
Kernel Mode Linux: Toward an Operating
System Protected by a Type Theory

Toshiyuki Maeda and Akinori Yonezawa

University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 JAPAN
{tosh, yonezawa}@yl.is.s.u-tokyo.ac.jp

Abstract. Traditional operating systems protect themselves from user
programs with a privilege level facility of CPUs. One problem of the
protection-by-hardware approach is that system calls become very slow
because heavy operations are required to safely switch the privilege levels
of user programs. To solve the problem, we design an operating system
that protects itself with a type theory. In our approach, user programs
are written in a typed assembly language and the kernel performs type-
checking before executing the programs. Then, the user programs can be
executed in the kernel mode, because the kernel knows that the type-
checked programs do not violate safety of the kernel. Thus, system calls
become mere function calls and can be invoked very quickly. We imple-
mented Kernel Mode Linux (KML) that realizes our approach. Several
benchmarks show effectiveness of KML.

1 Introduction

One problem of traditional operating systems is that system calls are very slow.
This is because they protect themselves from user programs by using hardware
facilities of CPUs. For example, the Linux kernel [8] for the IA-32 CPUs [7] pro-
tects itself by using a memory protection facility integrated with a privilege-level
facility of the CPUs. The kernel runs in the kernel mode, the most privileged
level, and user programs run in the user mode, the least privileged level. System
calls are implemented by using a software interruption mechanism of the CPUs
that can raise a privilege level in a safe and restricted way. This software inter-
ruption and associated context switches require heavy and complex operations.
For example, on the recent Pentium 4 CPU of the IA-32, the software inter-
ruption and the context switches are about 132 times slower than an ordinary
function call. Recent Linux kernels for the IA-32 CPUs, in fact, use a pair of
special instructions, sysenter and sysexit, for fast invocation of system calls. But
this is still 36 times slower than an ordinary function call.

The obvious way to accelerate system calls is to execute user programs in the
kernel mode. Then system calls can be handled very quickly because no software
interruptions and context switches are needed because user programs can access
the kernel directly. However, if we naively execute user programs in the kernel
mode, safety of the kernel is totally lost, because the user programs can perform
any privileged action in the kernel mode.

In this paper, we propose an approach for protecting an operating system
kernel from user programs not with the traditional hardware protection facilities,
but with static type-checking. In our approach, user programs are written in a
typed assembly language (TAL) [12], which is an ordinary assembly language
(except for being typed) that can ensure type safety of programs at the level of
machine instructions. Then, the kernel performs type-checking before executing
them. If the programs are successfully type-checked, the kernel can safely execute
them because the kernel knows that the programs never perform an illegal access
to its memory. Moreover, in this paper, we show that the type-checking can
ensure safety of the kernel at the same level as the traditional protection-by-
hardware approach.

Based on our approach, we implemented an operating system, called Kernel
Mode Linux (KML), that can execute user programs in the kernel mode. The
notable feature of KML is that user programs are executed as ordinary processes
of the original Linux kernel (of course, except for their privilege levels). That
is, the memory paging and the scheduling of processes are performed as usual.
Therefore, user programs that consume very large memory or enter an infinite
loop can be safely executed in the kernel mode. We also conducted several bench-
marks on KML and the result shows that system calls are invoked very fast on
KML.

The rest of this paper is organized as follows. Sect. 2 formally describes
that the hardware protection can be replaced with a type-based static program
analysis without losing safety. Sect. 3 describes the implementation of Kernel
Mode Linux. Sect. 4 presents the result of some performance benchmarks. Sect. 5
mentions related work. Sect. 6 concludes this paper.

2 Formal Arguments

To show that the protection-by-hardware approach can be replaced with static
type-checking, we first define an idealized abstract machine that has a notion of
privilege levels of CPUs and system calls. Then, we show that the protection-
by-hardware approach of traditional operating systems actually ensures safety of
the kernel. Next, we define our typed assembly language for the abstract machine
and show that its static type-checking ensures safety of the kernel. The following
argument is almost the same line of the arguments of TAL [12, 11], FTAL [5],
TALT [3] etc. The fundamental difference between the previous approaches and
ours is that our abstract machine has an explicit notion of privilege levels and
an operating system kernel.

