
日本ソフトウェア科学会第 24回大会（2007年度）論文集 1

FUSEとSSHFSを用いた簡単に
アドホックな分散ファイルシステムの構築

HandyFS: A simple ad-hoc distributed file system only using FUSE and SSHFS

頓 楠 † 田浦 健次朗 †† 米澤 明憲 †

Nan DUN Kenjiro TAURA Akinori YONEZAWA
†,†† 東京大学大学院情報理工学系研究科

Graduate School of Information Science and Technology, The University of Tokyo
†{dunnan,yonezawa}@yl.is.s.u-tokyo.ac.jp ††tau@logos.t.u-tokyo.ac.jp

HandyFS provides a simple and efficient interface to enable user ad-hoc merge many remote directory

trees (source directory) on distributed machines into one single directory hierarchy (target directory).

All operations on the target directory are mapped to corresponding individual source directory. Source

directories can be add/remove dynamically at runtime and these changes are reflected to target directory.

HandyFS is implemented only using FUSE module and SSHFS and fully functions in userspace.

It merely needs simple configuration on client-side and utilizes standard SSH daemon as servers. By

using SSH connection, HandyFS can also easily work under typical network configurations (e.g. NAT,

Firewall) to adapt to the wide-area Grid environments.

1 Introduction

Data file sharing is a basic problem in the field of
distributed and parallel computing. One conven-
tional solution to this problem is to build a dis-
tributed file system. There are many aspects con-
cerning a distributed file system: data availability,
usability, scalability, simplicity and performance,
etc. Many distributed file systems have been devel-
oped to approach all of these goals, such as NFS [7],
AFS [2], PVFS [9], and Gfarm [5].

Among these objectives, we focus on offering
HandyFS, a simple ad-hoc distributed file system
with high usability. HandyFS provides a simple
and efficient interface to enable user ad-hoc merge
many remote directory trees (source directory) on
distributed machines into one single directory hi-
erarchy (target directory). All operations on the
target directory are mapped to corresponding in-
dividual source directory. Source directories can
be add/remove dynamically at runtime and these
changes are reflected to target directory.

HandyFS is implemented only using FUSE
module and SSHFS and fully functions in userspace.
Combined with SSHFS, it merely needs simple con-

figuration on client-side and utilizes standard SSH
daemon as servers. By using SSH connection,
HandyFS can also easily works under typical net-
work configurations (e.g. NAT, Firewall) to adapt
to wide-area Grid environments.

2 Related Works

2.1 FUSE

FUSE (Filesystem in Userspace) [3] is a framework
that enables general users to build their own file
systems in userspace without acquiring special priv-
ilege or modifying OS’s kernel source code.

FUSE is implemented as two main compo-
nents. One of them is an OS kernel module, the
other is a userspace library. FUSE functions by
creating and managing a translation/mapping be-
tween file system calls hooked by kernel module in
kernel space and user-specified operations in user
space. To achieve this translation, a userspace util-
ity (fusermount) is provided to let user specify the
mount point while the kernel module creates a spe-
cial character device (/dev/fuse) via which the ar-
guments and return values are passed from kernel
to userspace, and vice versa.



日本ソフトウェア科学会第 24回大会（2007年度）論文集 2

2.2 SSHFS

SSHFS (SSH File System) [10] is a remote file sys-
tem that is implemented by using the SSH protocol
over the FUSE.

The idea of SSHFS is to map file system calls
to SSH’s sftp client request calls, such that the file
access requests to the mount point can be redirected
to corresponding SSH requests to remote server. By
this approach, users can access data files on remote
servers in the same way as accessing local files.

A typical SSHFS usage procedure is shown in
Figure 1. User creates a mount point for SSHFS

1: user@localhost:~$ mkdir /rhost mnt

2: user@localhost:~$ sshfs rhost.net: \
/rhost mnt

3: user@localhost:~$ [ls rm mkdir] /rhost mnt

4: user@localhost:~$ fusermount -u /rhost mnt

Fig. 1: Basic Usage of SSHFS

(line 1). User mounts a remote server to local
mount point. Access remote server as local direc-
tory (line 3) and unmount SSHFS (line 4).

