
Vol. 49 No. 4 IPSJ Journal Apr. 2008

Regular Paper

GMount: Building Ad-hoc Distributed File Systems

by GXP and SSHFS-MUX

Nan Dun,†1 Kenjiro Taura†1 and Akinori Yonezawa †1

GMount is a file sharing utility built by using GXP and SSHFS-MUX for the wide-area Grid
environments. By GMount, non-privilege users are able to build their own ad-hoc distributed
file systems in seconds. The file lookup in GMount can be efficient in terms of communication
cost if the network topology is given. In this paper, we present the design and implementation
of GMount, as well as its evaluation on a large scale Grid platform — InTrigger.

1. Introduction

Network file system1) and conventional dis-
tributed file systems2)–5) provide data sharing
approaches for parallel data processing in clus-
ter or Grid environments. They are usually de-
ployed in advance by system administrators and
non-privilege users can hardly change the sys-
tem configurations to meet their demand for
specific applications. For example, users are
unable to add or remove storage nodes, or to
change the previously assigned global names-
pace.

GMount is an ad-hoc distributed file system
built by using GXP and SSHFS-MUX. GMount
works in userspace and any user can easily cre-
ate his/her own distributed file systems on arbi-
trary nodes across multiple clusters in seconds.
Since it uses SSH as communication channel,
GMount is adaptable in NAT or firewall condi-
tions. If network topology is available, GMount
becomes more efficient in terms of communi-
cation cost because it utilizes this information
to make file lookup behave in a locality-aware
manner.

2. Building Blocks

2.1 GXP
GXP (Grid and Cluster Shell)6) is a par-

allel shell that allows user interactively ex-
ecute commands on many remote machines
across multiple clusters. It provides a master-
worker style parallel processing framework by
which users can quickly develop scalable paral-
lel programs. We employed this framework as
GMount’s workflow and let GXP be the front-
end via which users can manipulate GMount.

†1 Graduate School of Information Science and
Technology, the University of Tokyo

2.2 SSHFS-MUX
2.2.1 Overview
SSHFS (Secure Shell FileSystem)7) enables

users to seamlessly manipulate files on remote
machines as local ones via SSH channel. SSHFS
is implemented by using FUSE (Filesystem in
Userspace)8) and SFTP (Secure File Transfer
Protocol)9). Since recent Linux kernel (version
>= 2.6.14) includes FUSE by default, the in-
stallation or configuration of SSHFS does not
need superuser privilege.

SSHFS-MUX (SSHFS Mutiplex) is an exten-
sion of SSHFS. It includes all merits of SSHFS
as well as extra features that make it more con-
venient for users to handle with multiple remote
machines. The difference between SSHFS and
SSHFS-MUX can be intuitively illustrated by
their usages shown in Fig. 1.

A$ sshfs B:/data /mnt/B

A$ sshfs C:/data /mnt/C

A$ unionfs /mnt/B /mnt/C /mnt/all
(a) SSHFS with UnionFS

A$ sshfsm B:/data C:/data /mnt/all

(b) SSHFS-MUX Merge Operation

B$ sshfsm C:/data /inter

A$ sshfsm B:/inter /mnt
(c) SSHFS-MUX Relay Operation

Fig. 1 Usages of SSHFS and SSHFS-MUX

SSHFS can mount only one host to a
mount point once, or otherwise combinely using
UnionFS10) as in Fig. 1(a). Instead, mounting
multiple hosts to the same mount point at a
time is common in SSHFS-MUX, which is re-
ferred as Op-Merge in Fig. 1(b). In Op-Merge,
mount target appears later in arguments will
be first checked on file request. For example

1234



Vol. 49 No. 4 GMount: Building Ad-hoc Distributed File Systems by GXP and SSHFS-MUX 1235

in Fig. 1(b), a file lookup request destined to
/mnt/all will be redirected to branch C:/data
first. Only when the target file is not found
in C:/data, the request will go next to branch
B:/data.

Another usage scenario of SSHFS-MUX is
called Op-Relay as shown in Fig. 1(c). It
suggests that SSHFS-MUX can mount target
host indirectly via intermediate mount point on
which the target host has been mounted. There
are two reasons to do so: 1) The load of tar-
get host serving many SFTP clients can be mi-
grated to intermediate hosts; 2) If target host is
behind NAT router or firewall, we can take ad-
vantage of gateway as intermediate node and let
it relay the mount. But meanwhile, Op-Relay

will introduce overheads, such as context-switch
in FUSE and potential network delay, that need
to be taken into consideration.