2.1 Abstract Machine

Figure 1 defines the syntax of states of the abstract machine. The machine state S
is defined as a tuple of code memory, data memory, a register file, a program
counter, a privilege level and a kernel. The code memory C represents execute-
only memory for instructions. The data memory D represents mutable memory

(Register) r ::= r0 | r1 | . . . | r31

(Word) w ::= 0 | 1 | . . . | 232 − 1
(Program counter) pc ::= 0 | 1 | . . . | 232 − 1
(Privilege level) p ::= user | kernel

(Code memory) C ::=
{
0 7→ ι0, . . . , 230 − 1 7→ ι230−1

}
(Dom(C) = {n | 0 ≤ n ≤ 230 − 1})

(Data memory) D ::=
{
230 7→ w230 , . . . , 231 − 1 7→ w231−1

}
(Dom(D) = {n | 230 ≤ n ≤ 231 − 1})

(Register file) R ::= {r0 7→ w0, . . . , r31 7→ w31}
(Kernel) K ::= {w0 7→ MetaFunc0, . . .}

(Dom(K) ⊆ {n | 231 ≤ n ≤ 232 − 1})
(Instruction) ι ::= add rs1 , rs2 , rd | movi w, rd | mov rs, rd | jmp rs

| blt rs1 , rs2 , rs3 | ld w[rs], rd | st rs, w[rd] | illegal
(State) S ::= (C, D, R, pc, p, K) | user error | kernel error

Fig. 1. Syntax of the abstract machine states

for data. The register file R is defined as a map from registers to word values. The
program counter pc is a word value that points to an instruction that is about to
be executed. The privilege level p consists of two values: user and kernel. The
value user represents that the abstract machine runs in the user mode and the
value kernel represents that it runs in the kernel mode. The kernel K represents
an operating system kernel. It is defined as a map from addresses represented
as word values to meta functions (MetaFunc) that translate a machine state to
another. The meta functions can be viewed as inner functions of the kernel that
implement system calls. In a real machine, the meta functions are only sequences
of instructions. In this paper, however, we do not care the real representation
because they are regarded as a trusted computing base in practice and there are
not significant points in the representation. In addition, there are two special
machine states that represent an error state: user error and kernel error.
user error represents an error only for user programs that does not affect safety
or integrity of the whole system. On the other hand, kernel error represents a
fatal error that may crash the whole system.

Figure 2 defines the operational semantics of the abstract machine. They are
defined as a conventional small-step function that translates a machine state S
to another S′. If the program counter pc points into the domain of the code mem-
ory C, then an instruction, C(pc), is executed as usual. The branch instruction
jmp and blt can be viewed as special instructions for invocation of system calls
if their target addresses are in the domain of the kernel. If the memory access
instructions (ld and st) access the illegal memory, that is, the code memory
or the kernel, then a machine state evaluates to user error (if p = user) or
kernel error (if p = kernel). If the program counter pc points into the domain
of the kernel K, a system call is executed, that is, S′ becomes a machine state
that is obtained by applying S to a meta function which is pointed by pc.

(C, D, R, pc, p, K) 7→ S′

If pc /∈ Dom(K) ∪Dom(C) S′ = error(p)

If pc ∈ Dom(K) S′ = K(pc)(S)

If pc ∈ Dom(C):

if C(pc) = thenS′ =

add rs1 , rs2 , rd (D, R′, pc + 1) R′ = R{rd 7→ R(rs1) + R(rs2)}
movi w, rd (D, R′, pc + 1) R′ = R{rd 7→ w}
mov rs, rd (D, R′, pc + 1) R′ = R{rd 7→ R(rs)}
jmp rs (D, R, R(rs))

blt rs1 , rs2 , rs3 (D, R, R(rs3)) when R(rs1) < R(rs2)
(D, R, pc + 1) when R(rs1) ≥ R(rs2)

ld w[rs], rd (D, R′, pc + 1) R′ = R{rd 7→ D(R(rs) + w)}
when R(rs) + w ∈ Dom(D)

error(p) when R(rs) + w /∈ Dom(D)

st rs, w[rd] (D′, R, pc + 1) D′ = D{R(rd) + w 7→ R(rs)}
when R(rd) + w ∈ Dom(D)

error(p) when R(rd) + w /∈ Dom(D)

illegal user error

where error(p) = kernel error when p = kernel
user error when p = user

C, p and K are omitted in the above table because they never change.

Fig. 2. Operational semantics of the abstract machine

2.2 Safety of the Traditional Protection-by-Hardware Approach

The traditional protection-by-hardware approach can be expressed simply in the
abstract machine. It only sets the privilege levels of the machine states to user
to prevent kernel error from occurring.

