
Routing and Resource Discovery in Phoenix
Grid-Enabled Message Passing Library

Kenji Kaneda
University of Tokyo / PRESTO, JST

kaneda@yl.is.s.u-tokyo.ac.jp

Kenjiro Taura
University of Tokyo / PRESTO, JST

tau@logos.t.u-tokyo.ac.jp

Akinori Yonezawa
University of Tokyo

yonezawa@yl.is.s.u-tokyo.ac.jp

Abstract

We describe design and implementation of a “Grid-
enabled” message passing library, in the context of Phoenix
message passing model. It supports (1) message routing be-
tween nodes not directly reachable due to firewalls and/or
NAT, (2) resource discovery facilitating ease of configura-
tion that allows nodes without static names (e.g., DHCP
nodes) to participate in computation without specific ef-
forts, and (3) nodes dynamically joining/leaving compu-
tation at runtime. We argue that, in future Grid environ-
ments, all of the above functions, not just routing across fire-
walls, will become important issues of Grid-enabled mes-
sage passing systems including MPI. Unlike solutions com-
monly proposed by previous work on a Grid-enabled MPI,
our system runs a distributed resource discovery and rout-
ing table construction algorithm, rather than assuming all
such pieces of information are available in a static configu-
ration file or alike. Experimental results using 400 nodes in
three LANs indicate that our algorithm is able to dynami-
cally discover participating peers, connect them each other,
and calculate a routing table. The elapsed time of our algo-
rithm is only approximately twice as long as that of offline
route calculation that just connects nodes based on a fully
given configuration.

1. Introduction

Message passing model is a dominant programming
model for high performance parallel computation involv-
ing a large number of (e.g., �������) nodes. It may be even
more so in future multi-clusters and/or the Grid environ-
ment, where the programmer carefully needs to optimize
communication of applications. Thus it is natural for re-
searchers on HPC to seek a message passing library suitable

for such environments.
There have been a great deal of work with this end, most

of which aim at building “Grid-enabled” MPI libraries [2, 4,
6, 10, 11]. A primary design/implementation issue is how to
deal with the fact that nodes may not be directly reachable in
the underlying communication layer (e.g., TCP). This issue
arises due to IP filtering as well as NAT/DHCP.

As far as we know, all existing systems essentially let a
user specify the routes offline (e.g., in a configuration file).
Most typically, a configuration file groups nodes and speci-
fies a gateway node (either for each group or for the entire
nodes) via which messages between directly unreachable
nodes are routed. This solution is simple to implement and
feasible for a small number of nodes distributed over a cou-
ple of clusters. The solution, however, must be generalized
and extended in several ways for future environments, as
discussed below.

One obvious issue is a scalability limitation due to gate-
ways. A user should be able to specify as many gateways as
permitted by a network administrator, rather than just one
for each cluster. More important, having more resources
spread over the Grid implies that resource selections tend
to become more dynamic and adaptive. It will thus quickly
become impractical for the user to maintain a complete re-
source description, which works for all possible set of re-
sources that might be selected. Note that in the Grid setting,
a complete description not only involves a list of resources,
but also specifies routing (i.e., connectivity between nodes).
Nodes that have dynamic IP addresses are more trouble-
some. Though they are able to participate in computation
with a suitable resource manager support, it would be dif-
ficult for the MPI user even to specify such nodes in what
would be called a “complete” configuration file.

All in all, neither routing nor the names of participating
nodes should be completely specified by the user; commu-
nication libraries must learn them whatever resources are

selected by the scheduler.

To this end, we have developed a Grid-enabled commu-
nication library called Phoenix [24]. This paper describes
design and implementation of its enhanced routing and peer
discovery facility only briefly addressed in [24]. Specifi-
cally, it allows nodes to connect each other without initially
knowing all the peer names participating in computation.
Then the nodes build a routing table according to the re-
sulting graph of connections. The initial knowledge of the
nodes is only the names of a small (arbitrary) number of
“hub” nodes, through which nodes learn names of other par-
ticipating nodes and bootstrap the entire connection graph.