SSHFS has several advantages over conven-
tional remote file systems in terms of usability and
simplicity. First, since SSHFS uses standard SSH
protocol to talk to remote sftp daemon server, users
only need to specify the address and directory of re-
mote server and mount them to local mount point
at client side without server side configuration. Sec-
ond, SSHFS can easily get through typical network
configuration in the wide-area grid environments,
such as firewall and NAT. Finally, SSHFS inher-
its encryption mechanism from SSH such that it is
able to perform secure file transfer over untrusted
networks.

Although SSHFS is easy to be used to share
data files on remote server, it has a limitation that
users have to create one mount point for each re-
mote server. A typical one is that simply using
SSHFS cannot construct a global file namespace for
many remote servers to be shared.

2.3 UnionFS and FunionFS

UnionFS (A Stackable Unification File System) [1]
is a file system that allows users to merge mul-
tiple directories (branches) into one single over-
laid virtual file system. The different branches
can be merged as read-only or read-write file sys-
tems, so that writes to the virtual file system can
be directed to underlying specific real file system.
UnionFS allows branch manipulations (e.g., add, re-
move change mode) at run-time and the priority of
branches to be specified to solve the problem when
two branches have the same filename. UnionFS is
mainly used in Live-CD or diskless file system, as
well as sandboxing, snapshot taking, and file servers
unifying.

UnionFS is implemented as a kernel module.
User can use UnionFS utilities to control the be-
havior of kernel module. However, non-privileged
users cannot install or configure UnionFS.

To overcome the privilege restriction of
UnionFS. FunionFS [4] is developed in user space
by using FUSE. It aims to have the same semantic
as UnionFS does. The main purpose of FunionFS
is also to provide a utility to manufacture Live-CD.
The implementaion of FunionFS shows that it use
in-memory cache to record underlying branches,
and a merged hierarchy view is contructed at
run-time by asking branches’ content. When the
number of branches is small, it is efficient. But this
implementation will not scale when a large number
of branches is involved. Besides this, FunionFS
have to re-construct merged file system at every
mount time since it does not store any previous
merge information.

2.4 Gfarm

Gfarm (Grid Datafarm) [5] is a distributed file
system aiming to provide large-scale and high-
performance data sharing service over networks.

Gfarm mainly consists of two kinds of nodes:
Storage nodes and metadata server node. The
Gfarm storage nodes provide basic resources, such
as physical data storage and CPU time, to be shared
by the whole file system. The Gfarm metadata



日本ソフトウェア科学会第 24回大会（2007年度）論文集 3

server (central server) node is in charge of collect-
ing and managing metadata of data files distributed
over many storage nodes. The Gfarm daemon
(gfsd) and meta-server daemon (gfmd) are running
on storage nodes and metadata server, respectively.
To use Gfarm, both gfsd and gfmd should be prop-
erly installed and configured in advance by privi-
leged users.

3 Design

3.1 Basic Usage

The usage of HandyFS is as simple as SSHFS, as
shown in Figure 2.

1: user@localhost:~$ mkdir /rhosts mnt

2: user@localhost:~$ handyfs rhost1.net: \
rhost2.net: rhost3.net: /rhosts mnt

3: user@localhost:~$ [ls rm mkdir] /rhosts mnt

4: user@localhost:~$ fusermount -u /rhosts mnt

Fig. 2: Basic Usage of HandyFS

First, user can create an empty directory as
mount point for HandyFS (line 1). Then user can
mount as many as remote hosts to current mount
point (line 2). Finally, user can operate on mount
points like local one (line 3) or unmount HandyFS
(line 4). By these commands, user can easilty cre-
ated a merged virtual namespace from specified
source directories on multiple remote servers.