Theorem 1 (Safety of the Traditional Protection-by-Hardware). If meta
functions of K never alter privilege levels and never translate machine states to
kernel error, then any machine state of the form (C, D,R, pc, user,K) never
evaluates to kernel error.

Proof. Straightforward from the operational semantics of the abstract machine.
ut

2.3 Typed Assembly Language

Now, we define a TAL that prevents kernel error from occurring. Figure 3
shows the syntax of the typed assembly language for the abstract machine. (It
only shows the difference from the syntax of the abstract machine.)

Our TAL has 6 kinds of basic types: α (type variable), int (word value),
〈τ1, . . . , τn〉 (tuple), ∀[∆].Γ , sizeof(α), and sizeof(〈τ1, . . . , τn〉). ∀[∆].Γ is a
type of instruction sequences. For example, if an instruction sequence I has

(type) τ ::= α | int | ∀[∆].Γ | 〈τ1, . . . , τn〉
| sizeof(〈τ1, . . . , τn〉) | sizeof(α)

(type variables) ∆ ::= α1, . . . , αn

(code memory type) ΨC ::= {w0 : ∀[∆0].Γ0, . . . , wn : ∀[∆n].Γn}
(data memory type) ΨD ::= {w0 : 〈τ0, . . .〉 , . . . , wn : 〈τn, . . .〉}
(kernel type) ΨK ::= {w0 : ∀[∆0].Γ0, . . . , wn : ∀[∆n].Γn}
(register file type) Γ ::= {r0 : τ0, . . . , r31 : τ31}
(tuple) T ::= 〈w1, . . . , wn〉
(instruction sequence) I ::= ι1; . . . ; ιn

Fig. 3. Syntax of the typed assembly language for the abstract machine. Only the
difference from the syntax of the abstract machine is shown

a type ∀[∆]Γ , then the register file of the abstract machine must have a register
file type (explained below) represented by Γ , to jump to and execute the in-
struction sequence. sizeof(〈τ1, . . . , τn〉) is a type of a word value that represents
a size of a tuple of the type 〈τ1, . . . , τn〉. For example, if a word value w has a
type sizeof(〈int, int, int〉), then we know that w = 3. sizeof(α) is a type of a
word value that represents a size of a tuple of the type α. Our TAL also has 4
kinds of types for the components of the abstract machine. ΨC is a type of code
memory, ΨD is a type of data memory, Γ is a type of a register file, and ΨK is
a type of a kernel and corresponds to the interface of system calls of the kernel.
Although our TAL does not have rich types, we can extend it with them, such
as existential types [12], recursive types [5], array types [10] and stack types [11],
in theory.

The dynamic semantics of our TAL are unchanged from the abstract machine.
This indicates that we can erase type information of programs and no type-
checking is required at runtime.

Figure 4 presents static judgments of our TAL that assert the well-formedness
of the components of the TAL. To have a well-formed machine state, the code
memory, the data memory, the kernel, the register file and the instruction se-
quence that starts from the address of the program counter must be well-formed.
The static semantics for the well-formedness are presented in Appendix A. Be-
cause of space limitations, the rules for word values, tuples and instructions are
omitted. They are basically the same line of the rules of FTAL [5] etc.

The well-formedness of the kernel is defined as follows. The basic idea is that
system calls never break the well-formedness of machine states.

Definition 1 (The Well-formedness of the Kernel). The kernel K is well-
formed, denoted as ΨK ` K, if:

1. ΨK is well-formed, that is, ` ΨK .
2. The domain of K is equal to the domain of ΨK .
3. For all w in the domain of K, if ΨK ` S where S = (C, D,R, w, p, K), then

K(w)(S) 6= user error or kernel error and ΨK ` K(w)(S).

Judgment Meaning

∆ ` τ τ is a well-formed type
` ΨC ΨC is a well-formed code memory type
` ΨD ΨD is a well-formed data memory type
` ΨK ΨK is a well-formed kernel type
∆ ` Γ Γ is a well-formed register file type

` (C, D) : Ψ C is well-formed code memory of type ΨC

D is well-formed data memory of type ΨD

Ψ ` R : Γ R is a well-formed register file of type Γ
Ψ, ∆ ` w : τ w is a well-formed word value of type τ
Ψ ` T : τ T is a well-formed tuple of type τ
Ψ, ∆, Γ ` I I is a well-formed instruction sequence
ΨK ` K K is a well-formed kernel
ΨK ` S S is a well-formed machine state

where Ψ = (Ψc, Ψd, Ψk)

Fig. 4. Static judgments of the typed assembly language

2.4 Safety of the Typed Assembly Language

Now, we show that, if a machine state S and a kernel K are well-formed, then
S never evaluates to kernel error. For that purpose, we first show that our
typed assembly language satisfies the following usual Preservation and Progress
lemmas.

