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Abstract

We have designed and implemented a vir-
tual machine monitor that virtualizes a shared-
memory multi-processor machine on a commodity
cluster. This functionality greatly simplifies uti-
lization of commodity clusters. For example, it
enables parallel applications for shared-memory
multi-processor systems to run on clusters with-
out any change of the applications. Moreover,
commodity operating systems that support multi-
processors (e.g., Linux) can be installed in a vir-
tual machine with a small amount of modifica-
tion. We built a virtual 8-way multi-processor
machine on eight physical machines. We ran par-
allel coarse-grain tasks on Linux installed in the
virtual machine and measured the execution time.
The experimental result demonstrates the feasibil-
ity of our approach.

1. Introduction

Due to the recent increase in the perfor-
mance/price ratio of PCs, there is rapidly ex-
panding interest in the use of computing clus-
ters composed of commodity computers. While
the commodity clusters provide scaling from the
small (less than 64 nodes) to the large (approach-

ing 10,000 nodes), small clusters are gaining
widespread use, particularly at the workgroup and
departmental levels.

A major problem for utilizing such small com-
modity clusters has been the complexity of re-
source management. Without global (cluster-
wide) mechanisms for resource allocation and
sharing, it is difficult to efficiently utilize re-
sources such as processors, memory, and disks.

To overcome this problem, we propose a
method for providing a single system image (SSI)
on top of a cluster. While various systems (e.g.,
SCore [23], Condor [17]) have been proposed to
provide a SSI, we especially focus on a technique
for achieving a SSI withhardware virtualiza-
tion. More specifically, we designed and imple-
mented a virtual machine monitor (VMM) called
Virtual Multiprocessor. Like existing VMMs [4,
6, 8, 10, 11, 18, 27, 29, 32], Virtual Multiprocessor
takes complete control of the machine hardware
and creates virtual machines, each of which be-
haves like a complete physical machine that can
run its own operating system. In contrast to the
existing VMMs, Virtual Multiprocessor virtual-
izes a shared-memory multi-processor machine
on a commodity cluster. For example, it gives a
user the illusion of anN-way multi-processor ma-
chine on top of a collection ofN single-processor



machines. Inside the virtual machine, the user
installs an operating system that supports multi-
processor machines and executes parallel pro-
grams on the operating system.

Our approach to achieving a SSI has three
advantages over existing approaches. First, a
wide variety of parallel applications for shared-
memory multi-processor systems can run in a
virtual machine built on the cluster without any
changes of the applications. Especially, a user
can write parameter sweep applications or par-
allel tasks that have DAG dependency between
them using familiar languages and tools designed
for shared-memory systems (e.g., parallelmake,
shell script) instead of distributed programming
languages such as MPI [25].

Second, in addition to parallel applications, ex-
ecution of multiple sequential applications gains
benefit from our approach. By installing a com-
modity operating system that supports multi-
processors (e.g., Linux) in a virtual machine,
the user can manage distributed resources with
a familiar interface such as Linux process man-
agement. If the user forks multiple processes
on Linux running inside the virtual machine,
these processes are automatically allocated on the
virtual machine’s processors by the scheduling
mechanism of Linux. The processes are then allo-
cated on the physical machines’ processor which
the virtual machine’s processors are mapped onto.

Third, resource encapsulation with our VMM
gives solutions for security and reliability. For
example, suppose a cluster is used for server host-
ing. Since a VMM provides strong isolation be-
tween virtual machines and physical machines,
the administrator of a VMM can give full control
of the virtualized hardware to the users of the vir-
tual machines, without exposing critical resources
to danger. This functionality of VMMs greatly
supports to achieve secure and convenient virtual
hosting [30, 32]. In addition, a snapshot/resume
mechanism of virtual machines enables a system
to reduce the effects of system crashes and break-
ins [21, 29, 31].

