a collection of
single-processor machines. For example, the sys-
tem gives users the illusion of multi-processor ma-
chine with N CPUs on top of N single-processor
machines that are connected by networks.

This functionality of our system greatly simpli-
fies utilization of distributed resources. For exam-
ple, it can be used to take applications that are
normally installed on large multiprocessor systems
and run them on a number of smaller, less expen-
sive machines. Suppose that a user would like to
utilize two single processor machines. The user eas-
ily utilizes these machines with a commodity OS
by creating a virtual dual processor machine. If



the user forks processes on a guest OS running in-
side the virtual machine, these processes are auto-
matically allocated on multiple virtual processors
by the scheduler of the guest OS, and are finally
allocated onto multiple physical machines by the
VMM. The prototype described and evaluated in
this paper supports instances of Linux guest oper-
ating system on Intel Pentium architecture.

The remainder of this paper is organized as fol-
lows. Section 2 presents the basic design of our sys-
tem. Section 3 describes the implementation of the
virtual machine monitor. The final section summa-
rizes the paper.

2 Basic Design

We describe the basic design of our system. First,
we mentions the features of the virtualization that
our VMM provides. Next, we introduce the archi-
tecture of our system and how virtual resources are
mapped to physical resources.

2.1 Virtual Machine Interface

As mentioned before, our VMM creates a virtual
multi-processor machine, in which a operating sys-
tem can run. The features of the virtualization is
summarized as follows:

• The virtual machine virtualizes a instruction
set architecture (ISA) of prevalent Intel Pen-
tium architecture.

• The VMM does not support full virtualization
of the underlying machine but support par-
avirtualization of the machine. In other words,
the instruction set used by a guest OS abstrac-
tion is similar but not identical to that of the
underlying hardware. This promises improved
performance, although it does require modi-
fications to the guest operating system. The
detail of the modification that a guest OS need
to conform is described in Section 3.

• The virtual machine has the same number of
processors as a collection of physical machines
in which the virtual machine runs.

Note that among various processors of Intel Pen-
tium Architectures, our design is targeted at the

� � � � � � � �

���

� �

� � � 	 
 � �

� ���

 � 	 
 � �

� �

���

� ���

� ���

 � 	 
 � �

� �

���

� ���

� ���

 � 	 
 � �

� �

���

� ���

� ���

 � 	 
 � �

� �

���

� ���

� � 
 � � � �

Figure 1: A virtual machine (VM) with four pro-
cessors built on four single-processor physical ma-
chines (PMs). PU and MS denote a processor unit
and a main memory (storage) unit respectively.

Pentium 4, Intel r©XeonTM, and P6 family proces-
sors, which allow more relaxed memory ordering
model than the other processors of Intel Pentium
Architecture such as the Intel 486TMprocessor [2].

In the current implementation, only Linux/x86
is hosted. We, however, believe that the underlying
techniques described in this paper can be applied
to other operating systems.

2.2 System Architecture

Our system is a hosted architecture [3], in which a
VMM is placed on top of an underlying host oper-
ating system (See Figure 1). Like existing VMMs
with a hosted architecture (e.g., LilyVM [6], FAU-
machine [7]), the VMM runs as a user process of
the host operating system.

This hosted architecture overcomes several tech-
nical and pragmatic hurdles around the virtualiza-
tion although incurring larger overhead than the
architecture where a VMM is placed on bare hard-
ware directly [10]. First, the hosted architecture
is useful for the virtualization of the Intel Pentium
Architecture, which is not naturally virtualizable
as shown in [11]. Second, the architecture allows a
virtual machine to support a large diversity of pe-
ripheral devices with a minimal programming effort
by relying upon a host operating system. Third, it
allows a guest operating system to co-exist with a
pre-existing host operating system.



A distinguishing feature of our system is that our
systems enables virtualization of a multi-processor
machine by running multiple VMM processes on
machines connected by networks. In the existing
systems, a single VMM runs simultaneously on a
physical machine. In our system, on the other
hand, VMMs that run on multiple machines co-
operate to build a virtual machine.

The virtual resources (e.g., processors, memory,
I/O devices) are mapped to physical resources in a
following manner. Virtual processors map in a 1 to
1 fashion with the underlying physical processors.
For example, in Figure 1, four processors of the vir-
tual machine are respectively associated with the
processor of physical machines. A memory and I/O
devices are virtualized as if they are shared by one
virtual machine.

3 Implementation of the VMM

This section describes how the VMM virtualizes
processors, a shared memory, and I/O devices.
Since the virtualization of processors is same as
that in a single-processor machine and is not irrel-
evant to the main subject, we only give an overview
of the mechanism. Since the virtualization of the
other hardware resources differs from that in a
single-processor machine, we explain it in detail.

3.1 Virtualizing Processors

The method of virtualizing processors is same as
that of LilyVM [6]. In this scheme, a large portion
of the virtual processor’s instructions is executed
by the machine’s real processor without VMM in-
tervention. Only some instructions that interfere
with the state of the underlying VMM or host OS
are not executed directly by the real processor and
are interpreted by the VMM.

The instructions that require VMM intervention
are called sensitive instructions. Before explain-
ing how the VMM traps and emulate the sensi-
tive instructions, we classify the sensitive instruc-
tions into two categories: privileged instructions
and non-privileged instructions. Some sensitive in-
structions are called privileged instructions if the
execution of these instruction at most privileged
hardware domain causes a general protection ex-
ception. The instructions that do not cause a ex-

ception are called non-privileged instructions. For
example, the lgdt instruction, which loads the
value in the source operand into the global descrip-
tor table register (GDTR) is a privileged instruc-
tion; and the sgdt instruction, which stores a con-
tent of the GDTR in the destination operand is not
a privileged instruction.