Lemma 1 (Preservation). If ΨK ` K, ΨK ` S and S 7→ S′, then ΨK ` S′.

Lemma 2 (Progress). If ΨK ` K and ΨK ` S, then there exists S′ such that
S 7→ S′.

Proof. By case analysis on C(pc) (if pc ∈ Dom(C)) and K(pc) (if pc ∈ Dom(K)),
and induction on the typing derivations. Here, we only show the proof for the
case that pc ∈ Dom(K).

If pc ∈ K, there exists S′ = K(pc)(S) such that S 7→ S′. Thus, the progress
lemma is satisfied. In addition, from the well-formedness of the kernel ΨK ` K,
we have ΨK ` S′. Thus, the preservation lemma is also satisfied. ut

From these two lemmas, we can prove that, if a user program can be type-
checked, that is, if a machine state that represents the user program is well-
formed, then the program never violates safety of the kernel from the fact that the
machine state never evaluates to kernel error, as long as the kernel is correctly
implemented. Thus, we can safely replace the hardware protection facilities (the
privilege levels) with the static type-checking of our TAL.

Theorem 2 (Safety of the Typed Assembly Language). If ΨK ` K and
ΨK ` S, then S never evaluates to kernel error.

Proof. Straightforward from Lemma 1 and Lemma 2.

2.5 Dynamic Memory Allocation

In our framework, a dynamic memory allocation mechanism can be realized by
having the kernel include it as a system call, instead of having a special macro
instruction as Morrisett’s TAL [12]. For example, we can use the following kernel.

Example 1 (The Kernel with the Malloc System Call).

ΨK = { wmalloc : ∀[α].{r0 : sizeof(α), r1 : α,
r31 : ∀[β].{r0 : α, r1 : α, r31 : β}}}

K = { wmalloc 7→ Malloc }
(Registers other than r0, r1 and r31 are omitted here for the sake of brevity.)

The meta function Malloc allocates unused memory of the size specified by r0

from the data memory D. Then, it initializes the allocated memory with the
contents of the memory specified by r1 and sets the register r0 to the address
of the allocated memory. Finally, it jumps to the return address specified in the
register r31.

3 Kernel Mode Linux

Based on the argument of the previous section, we implemented Kernel Mode
Linux (KML), a modified Linux kernel for IA-32 CPUs which can execute user
programs in the kernel mode. In this section, we describe the implementation of
Kernel Mode Linux (KML).

3.1 How to Execute User Processes in the Kernel Mode

In IA-32 CPUs, the privilege level of a running program is determined by the
privilege level of the code segment in which the program is executed. A program
counter of IA-32 CPUs consists of the CS segment register, which specifies a code
segment, and the EIP register, which specifies an offset into the code segment.

To execute a user process in the kernel mode, the only thing KML does is to
set the CS register of the process to the kernel code segment, the most-privileged
segment, instead of the user code segment, the least-privileged segment. Then the
process is executed in the kernel mode. We call such processes as “kernel-mode
user processes”.

Because of this simple approach of KML, a kernel-mode user process can
be an ordinary user process (except for its privilege level). Therefore, even if a
kernel-mode user process consumes huge amount of memory and/or enters an
infinite loop, the kernel can reclaim the memory through its paging facility and
suspend the process through its process-scheduling facility, because KML does
not modify any code or data of the facilities.

3.2 How to Invoke System Calls from Kernel-Mode User Processes

To ensure safety of the kernel, user programs that will be executed in the kernel
mode must be written in TALx86 [10], a notable typed assembly language imple-
mentation for IA-32 CPUs, or Popcorn [10], a safe dialect of the C programming
language which can be translated to TALx86.

In the current KML, the interface of the system calls (that is, a kernel type ΨK

mentioned in Sect. 2) is exported as TAL’s interface file. The interface file con-
tains pairs of a name of a system call and its TAL type. The actual address of a
system call is looked up from the name of the system call at link time, as usual.
Then, programmers write their programs in TALx86 or Popcorn according to
the interface file. Invocations of system calls are written as usual function calls,
as expected. Though almost all system calls can be exported to user programs
safely, there are a few exceptions that cannot be exported directly because they
may violate the well-formedness of the kernel (e.g., mmap/munmap system calls).