The current implementation of the VMM is de-
signed for the IA-32 architecture. The VMM vir-
tualizes processors, shared memory, and I/O de-
vices as follows. To virtualize processors, the
VMM achieves para-virtualization of the IA-32
instruction set architecture (ISA) [4, 10]. A guest
operating system is statically modified to run op-
timally on a virtual machine. To virtualize shared-
memory, the VMM uses a mechanism similar to
software distributed shared memory. The VMM
implements the consistency protocol of the shared
memory with the virtual memory page protection
mechanism of physical machines. To virtualize
I/O devices, the VMM prepares a central server
that keeps track of the states of all the devices.
The VMM communicates with the server when-
ever a virtual processor issues an I/O operation.

We conducted several experiments to demon-
strate the feasibility of our approach from a per-
formance perspective. We built a virtual 8-way
multi-processor machine on eight physical ma-
chines. We ran eight processes that calculate
a fibonacci number simultaneously on Linux in-
stalled in the virtual machine and measured the
execution time. The execution of the program on
a virtual 8-way multi-processor machine is about
6.6 times faster than on both virtual and physi-
cal 1-way processor machines. These results in-
dicate that applications that do not require a large
amount of the VMM interventions (e.g., do not
access I/O devices very frequently) achieves good
performance.

The remainder of this paper is organized as fol-
lows. Section 2 presents the overview of Vir-
tual Multiprocessor. Section 3 describes the im-
plementation of the virtualization of hardware re-
sources. Section 4 gives the details of memory
consistency algorithm. Section 5 presents perfor-
mance measurements. Section 6 discusses limi-
tations of our system and proposes several solu-
tions for overcoming the limitations. Section 7
discusses related work. The final section summa-
rizes the paper.



2. Overview of Virtual Multiprocessor

This section presents the overview of Virtual
Multiprocessor. First, we describe the basic de-
sign decisions. Next, we explain how Virtual
Multiprocessor maps virtual resources to physical
resources.

2.1. Functionality of Virtual Machines

Functionality of virtual machines built by our
VMM is summarized as follows:

• An interface provided by the virtual ma-
chines is not at the ABI level but at the ISA
level. The virtual machines provide a com-
plete system environment that supports an
operating system along with user processes.

• Both the virtual machines and underlying
physical machines are targeted at the IA-32
architecture.

• The VMM achieves partial virtualization
of an underlying machine (i.e., para-
virtualization [4, 32]) as opposed to full vir-
tualization [29].

Due to para-virtualization, the ISA of the vir-
tual machines is similar but not identical to that
of underlying hardware. This improves perfor-
mance, though the kernel of operating systems
running inside the virtual machine requires a
small amount of modification. The technique
of our VMM for modifying operating systems is
similar to that of LilyVM [10]. We describe the
details of the technique in Section 3.

2.2. Mapping of Hardware Resources

Virtual Multiprocessor maps hardware re-
sources (processors, memory, and I/O devices) of
a virtual machine onto those of physical machines
to virtualize a shared-memory multi-processor
machine. As shown in Figure 1, the resources are
mapped in a following manner:

ProcessorsVirtual processors are basically
mapped onto physical processors in a one-
to-one fashion.N individual processors of
a virtual machine are respectively mapped
onto a processor ofN different physical
machines.

Memory A virtual machine’s shared memory
available to any of the virtual processors is
mapped onto a portion of physical machines’
memory. Each physical machine needs to re-
serveM MB of memory to virtualizeM MB
of the shared memory.

I/O devices I/O devices of a virtual machine are
mapped onto devices belonging to one of
physical machines. For example, a disk im-
age file located at one of physical machines
is used as a hard disk image of a virtual ma-
chine. A virtual console of a physical ma-
chine is used for a serial terminal of a virtual
machine.

3. Implementation

This section describes how Virtual Multipro-
cessor virtualizes the IA-32 architecture: proces-
sors, shared memory, and I/O devices. The virtu-
alization of shared memory consists of the virtu-
alization of address space and coherence mecha-
nism. We give just the outline of the virtualiza-
tion of processors and address space since it is
similar to that of a single-processor virtual ma-
chine, particularly to LilyVM [10]. The virtual-
ization of memory coherence mechanism and I/O
devices is described in more detail because these
mechanisms are special for the virtualization of a
multi-processor machine.