3.2 Framework Overview

The framework of HandyFS is shown in Figure 3.

Fig. 3: Framework of HandyFS

The main idea of HandyFS is to use FUSE
twice. First, mount points for are created and
mounted by SSHFS (e.g., /sshfs mnt1 and
/sshfs mnt2), such that applications can access
data files via mount points (e.g.,data flow C, D

and E) in remote servers (e.g., host1 and host2).
Secondly, a mount point (e.g., /handyfs mnt) for
HandyFS is created and mounted by HandyFS.
Then user application can access the virtual file
system (e.g., data flow A and B) via target direc-
tory (i.e., /handyfs mnt) constructed from source
directories (i.e., /sshfs mnt1 and /sshfs mnt2)
by HandyFS, and the target directory plays as the
root directory, or“ /”, of the merged file system.

3.3 File System Operations

3.3.1 Directory Merge

Directories merge is the fundamental operations in
HandyFS. A directories merge process can also be
stated as the answer to following question: “Given
a request file in merged virtual file system, in which
source directory does it exist?” A naive approach
is to ask every source directory whether it holds
request directory every time when a query comes.
In this case, if there are N source directories, then
we have to send N of requests to underlying source
directories, which correspond to messages sent by
SSHFS to remote servers.

HandyFS use a directory table to record the
mapping from the directory of virtual file system
to the directories. Suppose there are two source di-
rectories, /srcdirA and /srcdirB, and they both
include a sub-directory with the same name cmndir
(i.e., /srcdirA/cmndir and /srcdirB/cmndir),
then there will be an entry in directory table as
Figure 4 shows.

Fig. 4: Diretory Table

Therefore, when a request comes to ac-
cess /cmndir in virtual directory, HandyFS will
direct this request to /srcdirA/cmndir and
/srcdirB/cmndir, according to the directory



日本ソフトウェア科学会第 24回大会（2007年度）論文集 4

table. Thus the number of messages is heavily
reduced by limiting the request to be delivered to
source directories that holds required directory.

At the beginning of file system mount, only the
root directory of the virtual file system will searched
and added to the directory table. For other subdi-
rectory, HandyFS lazily leaves their appending until
actual file requests reach them and then build them
on demand.

3.3.2 Directory Split

Directories split is the reverse operation of direc-
tories merge. Based on the description in Sec-
tion 3.3.1, when a source directory is split off from
merged virtual directory, it suggests that all direc-
tory table entries merged from this source directory
should be removed. So the next time virtual file
system will not dispatch requests to previously re-
moved source directory. However, this operation is
costly and will slow down the whole performance
since all directory table entries should be traversed
and checked, whether they includes removed source
directory or not.

To make this manipulation efficient, an on-
demand approach is employed again by using fil-
tering. A filter is used to remember current merged
source directories. When one of them is removed,
it will be immediately forgotten by the filter. Then
even entries having this source directory is retrieved
from directory table during query, they will be fil-
tered out by filter, such that merged file system will
be blind to this removed source directory. Finally,
entries having removed directories in directory ta-
ble will be removed later by garbage collector in the
background.

3.3.3 File Lookup

HandyFS only remember directory merge (i.e., di-
rectory table) and never holds any information of
non-directory files. This policy greatly simplified
metadata management in HandyFS.

Therefore, to lookup files, HandyFS first parse
file’s full pathname to get its parent directory. Then
HandyFS checks whether the pathname of parent

directory is in directory table. If it exists in direc-
tory table, then HandyFS will retrieve correspond-
ing source directory entries and search in those real
source directories for target files.

Otherwise, non-existence of this parent direc-
tory in directory suggests that this directory may
not exist or have not been added to table direc-
tory. Then the parent directory of current looking
up parent directory is parsed and used to perform
the same lookup. HandyFS recursively searches up-
ward until it reaches root directory or find a source
directory having requested pathname.