Actually, KML must type-check user programs just before executing them for
ensuring safety. However, the current KML itself does not perform type-checking,
because the current TALx86 implementation cannot type-check executable bi-
naries (though intermediate relocatable binary objects can be checked). Thus,
the current KML needs to trust the external TALx86 assembler. We plan to
develop our own TAL type-checker for checking the executable binaries to solve
this problem.

3.3 Executing Existing Applications in the Kernel Mode

The current KML has a loophole mechanism to execute existing applications in
the kernel mode and eliminate the overhead of system calls without modifying
them. Though safety is not ensured, the mechanism is useful for measuring the
performance improvement of applications due to the elimination of the overhead
of system calls.

To implement the loophole mechanism, we exploit the facility of the recent
original Linux kernel for multiplexing a system call invocation into a traditional
software interruption (int 0x80) or sysenter/sysexit instructions depending on
a kind of CPU. We implemented a third branch for the multiplexer that in-
vokes system calls with direct function calls. Because the multiplexer executes
additional instructions to invoke system calls, a system call invocation with this
mechanism is not optimal. However, it is sufficiently fast compared to the soft-
ware interruptions and the sysenter/sysexit instructions.

3.4 The Stack Starvation Problem

As described in Section 3.1, the basic approach of KML is quite simple. How-
ever, there is one problem we call stack starvation. In the original Linux kernel,
interrupts are handled by interrupt handling routines specified in the Interrupt
Descriptor Table (IDT). When an interrupt occurs, an IA-32 CPU stops ex-
ecution of the running program, saves its execution context and executes the
interrupt handling routine.

How the IA-32 CPU saves the execution context of the running program
at interrupts depends on the privilege level of the program. If the program is
executed in the user mode, the IA-32 CPU automatically switches its memory
stack to a kernel stack. Then, it saves the execution context (EIP, CS, EFLAGS,
ESP and SS registers) to the kernel stack. On the other hand, if the program is
executed in the kernel mode, the IA-32 CPU does not switch its memory stack
and saves the context (EIP, CS and EFLAGS registers) to the memory stack of
the running program.

What happens if a user process that is executed in the kernel mode on KML
accesses its memory stack, which is not mapped by page tables of a CPU? First,
a page fault occurs, and the CPU tries to interrupt the user process and jump to
a page fault handler specified in the IDT. However, the CPU cannot accomplish
this work, because there is no stack for saving the execution context. Because
the process is executed in the kernel mode, the CPU never switches the memory
stack to the kernel stack. To signal this fatal situation, the CPU tries to generate
a special exception, a double fault. However, again, the CPU cannot generate
the double fault because there is no stack for saving the execution context of
the running process. Finally, the CPU gives up and resets itself. We call this
problem stack starvation.

To solve the stack starvation problem, KML exploits the task management
facility of IA-32 CPUs. The IA-32 task management facility is provided to sup-
port process management for kernels. Using this facility, a kernel can switch
processes with only one instruction. However, today’s kernels do not use this
facility because it is slower than software-only approaches. Thus the facility is
almost forgotten by all.

The strength of this task management facility is that it can be used to handle
exceptions and interrupts. Tasks managed by an IA-32 CPU can be set to the
IDT. If an interrupt occurs and a task is assigned to handle the interrupt, the
CPU first saves the execution context of the interrupted program to a special
memory region (called a task state segment, or TSS) of the running task, instead
of to the memory stacks. Then, the CPU switches to the task specified in the
IDT to handle the interrupt. The most important point is that there is no need
to switch a memory stack if the task management facility is used to handle
interrupts. That is, if we handle page fault exceptions with the facility, a user
process executed in the kernel mode can access its memory stack safely.

However, if we handle all page faults with the task management facility,
the performance of the whole system degrades because the task-based interrupt
handling is slower than the ordinary interrupt handling. Therefore, in KML, only
double fault exceptions are handled with the task management facility. That is,
only page faults caused by memory stack absence are handled by the facility.
Thus, the performance degradation is very small and negligible because memory
stacks rarely cause page faults.

4 Benchmarks

To measure the degree of performance improvement by executing user programs
in the kernel mode, we conducted two benchmarks that compared performance
of the original Linux kernel with that of KML. In each benchmark, we executed
exactly the same benchmark program both on the original Linux kernel and KML
with the system call multiplexing mechanism described in the previous section.
We also compared KML with the sysenter/sysexit mechanism. The experimental
environment is shown in Table 1.