3.1. Basic Strategy for Virtualizing Hardware

Like LilyVM [10] and FAUmachine [11], our
VMM is placed on top of a native operating sys-
tem running on physical hardware and is imple-
mented solely in user mode with no modification
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Figure 1. Mapping between a virtual machine and physical mac hines

to the native operating system. Although this ar-
chitecture incurs a larger overhead than the archi-
tecture where the VMM is placed directly on bare
hardware [4, 30, 32], it overcomes several techni-
cal and pragmatic hurdles [24]. First, the architec-
ture of our system is useful for the virtualization
of the Intel Pentium architecture, which is not nat-
urally virtualizable [20]. Second, by relying upon
a native operating system, it allows a virtual ma-
chine to support a diversity of peripheral devices
with minimal programming effort. Third, it al-
lows an operating system installed inside a virtual
machine to co-exist a pre-existing native operat-
ing system. Hereafter, we call an operating sys-
tem running on a virtual machine aguestoperat-
ing system and an operating system running on a
physical machine ahostoperating system.

To virtualize hardware resources with no modi-
fication to host operating systems, the VMM pre-
pares two user processes for each virtual proces-
sor. These user processes are:

VM process The VMM assigns this process to
run a guest operating system as one of pro-
cessors of a virtual machine. The individ-
ual VM processes map assigned virtual pro-
cessors onto physical machines’ processor
where the VM processes are running.

When the VM process is about to execute
an instruction that interferes with the state of
an underlying VMM or a host operating sys-
tem, a signal is generated by a host operating

system. For example, theSIGSEGVsignal
is generated when the VM executes a priv-
ileged instruction which cannot be executed
by a user process.

Monitor process This process supervises the
VM process using theptrace system call.
The monitor process intercepts execution of
the VM process by trapping a signal gener-
ated by the VM process. The monitor pro-
cess then emulates the instruction executed
by the VM process by modifying the state of
the VM process’s registers and memory.

Figure 2 summarizes a basic execution cycle of
these processes.

3.2. Processor Virtualization

The virtualization of processors consists of (i)
the virtualization of instructions that would inter-
fere with the state of an underlying VMM (or a
host operating system) and (ii) the virtualization
of interrupts and exceptions.

First, we describe the virtualization of instruc-
tions that would interfere with underlying sys-
tems. As mentioned in Section 3.1, a large portion
of a virtual processor’s instructions is executed by
a physical machine’s processor without VMM in-
tervention. Only instructions that would interfere
with an underlying VMM or host operating sys-
tem are interpreted by the VMM. These instruc-
tions that require VMM intervention are called



1. The VM process runs a guest operating system
in native mode.

2. A signal is generated when
the VM process executes an instruction
that requires the software emulation.

3. The monitor process traps the signal.

4. The monitor process emulates the instruction.

5. The monitor process restarts
the execution of the VM process

VM process

Monitor process

Figure 2. A basic execution cycle of the VM process and the mon itor process

sensitiveinstructions. For example, instructions
that access IA-32 system registers such as control
register 3 are sensitive.

The sensitive instructions are classified into
privileged instructions (e.g., thelgdt instruc-
tion) and non-privileged instructions (e.g., the
sgdt instruction) [20]. Execution of the priv-
ileged instructions at the most privileged hard-
ware domain will cause a general protection ex-
ception, whereas the non-privileged instructions
do not cause an exception.

The monitor process traps the execution of
privileged instructions and non-privileged in-
structions in different ways. Trapping of priv-
ileged instructions is straightforward. Since a
VM process runs in user mode, a monitor process
needs only to trap exceptions caused by the ex-
ecution of privileged instructions. On the other
hand, trapping of non-privileged instructions is
complex and requires modifications to a guest op-
erating system. More specifically, the kernel code
of a guest operating system is modified at com-
pile time in such a way that an illegal instruction
is inserted before every non-privileged instruc-
tion [10]. By trapping the exception caused by an
illegal instruction, the monitor process intercepts
non-privileged instruction that follows the illegal
instruction in the kernel code.