The mechanism is implemented in a fully dynamic fash-
ion, in that it allows nodes to join and leave at an arbi-
trary point of execution. Such a fully dynamic peer dis-
covery and routing table construction is mandatory if a par-
allel programming model supports dynamic processes (e.g.,
Phoenix, Dyn-MPI [25], PVM [8], and MPI2 [15]). In ad-
dition, the mechanism is a natural facility even if the model,
per se, only supports static processes. This is because, as
we have mentioned, dynamic and adaptive resource sched-
ulers, and/or even a very primitive form of fault tolerance
(e.g., a mechanism that avoids initially dead nodes) makes
selected resources not completely predictable by a user. Mi-
gration of MPI jobs and fault-tolerant MPIs [3–5, 23] also
need such mechanism since it enables nodes and networks
to change dynamically.

Technically, our system consists of routing table con-
struction and resource discovery. Thus, we borrowed ba-
sic ideas from a body of work on routing [20] and resource
discovery [1, 9, 12, 13]. Specifically, our routing table con-
struction algorithm is based on the Destination Sequenced
Distance Vector (DSDV) routing algorithm [17], originally
proposed in the context of mobile ad-hoc network routing.
Our experiments indicate, however, that naively adopting
the algorithm for our purpose does not scale because, in our
setting, the connection graph is dense and/or the connection
graph sometimes changes very rapidly (e.g., at start up). By
carefully engineering propagation and scheduling of rout-
ing events, we dramatically improved its performance. We
also show this is achieved even when nodes initially know
only a small number of other processes. That is, resource
discovery does not affect the performance.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews existing Grid-enabled MPIs. Section 3 de-
scribes our problem setting. Section 4 gives the details of
the routing and resource discovery algorithm. Section 5
presents experimental results. Section 6 discusses related
work. The final section summarizes the paper.

2. Grid-Enabled MPIs

2.1. Requirements

We summarize requirements on Grid-enabled communi-
cation systems , especially focusing on MPI. First, message
forwarding routes must be shortest. For high performance
communication, nodes must be able to transmit messages
directly if possible. Second, they must work on various
network topologies where many restrictions are imposed.
Third, in many contexts, it is highly desirable for them to
allow dynamic changes of the connection topology. This is
true even if the computation model only allows a static num-
ber of processes. For example, many fault tolerant MPIs
such as MPI/FT [3] have been developed. In these sys-
tems, crashed processes may be restarted on different ma-
chines. There are also systems that balance system loads
adaptively (e.g., Dyn-MPI [25], dynamic load balancing on
LAM/MPI [14]). These systems dynamically change the
allocation of MPI ranks or the number of nodes that partic-
ipate in computation. To support such systems, the routing
mechanism must adapt to dynamic changes of nodes and
connections.

2.2. Existing Systems

MPICH-V [4] is an automatic volatility tolerant MPI
based on uncoordinated checkpoint/rollback and distributed
message logging. It provides fault-tolerance as well as a
communication mechanism that enables nodes to commu-
nicate across firewalls. To bypass firewalls, MPICH-V pre-
pares Channel Memories (CMs), which must be globally
reachable from all the nodes. The system enables nodes
to communicate with one another by relaying messages via
CMs. This indirect communication of MPICH-V has three
drawbacks. First, every node always needs to communi-
cate with each other via CMs even if they can communicate
with each other directly. Second, the network topology that
MPICH-V supports is limited. It requires as least one glob-
ally reachable node in networks. Third, it cannot tolerate
dynamic changes on network topology since CMs are as-
sumed to be fixed.

Stampi [10] and PACX-MPI [7] provide unified MPI in-
terfaces for heterogeneous networks. They can exploit mul-
tiple clusters that may belong to different private networks.
Stampi creates a message routing process that relays mes-
sages between them when machines in different clusters
cannot communicate directly with each other through IP.
PACK-MPI provides a similar facility by having proxies
that handle inter-cluster communication. They cannot tol-
erate dynamic changes to connection topologies. In addi-
tion, they support only limited connection topologies; rout-
ing processes/proxies must be globally reachable.

2

MPICH/MADIII [2] offers a forwarding mechanism for
inter-cluster communication. It automatically calculates
forwarding routes for every machine using manually given
information about the entire network. Since the forwarding
routes are calculated statically at start up, MPICH/MADIII
cannot tolerate dynamic changes of the connection topol-
ogy.