3.3.4 File Creation

File creation can be creating a directory file or
non-directory file. To create a non-directory file,
HandyFS first check the availability of target file’s
parent directory. If the parent directory does exist,
it will create a file under it. However, a target par-
ent directory may be merged from several underly-
ing source directory. Current design lets HandyFS
randomly choose a source directory to perform real
write operations.

Creation of a directory is mostly the same as
above procedure, except that the newly created di-
rectory should be registered into directory table for
further looking up.

3.3.5 Directory Read

HandyFS reads a directory by first perform a look-
ing up of target directory as mentioned in Sec-
tion 3.3.1. Then the source directory entries for this
target directory are obtained from directory table.
Finally, readdir() operation are executed on each
source directory, and all directory entries and gath-
ered and returned to users.

3.4 Existing Problems

Operations in Section 3.3 are not complex. How-
ever, to implement HandyFS and put it into prac-
tice usage will face several problems.

The first problem arises when multiple source
directories contain files with the same filename. To
comply with UNIX file system semantic, duplicate



日本ソフトウェア科学会第 24回大会（2007年度）論文集 5

files are not allowed to return to users, as well as files
with same filename may have different attributes.
This problem is also described in [11] and a solution
is to define priority of source directories, so that the
virtual file system will always return the file residing
in directory with high priority to user.

Another problem is about the stale of cache
that contains sourece directory information. Since
source directories may change dynamically, these
changes should be refected to the merged virtual file
system. HandyFS should be aware of this situation.
One possible solution is to define a expiration time,
such that HandyFS will update its directory table
when it feels that the cache may be out-of-date.

4 Implementation

The implementation of HandyFS consists of about
2,000 lines of C code. Most of codes are to imple-
ment FUSE library interface. The rest is devoted
directory merge operations.

BerkeleyDB [8] provides a simple and high ef-
ficient interface to achieve store/retrieve manipu-
lation on key/data pairs. BerkeleyDB also pro-
vides native support for duplicate data and multi-
threading. BerkeleyDB’s key and data naturally
corresponds virtual directory and source directories
in directory, respectively. Thus, the store and man-
agement of directory table is implemented by Berke-
leyDB.

The filter described in Section 3.3.2 is imple-
mented by a in-memory bucket-like data structure.
Each source directory is hashed and stored into the
proper bucket. By this means, the filter is able to
quickly locate target source directory hash value to
perform add/remove operations.

5 Experiments and Evaluation

5.1 Experimental Environments

HandyFS was evaluated by two experiments per-
formed on a wide-area gird platform called InTrig-
ger [6]. The InTrigger platform currently consists of
six sites located all over Japan. They are “hongo”,
“chiba”, “suzuk”, “okubo”, “imade”, and “kyoto”.
Homogeneous nodes of first five sites are chosen out

to run these experiments. The specification of these
nodes is shown in Table 1.

Table 1: Specification of Experiemental Machines

Hardware/Software Specification

CPU Core2 Duo 2.13GHz

Memory 4GB

Network Gigabit Ethernet

OS Linux 2.6.18

FUSE Kernel Interface 7.8

FUSE Library 2.7.0

SSHFS 1.8

5.2 Evaluation

Two experiments are carried out to evaluate the
performance of HandyFS.

The first experiments is to measure data trans-
fer rate. A 512MB data file is transferred from
hongo site to other four sites. These data trans-
fers are performed using different method: ftp, sftp,
sshfs and handyfs.

The second experiment is to test the time of
compiling OpenSSH source code as a benchmark of
file system operations. These compilations were ex-
ecuted on local file system, FUSE mounted local file
system, NFS, SSHFS and HandyFS. Here the NFS
is used within a cluster, while SSHFS and HandyFS
are used among clusters.

5.2.1 Experimental Results

The results of two experiments described above are
shown in Figure 5 and Figure 6, respectively.

