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Introduction
ParaTrac is a user-level profiler using file system and process tracing techniques for
data-intensive workflow applications. ParaTrac enables users to quickly understand
the detailed I/O characteristics from entire application to specific processes or files,
it also automatically exploits fine-grained data-processes interactions in workflow
to help users intuitively and quantitatively investigate realistic execution of data-
intensive workflows.
• Effortless user-level profiling unmodified distributed applications
• Scalability of tracing thousands of concurrent processes up to 16% overhead
• Automatic generation of informative I/O-specific and workflow-specific profiles
• Fine-grained investigation of complex applications

Profiling Approaches

• Application Tracing
• File system call tracing by FUSE (Filesystem in Userspace)
• Process tracing by /proc file system, ptrace, and taskstats
• Trace log persistence by SQL database (optional)

• Profile Generation
• I/O profiles generation by statistical analysis
• Workflow profiles generation by causal analysis

• Profile Analysis
• Using standard statistical analysis
• Applying graph manipulation and graph-theoretic algorithms on workflow DAGs

• Workflow Optimization
• Tuning of underlying I/O subsystems, e.g., distributed file system
• Optimize scheduling of workflow according to real data-job interactions

Open Source and Availability

• ParaTrac: http://paratrac.googlecode.com/
• GXP: http://gxp.sourceforge.net/

Conclusion and Future Work

• Effective assistance for data-intensive applications study and optimization
• Reuse profiles as a macro benchmark for workflow management systems by
consistent replaying of profiles.
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Profiling Real-World Workflows: Montage Astronomy Applications

• I/O Characteristics

• I/O behaviors in different phases
• Dominant metadata or I/O operations
• Potential bottlenecks, e.g., high-latency operations
• Access characteristics of specific file/process

Phase Jobs I/O Size (MB) Number of Files Number of Processes
read write ro wo rw none ro wo rw none

Data A
mProjectPP 28 57.77 221.07 30 0 56 0 1 0 28 0

mDiffFit 63 1023.87 25.32 58 126 63 0 64 63 63 0
mConcatFit 1 0.533 0.0127 61 1 0 0 1 0 1 0
mBgModel 1 0.0672 0.0144 3 1 0 0 1 0 1 0

mBackground 28 223.63 221.07 59 0 56 0 1 0 28 0
mImgtbl 1 0.644 0.0156 30 0 1 0 1 0 1 0

mAdd 1 133.93 75.81 59 2 0 0 1 0 1 0
mShrink 1 37.95 4.22 2 1 0 0 1 0 1 0
mJPEG 1 4.28 0.23 2 1 0 0 1 0 1 0
Total 125 1481.93 547.75 33 65 243 0 64 63 125 0

Data B
mProjectPP 308 637.87 2472.25 310 2 614 0 1 0 308 0

mDiffFit 913 15114.33 675.64 618 1804 927 0 914 913 909 0
mConcatFit 1 0.34 0.18 915 1 0 0 1 0 1 0
mBgModel 1 0.314 0.015 3 1 0 0 1 0 1 0

mBackground 308 2524.48 2472.25 619 2 614 0 1 0 308 0
mAdd* 4 248.14 1587.56 613 8 0 0 1 0 4 0
mShrink 4 793.85 7.96 5 4 0 0 1 0 4 0
mImgtbl 1 0.085 0.0315 6 0 1 0 1 0 1 0
mAdd* 1 8.02 12.27 7 2 0 0 1 0 1 0
mJPEG 1 7.67 0.357 2 1 0 0 1 0 1 0
Total 1542 21568.07 7231.48 322 897 3084 0 914 913 1538 0

*mAdd is invoked twice in different phases.
ro: read only; wo: write only; rw: read+write; none: create/open only

Table 3: Comparison of trace log size

Trace Log
Data

A B C

runtime.log 177B 171B 177B
file.log 3.8KB 25KB 303KB

proc.log 5.0KB 22.6KB 284KB
sysc.log 1.3MB 7.2MB 133MB
trace.db 930KB 10MB 97MB

Table 4: Comparison of system call statistics

System Count (times) Latency (seconds)
Calls sum ratio sum ratio

Data B
lstat 4292 0.0254 8.19 0.026
fstat 308 0.0018 3.16e-4 1.01e-06

access 21 1.24e-04 6.46e-05 2.07e-07
truncate 1 5.9e-06 4.58e-05 1.46e-07
opendir 3 1.77e-05 6.658e-05 2.13e-07
readdir 86 5.09e-04 0.1347 4.3e-04
closedir 3 1.77e-5 1.1e-05 1.1e-05

creat 308 0.0018 0.012 3.73e-05
open 2385 0.0141 90.86 0.2902
close 2693 0.0159 1.97 0.0063
read 15550 0.092 206.9 0.6611

write 140613 0.832 2.562 0.0081
flush 2819 0.0164 2.369 0.0076

Total 169082 1.0 313.04 1.0

Data C
lstat 57393 0.0255 360.37 0.0484
fstat 3981 0.0018 0.0038 5.09e-07

access 21 9.34e-6 7.49e-05 1.0e-08
truncate 1 4.45e-7 4.71e-05 6.3e-09
opendir 3 1.33e-06 6.71e-05 9.0e-09
readdir 662 2.9e-04 0.6982 9.37e-05
closedir 3 1.33e-06 1.23e-05 1.65e-09