3. Problem Setting

We assume the system assigns each participating node
one or more application level names, or simply logical
names. Node rank in MPI is an example of a logical
name. The programmer uses logical names to specify mes-
sage destinations. In contrast, a physical name refers to a
name used to communicate in the underlying communica-
tion layer. For example, if we build MPI on top of TCP, a
physical name is a pair

�
hostname, port number � . The basic

job of the communication library is to route messages with
their destinations specified by logical names to the right des-
tination node, even though it may not be directly reachable
in the underlying communication layer.

As we mentioned in the introduction, we generalize the
problem as follows. First, the communication library al-
lows network connectivity to change at runtime. It changes
routing accordingly. Second, it allows nodes to be added at
runtime without initially knowing their (either physical or
logical) names. When a new node joins a computation, the
new node must know, of course, at least one physical name
of an already participating node. On the other hand, any
participating node does not have to know the new node in
advance. Nodes may also be deleted at runtime. As men-
tioned previously, they are slight generalization of a mini-
mally dynamic process model where resources are selected
by the scheduler at a job start up depending on the availabil-
ity and loads of resources.

Our system has been implemented in the context of
Phoenix message passing model [24] developed by the au-
thors. It facilitates writing scalable parallel algorithms ac-
commodating dynamic processes. However, none of the al-
gorithms described in this paper depend on the specifics of
Phoenix model.

4. Routing and Resource Discovery Algorithm

4.1. Overview

We briefly sketch the behaviour of our algorithm using
an example network illustrated in Figure 1. It consists of
two subnets � and � . Node � and � are gateways of � and

� respectively, and they have fixed names. Node � , � , and �
are configured with DHCP in subnet � . Node 	 and
 are

also DHCP clients in subnet � . They do not have any static
names. Firewalls are installed on both subnets. They block
connections between non-gateways belonging to different
subnets. The only allowed connection across the firewalls
is SSH [21] connection (port 22) between � and � .

The system roughly works as follows.

Step 1: Initial setup A set of processes bring up on re-
sources chosen by a scheduler or a user. Each pro-
cess knows physical names of some (not necessarily
all) participating nodes. Let us assume in Figure 1,
nodes only know the physical names of the two gate-
way nodes. This is a small piece of configuration infor-
mation comfortably kept in each node or even passed
upon command submission. The system currently sup-
ports three underlying communication protocols: di-
rect TCP, OpenSSL [16], and SSH tunneling. SSH is
useful in many cases where the only inbound connec-
tion allowed is SSH port (22).

Step 2: Overlay network construction Each node tries to
establish connections to machines it knows. In Figure
1, the DHCP clients will succeed in establishing direct
TCP connections to one of the gateways. The gateways
also establish SSH connections between them.

Step 3: Resource discovery and routing table construction
Each node constructs its routing table by exchanging
messages on the overlay network. By looking up the
routing table, each node determines which neighbor
a message should be transmitted to. On the receipt of
messages destined for other nodes, a node also looks
up the table to determine a forwarding route.

Each node also learns new machines it initially does
not know from messages it receives. When a node
finds physical names it does not know, it retraces step
2 and step 3. The steps are repeated until each node
knows all the participating machines and all the possi-
ble connections are established. This mechanism can
minimize the number of hops each message travels.
For example, in Figure 1, the DHCP clients in the same
subnet can eventually communicate with each other di-
rectly even if they initially do not know each other.

The system guarantees that each node eventually
knows all the available machines if the graph is con-
nected after the first execution of step 2.

Note that step 2 and step 3 interleave. Thus the system
can route messages before the routing table is fully stabi-
lized. Whenever the connection topology changes, the over-
lay network and the routing tables are updated. For exam-
ple, suppose machine � is added to subnet � , and � initially
knows � . In this case, the overlay network is re-constructed
and finally � becomes directly connected to � , 	 , and
 .

3

subnet X

subnet Y

a

b

c
d

e
f

g

(a) initial configuration

subnet X

subnet Y

a

b

c
d

e
f

g

(b) network under construction

subnet X

subnet Y

a

b

c
d

e
f

g

(c) complete network

subnet X

subnet Y

a

b

c
d

e
f

g
h

(d) re-constrcuted network

Figure 1. Process of route calculation. Nodes indicate machines, and solid lines indicate established
connections between machines. (a) shows initial configurations. (b) shows an overlay network
constructed only by the initial configurations. (c) shows an overlay network completely constructed
when the system stabilizes. (d) shows a re-constructed network when � is added to the network.