The way how the VMM traps the execution of
sensitive instructions differs whether the instruc-
tions are privileged or not. The trap of privileged
instructions is straightforward. Since a virtual ma-
chine runs in user mode, the VMM only needs trap
the exception caused by the execution.

On the other hand, the trap of non-privileged
instructions needs a special mechanism. We stati-
cally rewrite portions of a guest OS kernel to make
the execution of these instructions causes an ex-
ecution. More specifically, we insert a illegal in-
struction before each sensitive instruction at ker-
nel compile time. By intercepting a signal caused
by a illegal instruction followed by a sensitive in-
struction, the VMM intercepts the execution the
sensitive instruction.

This virtualization mechanism has the following
benefits and drawbacks. The benefit is that we can
port an operating system with small implementa-
tion cost. The drawback is that we cannot run
system level binaries of which source code is not
available.

3.2 Virtualizing a Shared Memory

A guest operating system that executes within a
virtual machine expects a zero-based physical ad-
dress space, as provided by real hardware. To vir-
tualize such a memory in user address space, we de-
vise the following four techniques. The first three
techniques are for virtualizing the paging mecha-
nism and same as that of LiLyVM. The fourth tech-
nique is for allowing virtual processors to assume a
globally shared memory.

• The VMM maps pages to a physical memory
(of the real machine) according to the page
directory of a virtual machine. This map-
ping is updated whenever the virtual machine
changes the value in the control register 3
(page directory base register), which contains
the base physical address of the page directory.



• We rewrite the kernel code (the base address
of the kernel address space) statically to avoid
the overlap of kernel space of the guest and
host operating system.

• The VMM emulates a page fault exception by
intercepting the exception that is generated by
the hardware of the real machine when a vir-
tual machine requests a page not in memory.

• The VMM implements the consistency proto-
col of the shared memory using the virtual
memory page protection mechanism (of the
real machine). More specifically, the VMM
uses the mprotect system call to control ac-
cess to shared pages. Any attempt to perform
a restricted access on a shared page generates
a SIGSEGV signal. When trapping this signal,
the VMM updates the content of the page by
communicating with remote machines and up-
grades the protection level of the page.

3.3 Virtualizing I/O Devices

The VMM prepares one central server for the em-
ulation of I/O devices. The server keeps the state
of all the devices and communicates with remote
machines to I/O operations issued by a guest op-
erating system.

For example, when a guest operating system read
a value from the I/O port with the in instruc-
tion, the VMM emulates the instruction as fol-
lows. First, the VMM intercepts the execution of
the instruction, and sends a request to the cen-
tral server. When receiving the request, the server
reads a value from the specified I/O port of the
virtual machine, and sends the value to the VMM.
Finally, the VMM copies the value to the destina-
tion operand of the instruction.

4 Conclusion

We have presented a VMM that virtualizes a multi-
processor machine on a network of computers. It
provides an excellent platfrom for deploying a wide
variety of parallel/distributed computing.

References

[1] SETI@home. http://setiathome.ssl.berkeley.edu/.

[2] IA-32 Intel r©Architecture Software Devel-
oper’s Manual Volume 3: System Program-
ming Guide, 2003.

[3] Virtual Machines: Architectures, Implemen-
tations and Applications, chapter 0. An
Overview of Virtual Machine Architectures. to
be published by Morgan Kaufmann Publish-
ers, 2004.

[4] Amr Awadallah and Mendel Rosenblum. The
vMatrix: A Network of Virtual Machine Mon-
itors for Dynamic Content Distribution, 2002.

[5] Ananth I. Sundararaj and Peter A. Dinda. To-
wards Virtual Networks for Virtual Machine
Grid Computing, 2004.

[6] Hideki Eiraku and Yasushi Shinjo. Running
BSD Kernels as User Processes by Partial
Emulation and Rewriting of Machine Instruc-
tions, 2003.

[7] Hōxer, H.-J. and Buchacker, K. and Sieh, V.
Implementing a User-Mode Linux with Mini-
mal Changes from Original Kernel, 2002.

[8] Ian Foster and Carl Kesselman. Globus: A
Metacomputing Infrastructure Toolkit. Inter-
national Journal of Supercomputer Applica-
tions, 11(2):115–128, 1997.

[9] Ivan Victor Krsul and Arijit Ganguly and Jian
Zhang and Jose A. B. Fortes and Renato J.
Figueiredo. VMPlants: Providing and Manag-
ing Virtual Machine Execution Environments
for Grid Computing, 2004.

[10] Jeremy Sugerman and Ganesh Venkitachalam
and Beng-Hong Lim. Virtualizing I/O Devices
on VMware Workstation’s Hosted Virtual Ma-
chine Monitor, 2001.

[11] John Scott Robin and Cynthia E. Irvine. Anal-
ysis of the Intel Pentium’s Ability to Support
a Secure Virtual Machine Monitor, 2000.

[12] R. Figueiredo and P. Dinda and J. Fortes.
A Case for Grid Computing on Virtual Ma-
chines, 2003.

[13] R. P. Goldberg. Survey of Virtual Machine
Research. IEEE Computer, 7(6):34–45, 1974.