creat 3981 0.0018 0.2175 2.92e-05
open 31061 0.0138 2128.32 0.286
close 35042 0.0156 79.27 0.0106
read 222985 0.0992 4754.6 0.638

write 1856039 0.826 37.99 0.005
flush 36864 0.0164 90.37 0.012

Total 2246286 1.0 7451.84 1.0

6.3 Profiles of Workflow

6.3.1 File System Call Statistics
File system call statistics shown in Table 4 compare the

overall behaviors of Montage workflow executions with 8
concurrent jobs using SSHFS for data B and C, respectively.

Referring to Table 2, we observe that the number of
system calls scales proportionally to the data size, but
the ratios of most dominant operations (e.g., stat, read,
and write) remain constant. This fact suggests that I/O
optimization (e.g., reduce the number of write) for Montage
can be done on small-scale data first, then the same strategy
will be also effective for large-scale data.

As for file system call latency, less than 10% read

operations take over 60% of total latency while more than
80% write operations only cost less than 1% of total latency.
This is because data was fetched first from remote host
over the high-latency network link in our experimental
configuration. But the processed data can be written to
local cache and thus output operations have much lower
latency. From the latency histogram of system calls shown
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Figure 6: CDF of system call latency

in Figure 5, both high-latency and low-latency operations
can be easily discovered.

To investigate the detailed behaviors of system calls, we
used ParaTrac to generate CDF (Cumulative Distribution
Function) of four common operations: lstat, creat, read,
and write. Result in Figure 6 confirmed our observation.
Most of lstat and read system calls are high-latency
because initially they have to be manipulated at remote
host. Instead, creat and write only touched local cache.
It also suggest that users could optimize those high-latency
file operations that take the major part of system calls to
improve overall performance. For instance, using replication
or pre-fetch will improve the read performance of Montage
workflow in wide-area environments.

6.3.2 I/O Characteristics
The detailed I/O activities of processes for each phase in

workflow are listed in Table 5.
Basically, I/O-intensive jobs in Montage workflow includes

mProjectPP, mDiffFit, mBackground, mAdd, and mShrink,
and the number of spawned processes in these phases
increases with the size of initial input data. It is obvious
that proper data or I/O optimization should be used
in these phases. However, we argue that optimal data
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in Figure 5, both high-latency and low-latency operations
can be easily discovered.

To investigate the detailed behaviors of system calls, we
used ParaTrac to generate CDF (Cumulative Distribution
Function) of four common operations: lstat, creat, read,
and write. Result in Figure 6 confirmed our observation.
Most of lstat and read system calls are high-latency
because initially they have to be manipulated at remote
host. Instead, creat and write only touched local cache.
It also suggest that users could optimize those high-latency
file operations that take the major part of system calls to
improve overall performance. For instance, using replication
or pre-fetch will improve the read performance of Montage
workflow in wide-area environments.

6.3.2 I/O Characteristics
The detailed I/O activities of processes for each phase in

workflow are listed in Table 5.
Basically, I/O-intensive jobs in Montage workflow includes

mProjectPP, mDiffFit, mBackground, mAdd, and mShrink,
and the number of spawned processes in these phases
increases with the size of initial input data. It is obvious
that proper data or I/O optimization should be used
in these phases. However, we argue that optimal data
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(b) CDF of system call latency

Table 5: Comparison of I/O summary of Montage workflow on data A and B

Phase Jobs
I/O Size (MB) Number of Files Number of Processes

read write ro wo rw none ro wo rw none

Data A
mProjectPP 28 57.77 221.07 30 0 56 0 1 0 28 0

mDiffFit 63 1023.87 25.32 58 126 63 0 64 63 63 0
mConcatFit 1 0.533 0.0127 61 1 0 0 1 0 1 0
mBgModel 1 0.0672 0.0144 3 1 0 0 1 0 1 0

mBackground 28 223.63 221.07 59 0 56 0 1 0 28 0
mImgtbl 1 0.644 0.0156 30 0 1 0 1 0 1 0

mAdd 1 133.93 75.81 59 2 0 0 1 0 1 0
mShrink 1 37.95 4.22 2 1 0 0 1 0 1 0
mJPEG 1 4.28 0.23 2 1 0 0 1 0 1 0
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Data B
mProjectPP 308 637.87 2472.25 310 2 614 0 1 0 308 0

mDiffFit 913 15114.33 675.64 618 1804 927 0 914 913 909 0
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mBackground 308 2524.48 2472.25 619 2 614 0 1 0 308 0
mAdd* 4 248.14 1587.56 613 8 0 0 1 0 4 0

mShrink 4 793.85 7.96 5 4 0 0 1 0 4 0
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mAdd* 1 8.02 12.27 7 2 0 0 1 0 1 0
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*mAdd is invoked twice in different phases.
ro: read only; wo: write only; rw: read+write; none: create/open only
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Figure 7: CDF of read length

scheduling strategies are possible to made for those I/O-
intensive jobs. Taking mConcatFit as an example, it reads
a small amount of data but from a wide range of files
that are generated in mDiffFit phase. If mDiffFit and
mConcatFit are executed in distributed computing resources
in distance, then transferring specific data portion required
by mConcatFit will be more efficient than replicating or
prefetching entire input files from mDiffFit.