4.2. Destination-Sequenced Distance-Vector Rout-
ing

Our routing algorithm is based on Destination-
Sequenced Distance-Vector Routing (DSDV) [17] proposed
for mobile ad-hoc networks. It gives us a good starting point
because it adapts to changes of the connection topology and
consumes a relatively small amount of memory compared
to other schemes based on distance-vector. In DSDV, each
routing table, at each node, lists all available destinations.
Specifically, the entry for destination node � consists of:

������� : a node to which messages destined for � are for-
warded.

�	��
����� : the number of hops of the route from the local
node to destination � .

������� : a sequence number that implies the freshness of
the entry, as will be explained later.

Hereafter ����� ��� is used to denote the entry for destina-
tion node � in � ’s routing table. ����� � �"! ����� , �#��� ���"!$����� ,
and � � � � �%!&����� are used to describe ����� , ��
'�(��� , and �����
of � � � � � respectively.

To maintain the consistency of the routing table in dy-
namically varying topology, each node transmits (a subset
of) its routing table to update its neighbor’s routing table.
Each node basically broadcasts when its routing table is up-
dated by significant new information (e.g., discovery of a
shorter path, break of a connection). On the receipt of a
message, each node updates its routing table by the follow-
ing rules: routes with larger sequence numbers are always
preferred as the basis for making forwarding decisions; and
of the path with the same sequence number, shorter routes
are chosen.

To calculate the shortest paths without any loops, the se-
quence number is maintained in such a way that the most

recently updated entry has the largest sequence number
among all nodes. For example, when a node finds a bro-
ken link, the entries of which route depends on the broken
link become obsolete. In such a case, the node broadcasts
these entries with incrementing their sequence number to
update the other nodes’ routing tables correctly.

Note that the receipt of update messages may cause an-
other transmission of update messages to make the routing
table of all the nodes consistent. The message transmission
is repeated until all the nodes in the network have received
a copy of the update message with a corresponding metric.

4.3. Resource Discovery Algorithm

As described in Section 4.1, each node needs to discover
available machines that it does not know in the beginning.
Each node needs to collect information about available ma-
chines by exchanging messages with other nodes.

The node discovery is performed as follows. Initially
each node only knows a part of machines participating in
the application. When a node transmits a routing table mes-
sage to update � ’s entry, it attaches � ’s physical name. On
the receipt of this message, the receiver learns � ’s physical
name, and tries to establish a connection to it.

4.4. Performance of the Naive DSDV

As we will show in Section 5, performance of a naively
implemented DSDV is just poor when the number of nodes
becomes large (�*)��). We investigated this and found there
are two primary reasons.

� Sending routing update messages to every neighbor re-
sult in many useless/redundant messages when the net-
work is dense, as is usually the case in our problem
setting.

4

� When the application brings up or when many nodes
are simultaneously added to the application, the set of
known node names as well as the topology of the graph
change very rapidly. Naively running DSDV update
protocol per each small change in the graph turns out to
be a very inefficient way of calculating the final routing
table, as we will see below.

For the first bullet, the topology of the overlay network
in our problem setting is typically dense since many nodes
can, and would like to, directly communicate with each an-
other via the underlying communication layer. For example,
the topology of the network consisting of multiple clusters
is usually a collection of cliques. These dense networks
cause a large number of redundant message transmissions.
Suppose that one node updates its routing table. The mini-
mum number of messages required to update all the routing
tables is

��� � where
�

is the current number of nodes.
This is because a message must be transmitted to each node
at least once to deliver new information. On the other hand,
the number of the messages that are transmitted until the
naive DSDV stabilizes is �����	� where � is the number of
edges. This is because DSDV propagates update messages
via all the edges. In dense networks, � is much larger than�

(e.g., ��
��� ��� �). Thus the number of exchanged mes-
sages becomes large compared to the minimum

��� � . We
should point out this will not be a big issue in the context of
mobile ad-hoc networks because the networks are typically
sparse; neighbors of a node are limited to those physically
close to the node. In contrast, connections are established
between every allowed pairs of nodes in our problem set-
ting.