Table 1. Experimental environment

CPU Pentium 4 3.000GHz (L2 cache 512KB)

Memory 1GB (PC3200 DDR SDRAM)

Hard disk 120GB

OS Linux kernel 2.5.72 (KML 2.5.72 001)

4.1 First Benchmark: Latencies of System Calls

The first benchmark measured latencies of 5 system calls by using LMbench [9]
(version 2.0). getpid is the simplest system call that only obtains a process ID.
Therefore, the overhead of system calls becomes very large in it. read and write
are basic I/O system calls. In the benchmark, read and write were performed
on the null device (i.e., /dev/null). stat and fstat are system calls for obtaining
file statistics. The result is presented in Table 2.

Table 2. Latencies of system calls. “Original” means the original Linux kernel and
“sysenter” means the original Linux kernel using sysenter/sysexit

getpid read write stat fstat

Original 371.3 439.3 402.3 1157.3 608.7

sysenter 135.1 201.1 164.9 896.5 383.5

KML 16.9 91.0 53.4 756.2 204.1

(Unit: nanoseconds)

The result shows that the getpid system call was about 22 times faster in
KML than in the original Linux kernel. It also shows that it was about 8 times
faster in KML than using sysenter/sysexit. The latencies of the other system
calls were also improved in KML.

4.2 Second Benchmark: Throughputs of File I/O Operations

The second benchmark examined how performance of file I/O is improved in
KML by using IOzone [13] (version 3.172). In the benchmark, we measured
throughputs of 4 I/O operations in 4 tests: Write, Re-write, Read and Re-read.
The Write test measures the throughput of writing a new file. The Re-write
test measures the throughput of writing a file that already exists. The Read test
measures the throughput of reading an existing file. The Re-read test measures
the performance of reading a file that is recently read. In all of the 4 tests,
we measured the throughput of the I/O operations on files whose size is from
16 Kbytes to 512 Kbytes. We fixed the buffer size to 16 Kbytes. The benchmark
was performed on a file system of Ext3fs. The result is shown in Figure 5.

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � � � � � � � � � � � � � �

	
�
�
�

�

	�
��
� �

��
�

� � � � � � � � � � !

" # � $ �

� % &
� ' � � ($ � #

) # � * � (+ �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � � � � � � � � � � � � �

�	

��
	
��

��
��
� �

���

� � � � � � � � � � �

! � " # $ � % �

� & '
� (� �) % � $

* $ � + �) , �

� � � �

� � � �

� � � �

� � � �

� � � � � � � � � � � � � � �

�	

��
	
��

��
��
� �

��
�

� � � � � � � � � � �

! � " #

� $ %
� & � � ' (�)

*) � + � ' " �
� � � �

� � � �

� � � �

� � � �

� � � �

� � � � � � � � � � � � � � �

�	

��
	
��

��
��
� �

���

� � � � � � � � � � �

! � " # � $ %

� & '
� (� �) * � #

+ # � , �) $ �

Fig. 5. Throughputs of I/O operations. “Original” means the original Linux kernel and
“sysenter” means the original Linux kernel using sysenter/sysexit

The result indicates that KML can improve various I/O operations for files
of small size. The result shows that, compared to the original Linux kernel, the
throughputs of Write, Re-write, Read and Re-read were improved up to 8 %,
15.9 %, 25.9 % and 14.7 % respectively. Compared to the sysenter/sysexit mech-
anism, the throughputs of Write, Re-write, Read and Re-read were improved
up to 2 %, 13.3 %, 12.6 % and 15.3 % respectively. There is performance degra-
dation in some cases (especially, in the Write test). This is mainly due to CPU
cache effects.

5 Related Work

In the field of operating system and programming language research, there are
several works related to safe execution of user programs in a kernel. An interest-
ing difference between our research and the previous work lies in their objective.
Our objective is to execute ordinary user programs in the kernel mode safely
while the work below is concentrated on how to extend a kernel safely.

5.1 SPIN Operating System

SPIN [2] is an extensible kernel that ensures safety by a language-based pro-
tection. In SPIN, kernel extensions are written in the Modula-3 programming
language [6]. Safety of SPIN is ensured by the fact that Modula-3 is a type-safe
language. That is, programmers cannot write malicious kernel extensions.

This approach of SPIN has two problems. The first problem is that its trusted
computing base (TCB) becomes large because the kernel must trust external
compilers of Modula-3. In SPIN, the kernel cannot check safety of binary codes.
In our approach, on the other hand, TCB is smaller than SPIN because safety is
checked at the machine language level and we need not trust external compilers.
The second problem is that the kernel extensions must be written in Modula-3.
In our approach, we can write user programs in various programming languages,
if there exist compilers that translate the languages to TALs.