The I/O access patterns can be illustrated by CDFs of
I/O request sizes. For file-specified I/O patterns, as shown
in Figure 7 and Figure 8, mDiffFit, mBackground, and mAdd

share the same read/write pattern. For process-specified
I/O patterns, as shown in Figure 9 and Figure 10, processes
of mDiffFit prefer large read size and relative small write
size, while processes of mBackground request the same size
both for read and write.
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Figure 8: CDF of write length

6.3.3 Process Profiles
The process tree shows the process hierarchy and process-

ing patterns in Montage workflow. Figure 11 illustrates a
example of process tree of the small-scale Montage workflow.
As a pattern in the upper-right cluster of processes, the
series of nodes with two child leaves are mDiffFit processes
that spawn two subprocess: mDiff and mFitPlane.

Figure 12 shows the distribution of process life time
of four data-intensive phases. Among them, mProjectPP

have the longest running time than other three phases,
while mDiffFit has the most number of processes but those
processes are all short-life.

6.3.4 Workflow DAG
We use the intuitive workflow DAG chart of the Montage
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(c) CDF of overall read length
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Figure 9: CDF of data size read by process
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Figure 10: CDF of data size written by process

execution on data A as an example to illustrate the
effectiveness of fine-grained workflow analysis. Besides the
visualization of workflow DAG, the meta DAG information
can be used as addressed in Section 5.4.

The complete workflow DAG is shown in Figure 13. For
clear representation, a enlarged sub-workflow DAG is also
given in Figure 14. The ellipse represents process node and
the box denotes file node. The dependencies between nodes
are drawn as edges, where dot-line edge is inter-process
relationship and real-line edge is file-process relationship.
Different arrowheads are used to distinguish different I/O
operations. Nodes and edges are annotated with runtime
information extracted from application profiles. The label
of process node shows the command line that started the
process and the life time of the process. The label of file node
shows the base filename of the file. The label of process-file
edge are annotated by the data size transfered between file
and process and corresponding transfer rate.

From Figure 13, users are able to quickly obtain the entire
structure of workflow, such as different phases in workflow,
parallel jobs in each phase, input/output files in each job,
and so on. One of critical paths (i.e., edges in red) in
workflow is also automatically marked for users. Detailed
data-process interactions are also intuitively illustrated. For
example, mProjectPP processes initially fetch data (i.e., .fits

11780

11784
11791

11786

11795

1179211785

11790

11444

1

3188

11764

0

11765

11763

11761

11800
11779

11802

11796

1178311804

11447 11798

11781

11788

11782

11793

11787

11794

11789

11801

11797

11803

11771

11805

11762
11799

Figure 11: Process tree of Montage on data A
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Figure 12: CDF of process lifetime on data B

files) from remote hosts with a low transfer rate (around
1.58MB/sec) and then subsequent data accesses rate become
higher (> 200MB/sec) because of data are cached locally, by
which we confirmed our observation found in Section 6.3.1.
In practice, we can mapping the data transfer rates to the
thickness of corresponding edges, thus those bottlenecks can
be quickly and visually identified. For another example,
as discussed in Section 6.3.2, mConcatFit only reading
hundreds of bytes of data from several files is recognizable
at one glance. By sub-graphing, we can also extract a sub-
workflow DAG from the complete one. Figure 14 highlights
a sub-processing flow in mDiffFit phase, in which the sub-
processes (i.e., mDiff and mFitPlane) spawned by mDiffFit

are expanded instead of being aggregated as in Figure 13.
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(d) CDF of written size by process

• Fine-Grained Workflow Analysis

• Intuitive workflow DAGs annotated with realistic execution informations: Process command line, data path, data transfer volume, data transfer rate, I/O access type, etc.
• Applying graph-theoretic algorithms to find essential workflow information: critical path, critical nodes, hot spots (jobs/data with high degree), etc.
• Workflow debugging or generation of workflow description file by exploring data-job dependencies
• Detection of inefficient scheduling (e.g, data-job locality) if scheduling information from workflow management systems is given
• Suggestion of using data replicating, prefetching, or throttling strategies for optimal execution

(e) Full Workflow

diff.001.004.fits

mFi tp lane#54 .0msec

367.56KB@1.11GB/sec

mDif f#580 .0msec

351.56KB@205.64MB/sec

mDiffFi t#643.6msec

f i t .000001 .000004 . tx t

287.00B@7.07MB/sec

(f) Sub Workflow

†This research is supported in part by the MEXT Grant-in-Aid for Scientific Research on Priority Areas project “New IT Infrastructure for the Information-explosion
Era” and Grant-in-Aid for Specially Promoted Research.

http://vtcpc.isi.edu/pegasus/index.php/WorkflowGenerator/

