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ABSTRACT
We have designed and implemented a virtual machine mon-
itor (VMM) for utilizing non-dedicated clusters. The VMM
virtualizes a shared-memory multi-processor machine on a
commodity cluster. In addition, it hides dynamic changes of
physical hardware configurations. The experimental result
demonstrates the feasibility of our approach.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management; D.4.7
[Operating Systems]: Organization and Design; D.4.8
[Operating Systems]: Performance

General Terms
Design, Measurement, Performance

Keywords
Virtual machine monitors, single system image, distributed
systems

1. INTRODUCTION
It is difficult to efficiently utilize non-dedicated commod-

ity clusters. Since resources of non-dedicated clusters are
shared by multiple users, the quality as well as quantity
of the resources available to an application changes con-
stantly. Although it becomes important for parallel pro-
grams to adapt to such dynamic changes, writing adaptive
parallel programs still requires large efforts. As a result, dy-
namic change of resource availability is one of great burdens
of the wide deployment of clusters.

To address this problem, we have been developing a vir-
tual machine monitor (VMM) for utilizing non-dedicated
commodity clusters. Like existing VMMs, our VMM takes
complete control of the machine hardware and creates vir-
tual machines, each of which behaves like a complete physi-
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Figure 1: Creation of a virtual multi-processor ma-
chine: the number of processors of a virtual machine
is constant regardless of dynamic addition and/or
removal of physical machines.

cal machine that can run its own operating system. In con-
trast to the existing VMMs, our VMM has two distinguish-
ing features. First, the VMM virtualizes a shared-memory
multi-processor machine on a commodity cluster. For exam-
ple, it gives users the illusion of an N -way multi-processor
machine on top of N single-processor machines. Second,
the VMM hides dynamic changes of physical hardware con-
figurations. It allows a virtual machine to provide a fixed
number of processors even if available physical machines are
added and/or removed dynamically (See Figure 1). For ex-
ample, an application running inside a virtual machine sees
N processors all the time even if the number of available
physical machines decreases and becomes less than N .

The above functionality of our system greatly simplifies
utilization of non-dedicated clusters. It enables parallel ap-
plications to achieve high performance with no modification
of their source code. For example, our system enables par-
allel applications (e.g., parallel make) normally installed on
multi-processor machines to run on clusters and adapt to
dynamic changes in their execution environments.

2. IMPLEMENTATION OF THE VMM
Our VMM is designed for the x86 architecture. It vir-

tualizes processors, shared memory, and I/O devices as fol-
lows. To virtualize processors, the VMM supports para-
virtualization of the instruction set architecture [1, 4]. A
guest operating system is statically modified to run opti-
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Figure 2: Speedup of parallel fibonacci

mally in a virtual machine. To provide a fixed number of
virtual processors, the VMM maps one or more virtual pro-
cessors to a physical processor and changes the mapping
dynamically. Since the dynamic mapping may cause asym-
metric speeds of virtual processors, the time ballooning tech-
nique [8] is used for load balancing.

To virtualize shared memory, the VMM uses a mecha-
nism similar to software distributed shared memory. The
VMM implements the consistency protocol of the shared
memory with the virtual memory page protection mecha-
nism of physical machines. The current consistency algo-
rithm is based on that of Ivy [6].

To virtualize I/O devices, the VMM prepares a central
server that keeps track of the states of all the devices. The
VMM communicates with the server whenever a virtual pro-
cessor issues an I/O operation.

3. CURRENT STATUS
We implemented a prototype of the VMM and conducted

experiments. The current implementation builds a virtual
8-way multi-processor machine on top of eight physical ma-
chines and hosts Linux kernel 2.4 for SMP. We ran coarse-
grain parallel tasks inside the virtual machine and measured
the execution time to demonstrate the feasibility of our ap-
proach. Specifically, we ran eight processes that calculate
a fibonacci number simultaneously on a 1-way, . . . , 8-way
multi-processor machine built on top of 1, . . . , 8 physical
machines respectively.

Figure 2 shows the experimental result. fib(n) denotes
the calculation of nth fibonacci number. As shown in this
figure, the program achieved better speedup as tasks were
coarser. For example, the execution of fib(46) with an 8-
way multi-processor machine is about 6.6 times faster than
that with a 1-way processor machine.

4. RELATED WORK
vNUMA [2] virtualizes a cc-NUMA machine on top of

physical machines with the Itanium architecture. The major
difference between our system and vNUMA is that vNUMA
does not support dynamic addition and/or removal of phys-
ical machines.

Virtual Iron [9] builds a virtual multi-processor machine
on top of clusters. The virtual machine tolerates dynamic
changes of physical hardware configurations. The basic mech-
anism of Virtual Iron is similar to that of our system. A

comparison between Virtual Iron and our system has not
been made yet since details of Virtual Iron are not yet pub-
lic (2005/10/14).

5. FUTURE WORK
We plan a number of extensions and improvements to our

system. For example, we plan to implement a fault toler-
ance mechanism. Since a machine crash is a frequent event
in commodity clusters, in which a large number of machines
involve, we require that the system can continue to run even
if some machines fail. The implementation of the fault tol-
erance mechanism will be based on techniques such as the
checkpointing/recovery [3] and replication for VMMs [7].

We also plan to improve the performance of the memory
consistency algorithm. For example, according to the spec-
ification of the IA-32 memory model [5], an individual pro-
cessor can delay the propagation of its writes to remote pro-
cessors’ memory until the processor executes a synchronous
instruction or an atomic instruction.

In addition, we plan to evaluate our system using real-
world applications such as SPLASH-2 and Apache with more
than eight machines.

More information can be found at http://www.yl.is.s.

u-tokyo.ac.jp/∼kaneda/vmp/.
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