This technique of the static modification of ker-
nel code has merits and demerits. One of the
merits is that numerous operating systems can be

…

ud2a

sgdt 0x012345

…

Translation…

sgdt 0x012345

…

Original kernel code Modified kernel code

for a virtual machine 

Sensitive non-privileged instruction

Illegal instruction

Figure 3. Translation of kernel code with a
modified assembler

hosted with small manual implementation costs.
A modified assembler inserts illegal instructions
automatically at kernel compile time. On the
other hand, due to static code modification, the
VMM cannot support system-level binaries of
which source code is not available. These include
binary-only Linux kernel modules and operating
systems like Windows, of which source code is
not open to public.

Second, we describe the virtualization of inter-
rupts and exceptions. To virtualize interrupts and
exceptions, the VMM needs to detect and deliver
them. A method for detecting interrupts and ex-
ceptions varies depending on how they are gener-
ated. For example, when a virtual machine gen-
erates an exception that can be seen as a signal
generated by the VM process, the monitor process



detects it by trapping the signal with theptrace
system call. When the virtual machine gener-
ates an interrupt by accessing its APIC, the mon-
itor process detects it by intercepting write access
to memory regions which the virtual machine’s
APIC is mapped onto.

A detected interrupt (or exception) is delivered
to an appropriate virtual processor by the monitor
process. Basically, the monitor process delivers
it to the local VM process. The monitor process
makes the VM process enter an interrupt (or ex-
ception) handler by looking up descriptor tables.
Only when an inter-processor interrupt is gener-
ated, the monitor process delivers it to a specified
remote VM process with TCP/IP communication.
The delivery of external interrupts triggered by
I/O devices is described in Section 3.4 in detail.

3.3. Shared Memory Virtualization

The virtualization of a shared memory requires
the virtualization of the address space and the
memory coherence mechanism.

First, we briefly explain the virtualization of
the address space. A guest operating system
running inside a virtual machine expects a zero-
based physical address space, as provided by real
hardware. To implement such address space,
the VMM need virtualize both the segmentation
mechanism and the paging mechanism. In cur-
rent implementation, the segmentation mecha-
nism is not fully virtualized. Only minimal mech-
anism required to host Linux is implemented.
Specifically, whereas reading from and writing
to a virtual machine’s segment registers are im-
plemented, translation from virtual addresses to
physical addresses is not fully supported. The
base address of every segment must be zero in-
side a virtual machine.

The virtualization of the paging mechanism is
implemented in the following manner. First, an
individual VM process reserves a portion of its
memory for a virtual machine. Then, the VM pro-
cesses map their pages onto the reserved memory

region by looking up the page directory and the
page table of the virtual machine.

More specifically, the VM processes use the
mmapsystem call and themunmapsystem call to
update the mapping of pages. Since these system
calls incur a large overhead, the VM processes de-
lay the system call invocation; the system calls are
issued only when the modification to the page di-
rectory and the page table need become valid. For
example, suppose that a virtual machine modifies
its page table so that pagep is mapped onto its
physical memory. In this case, the VM process
delays issuing themmapsystem call until the pro-
cess actually accesses top and theSIGSEGVsig-
nal is generated. Similarly, the VM process issues
themunmapsystem call to release obsolete page
mapping only when modification to the page ta-
ble or page directly becomes valid. For instance,
munmap is issued to release obsolete mapping
when a virtual machine changes the value of the
control register 3 or execute theinvlpg instruc-
tion.

The virtual address space that a guest operating
system can access is limited. An upper bound of
the address space is changed to0xafffffff for
the following reasons:

• A memory region with lower bound
0xc0000000 and upper bound
0xffffffff is used for the kernel
address space for a host operating system. A
VM process, which runs not in supervisor
mode but in user mode, is not allowed
to access this region by a host operating
system.

• A memory region with lower bound
0xb0000000 and upper bound
0xbfffffff is reserved for hardware
emulation. This region is used for storing
information required for the virtualization of
hardware such as values of system registers.