For the second bullet, consider what will happen when
many nodes are simultaneously added to the network (or
when an application brings up). When a node accepts a
connection from a new node or receives an update from a
neighbor, it updates its routing table and sends update mes-
sages to neighbors. In general, this must be done promptly
to propagate the new piece of information as fast as possi-
ble. When many nodes join an application almost simulta-
neously, however, updating neighbor nodes too eagerly re-
sult in many small messages that could have been merged
when we know there will be subsequent updates.

4.5. Optimizations

We optimize the naive DSDV based on the two observa-
tions discussed above.

Eliminating redundant updates Suppose that node �
transmits an update messages to its neighbors

� � . The al-
gorithm guarantees that nodes in

� � do not propagate the
update message to each other, as they get it from � anyways.

a

Figure 2. An example of elimination of redun-
dant message transmission

This is implemented simply by adding two fields ����� ���
and ��� � � , to each entry of the routing table. � � � � �"! ����� ��� is
the collection of nodes to which � has already transmitted
� ��� ��� , whereas � � � ���"! ��� � � the collection of nodes that re-
ceived or will soon receive the entry corresponding to � ��� � �
from some node 1.

Thus ��� � � � � �"! ����� ����� � � � � �%! ��� � � indicates that �
does not need to transmit a message to � ; � has already
received � ��� � � or will soon receive � ��� � � . Node � must
transmit ����� � � to � ’s neighbor � only if � does not belong
to �#��� ���"! ����� ����� � ��� ���"! ��� � � .

Fields ����� ��� and ��� � � are maintained as follows. When �
sends � � � � � to a set of nodes � , � is added to � � � ���"! ����� ��� .
When � receives an entry � from � , �� � � � is updated as
follows. If either �! � ���"! ����� , �" � � �%! ��
��� � , or �� � � �%!&�����
is updated by this message, �� � � �"! ����� ��� becomes an empty
set and �� � � �%! ��� � � becomes a singleton that only contains
sender � . Otherwise sender � and � ! ����� ��� are added to both
�# � ���"! ����� ��� and �� � � �"! ��� � � .

Figure 2 shows an example of the elimination of redun-
dant message transmission. Let us consider entries for des-
tination � . Suppose that for all � both � ��� � �%! ����� ��� and
� ��� ���"! ��� � � are initially empty. Then � broadcasts ��$'� � � ,
which is freshest among all the nodes. As the arrows in Fig-
ure 2 indicate, only � needs to broadcast update messages
to make all the nodes’ entry fresh.

Merging clustered updates Our second optimization
tries to merge messages for many routing table updates that
occur almost simultaneously. Simply buffering messages
for a fixed period would sacrifice performance when an up-
date occurs in isolation. Thus we address the problem by
the following scheduling policy of events related to routing.

1. If a node knows another node but does not have a con-
nection to it, it connects to the node with the highest
priority.

1To identify each node uniquely, we basically use an IP address. When
IP addresses are not unique among nodes, random bits are added to each
node’s identifier.

5

Table 1. Experimental environment
CPU # of procs

subnet
�

UltraSPARCIII 750MHz 2CPU x 112 nodes
subnet � Xeon 2.40GHz 2CPU x 64 nodes
subnet � PentiumIII 800MHz 2CPU x 16 nodes

PentiumIII 1.4GHz 1CPU x 16 nodes

2. If a node connects to all its acquaintance, but has some
unprocessed messages updating its local routing table,
it processes these messages.

3. Otherwise, it sends update messages to its neighbors.

In short, we give priorities to routing-related events in the
following order. (1) making connections, (2) updating the
local table, and (3) propagating updates to the neighbors’
tables. Here, all updates that have not been propagated to a
neighbor are merged into a single message.

5. Experiments

Table 1 summarizes the experimental environment. Ma-
chines in the same subnet can communicate directly with
each other. The inter-subnet communication is restricted:
each subnet has a gateway, which is the only machine that
can accept inbound connections, at SSH port (22).

First we measured the elapsed time of routing table con-
struction without node discovery. That is, we give all node
names to each node offline (via a configuration file). We
conducted the experiment on a single subnet (�) and the
three subnets.

To begin with, let us confirm that the naive DSDV per-
forms poorly, as shown in Figure 3. It does not scale at all
when the number of processes become �) � . Thus we re-
moved it from further investigation. Our interest is the price
we pay for supporting the general, fully dynamic process
model. So we compared our algorithm with two “easier”
cases where processes are assumed to be static, or the pro-
cess configuration is completely given offline.