2.2.2 SSHFS + Union File System
SSHFS-MUX can be replaced by the combi-

nation of SSHFS and unionfs (union file sys-
tem) to implement the same functionality, but
it provides advantages over SSHFS+unionfs in
following aspects.

First, SSHFS-MUX is easy to use. It can
save users creating intermediate mount points
for SSHFS branches merged by UnionFS. Be-
sides, kernel space implementation of union file
system (e.g., UnionFS10)) requires additional
privilege to perform mount operation.

Second, SSHFS-MUX has better perfor-
mance. To compare the I/O performance of
SSHFS+unionfs and SSHFS-MUX, we let them
mount localhost to remove the network la-
tency and perform read/write tests under the
same condition. In this experiment, we chose
UnionFS10) as the test candidate for kernel
space implementation of union file system and
UnionFS-FUSE11) for user space one.

Figure 2 shows the results. Here, SSHFS-
MUX is slightly lower than SSHFS in read
performance and has the best write perfor-
mance. SSHFS+unionfs-FUSE has the lowest
overall performance since it needs to perform
costly context switch twice through FUSE ker-
nel module.

Third, SSHFS-MUX compacts the interac-
tion among components, reduces the effort
of deployment, and makes it easier to debug
GMount.

 0

 5

 10

 15

 20

 25

 30

Read Write

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

I/O Performance Tests

SSHFS
SSHFS+UnionFS

SSHFS+unionfs-FUSE
SSHFS-MUX

Fig. 2 I/O Performance Comparison between
SSHFS+unionfs and SSHFS-MUX

3. Design Details

3.1 Overview
In GXP master-worker framework, the root

node of GXP login spanning tree will become
the master and all nodes are workers. Figure 3
demonstrates the three stages of GMount exe-
cution.

Fig. 3 GMount Workflow

Planning Stage Master first gathers the
workers information such as total nodes num-
ber, hostname, ip address, etc, and generates
a mount spanning tree (different from GXP
spanning tree) based on specified algorithms.
Then master broadcasts this tree structure
along with mount flag to all of workers.

Executing Stage After receiving instruc-
tions from master, workers (include master
itself) can determine their mount phase and
mount targets according to their position
in mount spanning tree. When every node
is ready, all nodes synchronize their execu-
tion by using GXP barrier and then carry
out proper operations (i.e., SSHFS-MUX Op-
Merge and Op-Relay) according to predefined
mount algorithms.

Aggregating Stage Each worker will send
their exit status and error message, if any,
back to master after mount phase is finished.



1236 IPSJ Journal Apr. 2008

Finally, master aggregates the results and
prompt user for success or failure of the exe-
cution of GMount.
Figure 4 shows the usage of GMount. First,

user selects as many nodes as they like by GXP.
Then user can specify GMount actions (e.g.,
”aa” for all-mount-all and ”u” for umount) with
arguments in GXP mw command.

$ gxpc explore node[[000-010]].cluster.net

$ gxpc mw gmnt -a aa /share /mnt

$ gxpc mw gmnt -a u

Fig. 4 Usages of GMount

In order to facilitate the description, the de-
tails of mount phase will be first given in 3.2,
and the GMount spanning tree construction al-
gorithms will be discussed in 3.3.

3.2 Mount Phase
There are four kinds of mount phase in

GMount: one-mounts-all, all-mount-one, all-
mount-all, and umount.

Throughout this section, we use a simple
spanning tree as shown in Fig. 5 to illustrate
the details of executions of SSHFS-MUX on
each host. We assume that there are three
directories for each host: sharing directory
/share, mount point /mnt, and intermediate
directory /inter.

A

B

D E

F

C

Fig. 5 Examplary Spanning Tree

3.2.1 One-Mounts-All Phase
Figure 6 shows the algorithms and Figure 7

shows the executions in one-mounts-all phase.
After one-mounts-all phase, root node is able
to see all contents in /share of all nodes via its
/mnt directory.

3.2.2 All-Mount-One Phase
Figure 8 shows the algorithms and Figure 9

shows the executions in all-mount-one phase.
After all-mount-one phase, every node will see
all contents in /share of root node via its /mnt.