5.2 Software-Based Fault Isolation

Software-based Fault Isolation (SFI) [16] is a technique that modifies binary
codes of applications to ensure memory and control flow safety. In the SFI ap-
proach, check codes are inserted before each memory access and jump instruction
of untrusted programs to ensure safety.

The problem of the SFI approach is its large overhead of the inserted runtime
safety check codes. In our approach, on the other hand, safety can be mostly
ensured at load time through type-checking.

5.3 Foundational Proof-Carrying Code

In the Foundational Proof-Carrying Code (FPCC) [1] approach, a user program
is attached a logical proof of its safety, and the proof is verified before executing
the program.

There are two advantages in the FPCC approach, compared to the simple
TAL [12]. First, TCB becomes very small. The TCB of FPCC consists of a
proof-checker, a machine specification that represents a behavior of a CPU and
memory, and a safety policy. On the other hand, the TCB of the simple TAL
system becomes larger because it includes a TAL type-checker. To solve this
problem, we can take the approach of Hamid et al [5]. They showed that their
TAL that is carefully defined so that well-formed TAL programs are mapped

to valid machine states of FPCC can be syntactically translated to a FPCC
program that does not violate memory safety and control flow safety. In their
approach, the TCB can be as small as the FPCC approach.

Second, a safety policy can be flexible. In the FPCC approach, a safety policy
is specified in logics of a proof-checker. Therefore, we can specify a safety policy
that cannot be expressed in a simple TAL type system. For example, a limitation
of memory or CPU usage can be ensured by the FPCC approach. However, there
is a drawback of this flexibility of a safety policy: Proof generation may become
very hard. In TALs, on the other hand, type-checking is simple and easy. In
addition, to replace the hardware protection mechanisms, type safety suffices
because they ensure only memory safety and control flow safety.

6 Conclusion

In this paper, we showed that the hardware protection mechanisms that tra-
ditional operating systems exploit can be safely replaced with static program
analysis, mainly type-checking. By discarding the hardware protection mecha-
nisms, the overhead of switching a privilege level of a CPU can be eliminated
and efficiency of applications can be improved. Based on this approach, we de-
veloped KML, an operating system in which user programs can be executed in
the kernel mode of a CPU (available at http://www.taplas.org/˜tosh/kml). The
result of several benchmarks shows effectiveness of KML.

7 Future Work

Although the current KML is effective for improving performance of programs,
there should be a limitation because it only eliminates the overhead of system
calls. To improve the performance further, we should modify the kernel and its
interface and exploit the TAL type system more aggressively. For example, we
think that a kernel can be modified to export network communication hardware
to user programs as user-level communication technologies (e.g., [14, 15, 4]). The
problem of the user-level communication is a tradeoff between performance and
safety. To achieve high performance, the kernel must export network hardware
to user programs directly and give up its safety because the user programs can
access the kernel directly. To achieve safety, on the other hand, the kernel must
encapsulate network hardware by system calls and give up high-performance
communication. By using our approach, we can achieve both high-performance
communication and safety because the overhead of system calls can be eliminated
without losing safety.

As other directions, our approach can be applied to microkernels. Traditional
microkernels have a problem of the overhead of communication between a kernel
and user servers. By applying our approach, the overhead can be reduced largely.
In addition, we think that the large part of a kernel itself can be written in a
strongly typed low-level language as TALs. Of course, it is difficult to ensure total
safety of the kernel. We think, however, that the simple memory and control flow

safety is still valuable. For example, consider synchronization primitives such
as mutex locks and semaphores. It is difficult to ensure that these primitives
are properly used for preventing deadlocks. However, it is very easy to ensure
memory safety, because they only make a decent memory access.

References

1. A. W. Appel. Foundational proof-carrying code. In In proc. of 16th Annual IEEE
Symposium on Logic in Computer Science, pages 247–258, June 2001.

2. B. N. Bershad, C. Chambers, S. J. Eggers, C. Maeda, D. McNamee, P. Pardyak,
S. Savage, and E. G. Sirer. SPIN - an extensible microkernel for application-specific
operating system services. In In proc. of ACM SIGOPS European Workshop, pages
68–71, September 1994.

3. K. Crary. Toward a foundational typed assembly language. In Proc. of Symposium
on Principles of Programming Languages, pages 198–212, January 2003.