Figure 4 shows the result. The upper graph is for the
single subnet experiment and the lower graph for the three
subnets case. For the latter, we proportionally mixed CPUs
from the three subnets 2. The curve labeled “offline” is
the simplest and the easiest setting. A configuration file
describes a complete process configuration (which process
should connect to which) and processes simply follow it.
Thus, the elapsed time is mostly of just establishing con-
nections. The curve labeled “master” assumes processes
are static and their names known to every process, but con-
nectivities between nodes are not known. It also assumes

2UltraSPARCIII 750MHz � Xeon 2.40GHz � PentiumIII 800MHz �
PentiumIII 1.4GHz ���	�
���������)

����
���

� ��� ����� ����� ����� �����
�� �
���
� !
"�!
#��
$%#
� �

&('�)+*�,�-�.0/�1�-2.03�,0454�.�- 4

.�10687)+7 9�,0:<;(=>;�?
@�A 7 B�,+;(=>;�?

�
���
�����
�����
�����
�����
�����
�����
�����

� ��� ����� ����� ����� ����� ����� ����� �����
�� �
���
� !
"�!
#��
$%#
� �

&('�)+*�,�-�.0/�1�-2.03�,0454�.�- 4

.�10687)+7 9�,0:<;(=>;�?
@�A 7 B�,+;(=>;�?

Figure 3. Naive DSDV compared with our op-
timized DSDV in a single subnet (upper) and
three subnets (lower)

there is a master node and every process knows the path to
the master node. Under this assumption, each process tries
to connect to all other processes, learns its neighbors, and
sends their names to the master. The master collects the
messages and then calculates the all-to-all shortest paths. It
finally sends the result to all processors.

When the number of processors is less than 100, all three
cases have the approximately equal elapsed time. That is,
our dynamic routing table construction has almost no over-
head. Up to 400 processors, the elapsed time of our algo-
rithm is within a factor of C ! D of the offline case, and � !) of
the master case.

Recall that our routing algorithm is fully dynamic, which
means message send/receive can take place before the rout-
ing table is completely stabilized. Figure 5 gives us a sense
of how much of the routes become “ready” at which point of
calculation. The upper graph shows how much node pairs
out of all the possible

� �
pairs are reachable at each mo-

ment (either directly or indirectly). All nodes are in a sin-
gle cluster. As we can see, although it took 14 seconds to
completely stabilize the routing table, more than 90% of
node pairs become reachable at 10 second. The lower graph
shows the average number of hops between reachable pairs
at each moment. It should converge to one, and we almost
get there at 10 second. In summary, it is fair to say most of
the work has been done much earlier than the completion of
the routing table construction. Figure 6 shows how routes
become ready on a dynamically changing network. In this
experiment, we began with 224 processes and killed a half

6

�
�
�
�
�
���
� �
� �

� ��� ����� ����� ����� �����
�� �
���
� !
"�!
#��
$%#
� �

&('�)+*�,�-�. /�1�-2.03�, 454�.�- 4

.�10687)+7 9�,0:<; =�;�?) A 4568,�-.0/ /�� 7 @ ,

�
�
���
���
�>�
�>�
�>�
�>�

� ��� ����� ����� ����� ����� ����� ����� �����
�� �
���
� !
"�!
#��
$%#
� �

&('�)+*�,�-�. /�1�-2.03�, 454�.�- 4

.�10687)+7 9�,0:<; =�;�?) A 4568,�-.0/ /�� 7 @ ,

Figure 4. Comparison of our
fully dynamic DSDV with two
static cases (see text) in a
single subnet (upper) and
three subnets (lower)

����
������
������
������
������
�����

� � � � � ��� �0� �0� ��� ��� ���� ��
$	 �

� �
#%
� �
��!
���
�

��� A 104�,0:+6 7) ,+7 @ 4�,03�. @ :�4

�
��� �
��� �
��� �
��� �
��� �
��� �
��� �

� � � � � � � � � � ���
� ��
��
��
#�
"
 �
�%�
	 %��

��� A 104�,0:+6 7) ,+7 @ 4�,03�. @ :�4

Figure 5. The fraction of
reachable node pairs (up-
per) and the average num-
ber of hops between reach-
able node (lower)