From Figure 5, it can be read that underlying
network bandwidths are different from each pair of
sites. The bandwidths of hongo-chiba and hongo-
suzuk are much higher than that of hongo-okubo and
hongo-imade. To transfer the same mount of data,
Ftp can utilize higher bandwidths to achieve faster
data tranfer rate. On the other side, sftp is less
sensitive to the network bandwidths. Inherently,
SSHFS and HandyFS, which both employ sftp pro-
tocol, are also slow in data transfer rate. On av-
erage, HandyFS only achieved about 30% perfor-
mance of sftp, or 50% performance of SSHFS.



日本ソフトウェア科学会第 24回大会（2007年度）論文集 6

Fig. 5: Data Transfer Rate (Mbps)

Fig. 6: Source Compiling Benchmark (secs)

In Figure 6, SSHFS and HandyFS cost much
more time than other three file system. This is
reasonable becasue SSHFS and HandyFS run in a
relative higher latency environments. In this exper-
iment, HandyFS’s execution time is about as twice
as much as SSHFS’s execution time.

5.2.2 Results Analysis

The analysis of experimental results is critical. Be-
cause it not only shows the direction of further
performance enhancement, but also leads a better
understanding of the behaviors of other building
blocks (e.g., sftp protocol and FUSE module).

Results in Section 5.2.1 demonstrate that sftp
protocol becomes a bottleneck for applications built
on it. The sftp protocol will encrypt data before
transferring them over the networks. Therefore, an
encryption/decryption overhead is proposed to use
certain amounts of CPU. Especially in InTrigger gi-
gabits networking, this extra procedure will signifi-
cantly slow down the transfer rate.

Further, considerable overhead appears when

SSHFS and HandyFS are compared. HandyFS
always exhibits a “doubled” execution time over
SSHFS. Since HandyFS uses FUSE again above
SSHFS, this overhead is supposed to be caused by
FUSE. To verify this, another independent exper-
iments was performed to examine the overhead of
overlapped FUSE mount. When two or more FUSE
mounts is performed on a single local system, be-
cause all of mount points talks via kernel module, it
is likely that those overlapped/concurrent accesses
to mount points will lead underlying FUSE ker-
nel module into heavy load or even race condition.
Thus, in terms of this fact, FUSE limited the scal-
ablity of HandyFS.

6 Conclusions and Future Works

By using FUSE and SSHFS, HandyFS — a sim-
ple ad-hoc distributed file system — has been de-
signed and implemented. Although with perfor-
mance and scalability limitations, it still exhibits
a way of building easy-to-use file sharing utility.

Future works includes solving the problems de-
scribed in Section 3.4 and a deep investigation of
FUSE runtime mechanism to enhance performance
and scalability of HandyFS.

Acknowledgements

This work is part of the research project “Cyber
Infrastructure for the Information-explosion Era”,
which is sponsored by MEXT Grant-in-Aid for Sci-
entific Research on Priority Areas.

References
[1] A Stackable Unification File System:

http://unionfs.filesystems.org.

[2] Andrew File System:
http://www.openafs.org.

[3] Filesystem in Userspace:
http://fuse.sourceforge.net.

[4] Funion File System:
http://funionfs.apiou.org.

[5] Grid Datafarm:
http://www.gfarm.org.

[6] InTrigger Platform:
https://www.logos.ic.i.u-tokyo.ac.jp/

intrigger/.



日本ソフトウェア科学会第 24回大会（2007年度）論文集 7

[7] Network File System:
http://nfs.sourceforge.net.

[8] Oracle BerkeleyDB:
http://www.oracle.com.

[9] Parallel Virtual File System:
http://www.pvfs.org.

[10] SSH File System:
http://fuse.sourceforge.net/sshfs.html.

[11] Wright, C. P., Dave, J., Gupta, P., Krish-
nan, H., Quigley, D. P., Zadok, E., and Zubair,
M. N.: Versatility and Unix Semantics in Names-
pace Unification, ACM Transactions on Storage,
Vol. 1,No. 4(2005), pp. 1–29.