4. C. Dubnicki, A. Bilas, Y. Chen, S. Damianakis, and K. Li. VMMC-2: efficient
support for reliable, connection-oriented communication. In Proc. of Hot Intercon-
nects, pages 37–46, August 1997.

5. N. Hamid, Z. Shao, V. Trifonov, S. Monnier, and Z. Ni. A syntactic approach to
foundational proof-carrying code. Technical Report YALEU/DCS/TR-1224, Dept.
of Computer Science, Yale University, 2002.

6. S. P. Harbison. Modula-3. Prentice Hall, 1992.
7. Intel Corporation. IA-32 Intel Architecture Software Developer’s Manual.
8. The Linux kernel. http://www.kernel.org.
9. L. W. McVoy and C. Staelin. lmbench: Portable tools for performance analysis.

In Proc. of USENIX Annual Technical Conference, pages 279–294, 1996.
10. G. Morrisett, K. Crary, N. Glew, D. Grossman, R. Samuels, F. Smith, D. Walker,

S. Weirich, and S. Zdancewic. TALx86: A realistic typed assembly language. In
Proc. of ACM SIGPLAN Workshop on Compiler Support for System Software,
pages 25–35, 1999.

11. G. Morrisett, K. Crary, N. Glew, and D. Walker. Stack-based typed assembly
language. In In proc. of Types in Compilation, pages 28–52, 1998.

12. G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to typed assembly
language. ACM Transactions on Programming Languages and Systems, 21(3):527–
568, 1999.

13. W. D. Norcott. The IOzone file system benchmark. http://www.iozone.org.
14. L. Prylli and B. Tourancheau. BIP: a new protocol designed for high performance

networking on Myrinet, March 1998.
15. H. Tezuka, A. Hori, and Y. Ishikawa. PM : a high-performance communication

library for multi-user parallel environments. Technical Report TR-96015, Real
World Computing Partnership, 1996.

16. R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient software-based
fault isolation. ACM SIGOPS Operating Systems Review, 27(5):203–216, December
1993.

A The Static Semantics of Our Typed Assembly
Language (Rules for Types and Machine States Only)

FTV (τ) ⊆ ∆

∆ ` τ
(type)

∀wi ∈ Dom(ΨC). wi ∈ [0, 230 − 1]
and ΨC(wi) = ∀[∆].Γ and ∆ ` Γ

` ΨC

(code memory type)

∀wi ∈ Dom(ΨK). wi ∈ [231, 232 − 1]
and ΨK(wi) = ∀[∆].Γ and ∆ ` Γ

` ΨK

(kernel type)

∀wi ∈ Dom(ΨD). TupleRange(ΨD, w) ⊆ [230, 231 − 1]
and ΨD(wi) = 〈τ1, . . . , τn〉 and · ` ΨD(wi)

and ∀wj ∈ Dom(ΨD) s.t. wj 6= wi.
TupleRange(ΨD, wi) and TupleRange(ΨD, wj) do not overlap

` ΨD

(data memory type)

∀ri ∈ Dom(Γ).∆ ` Γ (ri)

∆ ` Γ
(register file type)

where
TupleRange(ΨD, w) = [w, w + n− 1] where ΨD(w) = 〈τ1, . . . , τn〉

Fig. 6. The static semantics of the typed assembly language: types

` (C, D) : Ψ Ψ ` R : Γ
(1) If pc ∈ C, Ψ, ·, Γ ` InstrDec(C, pc)

or
(2) If pc ∈ K, ΨK(pc) = ∀[∆′].Γ ′ · ` τi [τ1, . . . , τn/∆′]Γ ′ = Γ

ΨK ` (C, D, R, pc, p, K)
(state)

` ΨC ` ΨD

∀wi ∈ Dom(ΨC).Ψ, ∆i, Γi ` InstrDec(C, wi) where ΨC(wi) = ∀[∆i].Γi

∀wi ∈ Dom(ΨD).Ψ ` TupleDec(D, wi, n) : ΨD(wi) where ΨD(wi) = 〈τ1, . . . , τn〉
` (C, D) : Ψ

(memory)

∀ri ∈ Dom(Γ).Ψ, ·, · ` R(ri) : Γ (ri)

Ψ ` R : Γ
(register file)

where
InstrDec(C, w) = ιw, . . . , ι230−1 where ιi = C(i)
TupleDec(D, w, n) = 〈w0, . . . , wn−1〉 where wi = D(w + i)

Fig. 7. The static semantics of the typed assembly language: state, memory and register
file