�
���
���
���
���
�����

� ��� �>� ��� ��� ��� ���� ��
$	 �

� �
#%
� �
��!
���
�

��� A 104�,0:+687)+, 7 @ 4�,03�. @ :�4

�
��� ������ �
��� ������ �
��� ������ �
��� ������ �
��� ���

� ��� �>� ��� ��� ��� ���� ��
��
��
#�
"
 �
�%�
	 %��

��� A 104�,0:+687)+, 7 @ 4�,03�. @ :�4

Figure 6. The fraction of
reachable node pairs (up-
per) and the average num-
ber of hops between reach-
able node (lower) on a dy-
namically changing network

�
�
�
�
�
���
� �
� �
���

� ��� ����� ����� ����� �����
�� �
���
� !
"�!
#��
$%#
� �

&('�)+*�,�-�. /�1�-2.03�, 454�.�- 4

� 7 6��(:�7 453�.0B�,�- �� 7 6���.�'06�:�7 453�.0B�,�- �

Figure 7. The elapsed time of the routing table
construction with/without node discovery

of the processes after 30 seconds have passed. Then after
another 5 seconds have passed, we restarted the killed 112
processes. The result shows that the routing tables can be
updated rapidly according to the addition/deletion of pro-
cesses.

Finally, Figure 7 compares cases with or without node
discovery. The result shows that the overhead of node dis-
covery is negligible.

6. Related Work

6.1. Peer-to-Peer Information Sharing Systems

Peer-to-Peer information sharing systems such as Pas-
try [19], Tapestry [26], Chord [22] and CAN [18] provide a
distributed shared hash table. These systems are completely
decentralized and self-organizing: each node automatically
adapts to arrival, departure, and failure of nodes. They pro-
posed efficient routing algorithms for looking up and in-
serting items in the hash table. For example, Pastry assigns
each node a unique ID. Then it routes a message to the node
with a node ID that is a numerically closest to the destina-
tion address of the message. This algorithm notably reduces
the size of the routing table and the number of routing table
update messages.

However, their algorithms assume that every node can
communicate directly with one another and that nodes can
always forward messages to appropriate nodes. Thus they
cannot work on environments where direct communication
may be prohibited by security policies (e.g., firewalls). In
addition, these systems require forwarding messages via
multiple nodes (e.g., in Pastry, ������� � � � hops where

�
is

the number of nodes in its network) even if nodes can com-
municate with one another directly. Since this unnecessary

7

forwarding degrades communication performance heavily,
their algorithms are not feasible for high-performance com-
puting that involves dense communication.

6.2. Resource Discovery

A resource discovery problem introduced by Harchol-
Balter, Leighton and Lewin in [9] is relevant for our algo-
rithm. The resource discovery problem is to efficiently dis-
cover all the nodes that currently exist in the systems when
each node initially knows only a small number of nodes.
Though several algorithms for the resource discovery prob-
lems are proposed [1, 12, 13], they do not suffice for our
system. This is because they focus on only discovering node
names and do not care routing.

7. Summary

We have described a communication subsystem for mes-
sage passing systems for the Grid. It provides routing and
resource discovery that tolerate dynamic changes of con-
nection topologies. We evaluated the performance of the al-
gorithm by running the system on 400 nodes in three LANs.
When the number of processors is less than 100, our dy-
namic routing table construction adds almost no overhead to
the case where the network connectivity is completely given
offline. In all cases, the elapsed time of our algorithm is
within a factor of C ! D of the offline case. Furthermore, 90%
of node pairs become reachable much earlier than comple-
tion and messages can be routed when the routing table is
being constructed.

References

[1] I. Abraham and D. Dolev. Asynchronous Resource Discov-
ery. In Proc. of PODC, pages 143–150, 2003.

[2] O. Aumage and G. Mercier. MPICH/MADIII: a Cluster of
Clusters Enabled MPI Implementation. In Proc. of CCGrid,
pages 26–33, 2003.

[3] R. Batchu, J. Neelamegam, Z. Cui, M. Beddhu, A. Skjel-
lum, Y. Dandass, and M. Apte. MPI/FTTM: Architecture
and Taxonomies for Fault-Tolerant, Message-Passing Mid-
dleware for Performance-Portable Parallel Computing. In
Proc. of CCGrid, pages 26–33, 2001.