3.2.3 All-Mount-All Phase
Accordingly, the goal of all-mount-all is to

OneMountsAll

01 if self is leaf then

02 noop
03 else:

04 if self is root then
05 mount point← “/mnt”
06 else

07 mount point← “/inter′′

08 targets← φ
09 t← self : /share
10 targets← targets∪ t
11 foreach child in self.children
13 if child is leaf then

12 t← child : /share
15 else

12 t← child : /inter
16 targets← targets∪ t
17 exec(“sshfsm targets mount point”)

Fig. 6 Algorithms in One-Mounts-All Phase

A$ sshfsm B:/inter C:/share A:/share /mnt

B$ sshfsm E:/inter D:/share B:/share /inter

E$ sshfsm F:/share E:/share /inter

C, D, F$ No Operation

Fig. 7 Examplary Executions in One-Mounts-All
Phase

AllMountOne

01 mount point← “/mnt”
02 targets← φ
03 if self is root then
04 t← self : /share
05 targets← targets∪ t
06 else:

07 if self.parent is root then
08 t← self.parent : /share
09 else

10 t← self.parent : /mnt
11 targets← targets∪ t
12 exec(sshfsm targets mount point)

Fig. 8 Algorithms in All-Mount-One Phase

A, B, C$ sshfsm A:/share /mnt

D, E$ sshfsm B:/mnt /mnt

F$ sshfsm E:/mnt /mnt

Fig. 9 Operations in All-Mount-One Phase



Vol. 49 No. 4 GMount: Building Ad-hoc Distributed File Systems by GXP and SSHFS-MUX 1237

enable every host to see all contents in sharing
directories (/share) of all hosts via its mount
point (/mnt).
Naive All-Mount-All If we combinely use

one-mounts-all in Fig. 6 and all-mount-one in
Fig. 8, then it is straight to have all nodes
share their /share on their /mnt.
Clearly, in this simple mount scenario, all
mount paths go through the root node and
make the root a single bottleneck.

Scalability There will be a problem if we cre-
ate only one spanning tree for many nodes of
multiple clusters using above naive approach.
A scalable solution is to construct a few span-
ning trees for each cluster and let the roots
of these spanning trees form another sharing
hierarchy in which the Grid-scope namespace
is constructed.

Locality-Aware Lookup By using Op-Merge
of SSHFS-MUX mentioned in 2.2.1, each
node will put mount targets that are close
to itself later in SSHFS-MUX execution com-
mand. Therefore, node are able to lookup
files by sending request to affinity branch
first. For example, when host A in Fig. 7
lookup files in /mnt, it will first lookup branch
A:/share. If target file is found in A:/share,
it will not send messages to other branches.
3.2.4 Umount Phase
In umount phase, GMount parallelly invokes

fusermount to umount all SSHFS-MUX and
performs cleanup jobs such as removing tem-
porarily created intermediate mount points.

3.3 Spanning Tree Construction
Due to the overhead in Op-Relay of SSHFS-

MUX, the mount spanning tree should be as fat
as possible instead of tall.
Hostname Prefix Usually, nodes within one

cluster share the same prefix of hostname.
Therefore these nodes are grouped as can-
didates of one spanning tree and then per-
form following steps: 1) Randomly choose
one node as root and start 2) at root; 2) Ran-
domly choose K nodes to be children of the
node; 3) For each newly added child, repeat
2) until all nodes are included in spanning
tree.

Network Topology If physical network
topology is available, GMount will create
spanning tree as following: 1) Let the node
closet to top switch to be the root of span-
ning tree and start 2) at root; 2) Choose first
closet K nodes in terms of hops to be chil-
dren of the node; 3) For each newly added

child, repeat 2) until all nodes are grabbed
into spanning tree.

4. Implementation and Availability

Though SSHFS-MUX is implemented in C
language, GMount is written in Python as a
module of GXP.

Both SSHFS-MUX and GMount are open
source and are available at http://www.yl.is.
s.u-tokyo.ac.jp/~dunnan/sshfs-mux, and
GMount also comes with latest GXP release at
http://www.logos.t.u-tokyo.ac.jp/gxp.

5. Known Problems

5.1 Limitations of SFTP
Both the functionality and performance of

SSHFS-MUX highly depend on the evolution
and implementation of SFTP (i.e., OpenSSH)
because it uses SFTP as its underlying com-
munication channel. Two major limitations of
SFTP lead to non-trivial problems when using
GMount: its partially POSIX-compliant and
lack of automatic TCP buffer tuning.

5.1.1 Incompability with POSIX
Versions of SFTP older than 5 does not sup-

port overwriting rename12) because rename op-
eration is not atomic. SSHFS/SSHFS-MUX
implemented a workaround by creating inter-
mediate files on overwriting rename to solve this
problem.