[4] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fedak,
C. Germain, T. Herault, P. Lemarinier, O. Lodygensky, and
F. Magniette. MPICH-V: Toward a Scalable Fault Tolerant
MPI for Volatile Nodes. In Proc. of SC, pages 1–18, 2002.

[5] E. Fagg and J. J. Dongarra... FT-MPI: Fault Tolerant MPI,
supporting dynamic applications in a dynamic world. In
Lecture Notes in Computer Science, 2000.

[6] I. Foster and N. Karonis. A Grid-Enabled MPI: Message
Passing in Heterogeneous Distributed Computing Systems.
In Proc. of SC, page 46, 1998.

[7] E. Gabriel, M. Resch, T. Beisel, and R. Keller. Distributed
Computing in a Heterogeneous Computing Environment. In
Proc. of EuroPVM/MPI, pages 180–187, 1998.

[8] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek,
and V. Sunderam. PVM: Parallel Virtual Machine A Users’
Guide and Tutorial for Networked Parallel Computing. MIT
Press, 1994.

[9] M. Harchol-Balter, T. Leighton, and D. Lewin. Resource
Discovery in Distributed Networks. In Proc. of PODC,
pages 229–237, 1999.

[10] T. Imamura, Y. Tsujita, K. Koide, and H. Takemiya. An
Architecture of Stampi: MPI Library on a Cluster of Paral-
lel Computers. In Proc. of EuroPVM/MPI, pages 200–207,
2000.

[11] T. Kielmann, R. F. H. Hofman, H. E. Bal, A. Plaat, and
R. A. F. Bhoedjang. MagPIe: MPI’s Collective Commu-
nication Operations for Clustered Wide Area Systems. In
Proc. of PPoPP, pages 131–140, 1999.

[12] S. Kutten. Asynchronous Resource Discovery in Peer to
Peer Networks. In Proc. of SRDS, pages 224–231, 2002.

[13] S. Kutten, D. Peleg, and U. Vishkin. Deterministic Resource
Discovery in Distributed Networks. In Proc. of SPAA, pages
73–83, 2001.

[14] M. Matsubara, K. Suzuki, and A. Katsuno. Dynamic Load
Balancing in HPC applications for Autonomic Computing
(in Japanese). In Proc. of SACSIS, pages 349–356, 2003.

[15] MPI-2: Extensions to the Message-Passing Interface.
http://www-unix.mcs.anl.gov/mpi/.

[16] Open SSL. http://www.openssl.org/.
[17] C. Perkins and P. Bhagwat. Highly Dynamic Destination-

Sequenced Distance-Vector Routing (DSDV) for Mobile
Computers. In Proc. of SIGCOMM, pages 234–244, 1994.

[18] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content-Addressable Network. In
Proc. of SIGCOMM, pages 161–172, 2001.

[19] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. In Proc. of Middleware, pages 329–350, 2001.

[20] E. Royer and C.-K. Toh. A review of current routing pro-
tocols for ad-hoc mobile wireless networks. IEEE Personal
Communications Magazine, 6:46–55, 1999.

[21] Secure Shell. http://www.ssh.com/.
[22] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F.

Kaashoek, F. Dabek, and H. Balakrishnan. Chord: A Scal-
able Peer-to-peer Lookup Protocol for Internet Applications.
In Proc. of SIGCOMM, pages 149–160, 2001.

[23] Y. Takamiya and S. Matsuoka. Towards MPI with user-
transparent fault tolerance (in Japanese). In Proc. of JSPP,
pages 217–224, 2002.

[24] K. Taura, K. Kaneda, and T. Endo. Phoenix: a Paral-
lel Programming Model for Accommodating Dynamically
Joininig/Leaving Resources. In Proc. of PPoPP, pages 216–
229. ACM, 2003.

[25] D. B. Weatherly, D. K. Lowenthal, M. Nakazawa, and
F. Lowenthal. Dyn-MPI: Supporting MPI on Non Dedicated
Clusters. In Proc. of SC, 2003.

[26] B. Y. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An In-
frastructure for Fault-tolerant Wide-area Location and Rout-
ing. UCB Tech. Report UCB/CSD-01-1141, University of
California Berkeley, 2001.

8