However, even with rename workaround,
overwriting rename does not work in Op-Relay
and hence in GMount. This is because hard link
will not be available until version 6 of SFTP
(latest OpenSSH is 5.0/5.0p1). SSHFS-MUX
provides another workaround called “fakelink”
for this problem by caching an alias for link tar-
get file internally and redirect all file requests
on this alias to the original file.

5.1.2 SSH Receive Buffer
The OpenSSH9) has a nature limitation to

transfer bulk data in long-fat network environ-
ments due to its fixed receive window. This
problem is examined in 13) and a patch of
OpenSSH called HPN-SSH has been proposed.
The support for HPN-SSH in SSHFS-MUX can
be enabled at compile time.

5.2 Cache Inconsistency
Cache is ubiquitous in GMount. For each

node, there are three places where file attributes
and contents may be temporarily kept: 1)
SSHFS-MUX cache; 2) FUSE cache; 3) Local
system cache.

Currently, no cache consistency model is em-



1238 IPSJ Journal Apr. 2008

ployed by GMount and some usage case may
lead inconsistent views of shared files among
clients. Users can disable cache in both SSHFS-
MUX and FUSE by runtime options. The ex-
amination and solution of cache inconsistency
problem will be proposed in future work.

5.3 Concurrent SSH Connections
In all-mount-one phase, non-leaf node may

encounter simultaneous connection establish re-
quests from its children, which indicates that
SSH server on this node should allow to ac-
cept many concurrent SSH connections. De-
fault SSH server may deny these concurrent
connections, and it is configurable by mod-
ifying the value of MaxStartups ⋆1 in file
/etc/ssh/sshd config on server side.

6. Experiments and Evaluation

6.1 Experimental Environments
Our experimental environments, called In-

Trigger, consists of 8 sites with over 200 nodes.
The bandwidth and RTT between sites are
shown in Table 1. We use Gfram2) and HDFS
(Hadoop File System)14) as reference systems
in our experiments.

6.2 Experimental Results
6.2.1 Filesystem Construction Time
To examine how filesystem construction time

scales on nodes number, we incrementally ap-
pend extra nodes to GMount and measure its
mount/umount time. We added one entire site
for each run in the first test and added only 4
nodes from the same site in the second run.

 0

 1

 2

 3

 4

 5

 6

 7

1/67 2/157 3/170 4/176 5/187 6/198 7/208 8/219

C
on

st
ru

ct
io

n 
T

im
e 

(s
ec

on
ds

)

Number of sites/nodes

mount (all nodes/site)
umount (all nodes/site)

mount (4 nodes/site)
umount (4 nodes/site)

Fig. 10 GMount Construction Time

In Fig. 10, we can read that the filesystem

⋆1 The value N : P : M reads that at most N con-
current unauthenticated connections are allowed to
connect the sshd daemon with possibility P until
maximum connection limit M is reached. See man

sshd config(5) for details.

construction time is basically related to network
latency between sites. The number of nodes
does not significantlly increase time of mount
or umount.

6.2.2 I/O Performance
Since the write performance of distributed file

system is highly related to the access pattern of
clients, we will leave the evaluation of write in
future and only present read performance here.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

hongox2

(2)+chibax2

(4)+okubox2

(6)+im
adex2

(8)+kyotox2

(10)+kobex2

(12)+hirox2

(14)+kyushux2

(16)+m
iraix2

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

Gfarm-FUSE
GMount

HDFS

Fig. 11 Parallel Read Performance

In read test, we first create a large file (1GB)
in one site. Then we increase 2 clients from
different sites each time to do parallel read-
ing from this file. The aggregate throughput
of read is shown in Fig. 11. Each file system
achieve higher throughput when clients num-
ber increases. GMount is the slowest because it
uses SFTP channel and the transfer path is re-
layed by SSHFS-MUX. HDFS achieved the best
because it breaks large files into trunks that can
be utilized for parallel transfer.

6.2.3 Metadata Operation
We tested the performances of metadata op-

erations when systems works in LAN and WAN.
Figure 12(a) shows the result in LAN en-

vironments. For Gfarm and HDFS, the op-
eration time is proportional to the round trip
time when they send request and get reply
from metadata server, which is similar to NFS.
GMount is slightly slower than Gfarm because
its operations need to be relayed by a few nodes
along the mount spanning tree.

In Fig. 12(b), we removed the results of
“stat EXIST” to clarify the figure because the
values are similar and small. The metadata
servers of both Gfarm and HDFS are distant
to their clients in WAN environments. Thus
operation time increased because of network
latency. In GMount, if client is looking up
files that stored in affinity nodes, the operation



Vol. 49 No. 4 GMount: Building Ad-hoc Distributed File Systems by GXP and SSHFS-MUX 1239

Table 1 Bandwidth (MB/sec) and RTT (ms) between sites in InTrigger

hongo chiba okubo mirai kyushu hiro kobe keio
hongo - 592/6.2 70.8/3.8 77.9/24 479/27 32.1/25 227/19 94.7/3.8
chiba 787 - 44.2/6.3 65.2/29 495/31 301/29 28.1/29 94.9/9.2
okubo 47.5 49.3 - 45.0/28 54.8/29 54.8/27 52.1/28 80.7/9.7
mirai 46.5 45.3 12.2 - 46.5/49 48.4/48 29.0/41 28.1/28
kyushu 93.0 50.8 14.6 40.4 - 363/9.2 171/24 59.1/30
hiro 22.3 21.0 11.5 19.7 62.8 - 25.8/19 33.8/28
kobe 146 104 17.5 48.7 116 167 - 29.2/21
keio 91.0 60.3 20.8 11.1 26.3 15.4 48.1 -

can be quickly finished. However, for opera-
tions that need to lookup in all nodes, such as
create, GMount also has to post messages to
distant nodes.

 0.001

 0.01

 0.1

 1

 10

 100

m
kdir

rm
dir

creat+close

open+close

stat EXIST

stat ENOENT

utim
e

chm
od u+w

chm
od u+x

renam
e

renam
e overwrite

unlink

A
ve

ra
ge

 T
im

e 
P

er
 O

pe
ra

tio
n 

(m
se

cs
)

LocalFS
NFS

SSHFS-MUX
Gfarm-FUSE

GMount
HDFS

(a) Metadata Operations in LAN

 10

 100

 1000

m
kdir

rm
dir

creat+close

open+close

stat ENOENT

utim
e

chm
od u+w

chm
od u+x

renam
e

renam
e overwrite

unlink

A
ve

ra
ge

 T
im

e 
P

er
 O

pe
ra

tio
n 

(m
se

cs
) Gfarm-FUSE

GMount (Distant)
GMount (Close)

HDFS

(b) Metadata Operations in WAN

Fig. 12 Metadata Operation Performance

Note that in GMount rename operations cost
as triple time as in Gfarm. This is because re-
name in SFTP requires three round trips to fin-
ish, as mentioned in 5.1.1.

7. Conclusions

We proposed GMount, an ad-hoc distributed
file system that can be built on-the-fly by
non-privilege users. It is adaptive in the
Grid environments because of its scalability,
NAT/firewall transparency, and locality-aware

operations. The usability of GMount is also
demonstrated by its deployment and evaluation
on the large-scale Grid platform.

Acknowledgements

This research is supported in part by the
MEXT Grant-in-Aid for Scientific Research on
Priority Areas project entitled ”New IT Infras-
tructure for the Information-explosion Era”.

References

1) Network file system. http://www.nfsv4.org.
2) Grid Data Farm. Online at http://

datafarm.apgrid.org.
3) PVFS: Parallel Virtual File System. Online

at http://www.pvfs.org.
4) Open Andrew file system. Online at http:

//www.openfs.org.
5) Sanjay Ghemawat, Howard Gobioff, and

Shun-Tak Leung. The google file system. In
Proceedings of the 9th ACM Symposium on Op-
erating Systems Priciples (SOSP 2003), pages
29–43, New York, Oct 2003.

6) Kenjiro Taura. GXP: An interactive shell for
the grid environment. In Proceedings of Inter-
national Workshop on Innovative Architecture
for Future Generation High-Performance Pro-
cessors and Systems (IWIA 2004), pages 59–
67, Charlotte, Apr 2004.

7) Miklos Szeredi. SSHFS: SSH Filesystem.
http://fuse.sourceforge.net/sshfs.html.

8) Miklos Szeredi. FUSE: Filesystem in
userspace. http://fuse.sourceforge.net.

9) OpenSSH. http://www.openssh.org.
10) UnionFS. http://www.unionfs.org.
11) Radek Podgorny. unionfs-fuse. Online at

http://podgorny.cz/moin/UnionFuse.
12) IETF Secure ShellWorking Group. SSH file

transfer protocol. Online at http://tools.

ietf.org/wg/secsh/.
13) Chris Rapier and Benjamin Bennett. High

speed bulk data transfer using the SSH pro-
tocol. In Proceedings of the 15th ACM Mardi
Gras Conference, pages 1–7, Baton Rouge, Jan
2008.

14) Hadoop. http://hadoop.apache.org.