For the above reasons, a guest operating sys-
tem is statically modified such that its kernel
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Figure 4. Memory layout of the monitor pro-
cess

address space does not overlap with the non-
accessible regions. A lower bound and an upper
bound of the kernel address space are changed to
0xa0000000 and0xb00000000 respectively
(See Figure 4).

Next, we describe the virtualization of memory
coherence mechanism. The VMM implements
the consistency protocol of the shared memory
using the virtual memory page protection mech-
anism of physical machines. Specifically, the
VMM uses themprotect system call to con-
trol access to shared pages in such a way that any
attempt to perform a restricted access on a shared
page generates theSIGSEGVsignal. Upon trap-
ping this signal, the VMM updates the contents
and protection level of the page on the physi-
cal machine. The details of the memory sharing
mechanism are described in Section 4.

It must be noted that theSIGSEGVsignals are
generated by several reasons, including a page
fault exception of a virtual machine and access to
a shared page of which privilege is downgraded.
Since the way theSIGSEGVsignals are handled
varies depending on reasons the signals are gen-
erated, the VMM classifies the signals according
to the flow-chart shown in Figure 5.

3.4. I/O Device Virtualization

I/O devices currently supported by the VMM
include a hard disk and a serial terminal. The
supported access method to these devices in-
clude programmed I/O (within/out instruc-
tions) and Direct Memory Access (DMA). Access
through memory mapped I/O is not currently im-
plemented.

To emulate I/O devices, the VMM prepares one
central server that keeps track of the states of all
the devices. We call this I/O server. The I/O
server communicates with monitor processes to
emulate the I/O devices. For example, when a
guest operating system tries to read a value from
an I/O port with thein instruction, the I/O server
and a monitor process emulate the instruction as
follows. First, the monitor process intercepts the
execution of thein instruction and sends a re-
quest to the I/O server. When receiving the re-
quest, the server reads a value from the specified
I/O port and sends it to the monitor process. The
monitor process then copies the value to the des-
tination operand of the instruction.

To trigger external interrupts generated by the
devices, the I/O server checks the state of the de-
vices at regular intervals and tries to find the de-
vices that can trigger an interrupt. If such a device
is found, the server delivers an external interrupt
of the device to a virtual processor in the follow-
ing manner. First, the server decides a destination
virtual processor to which the interrupt is deliv-
ered. In the current implementation, the interrupt
is delivered to virtual processorv such thatv and
the I/O server run on the same host1. Second, the
I/O server transmits some signal (e.g.,SIGUSR1)
to the VM process corresponding tov to stop its
execution. Finally, the monitor process traps the
signal and makes the VM process enter an inter-
rupt handler.

1The scheduling of destinations with dynamic priority
has not been implemented yet.



The monitor process traps theSIGSEGV signal
generated by the execution of instructioni.

The monitor process decodesi and calculatesV, a set
of virtual addresses thati accesses.

Is there some virtual addressv ∈ V such thatv is not
mapped to a physical address of the virtual machine?

The monitor process raises a page fault inside the
virtual machine.

The monitor process calculatesP, a set of physical
addresses whichV are mapped onto.

Is there some physical addressp ∈ P such thatp is in
a region which an APIC is mapped onto?

The monitor process emulates the VM process’s
access to an APIC.

Is there some virtual addressv ∈ V such thatv has not
been mapped onto the physical machine’s memory?

The VM process issues themmap system call to map
a virtual address onto the physical machine’s
memory, and then restarts the execution ofi.

Is there some virtual addressv ∈ V such thatv needs
the emulation of memory coherence?

The monitor process emulates the memory
coherence, and then restarts the execution ofi.

Is there some virtual addressv ∈ V such thatv
violates the access privilege defined in the virtual

machine’s page table or page directory?

The monitor process raises a page fault inside the
virtual machine.

The monitor process regardsi as a privileged
instruction and emulates the instruction.

Yes

No

Yes

No
Yes

No
Yes

No

Yes

No

Figure 5. Flow chart of the SIGSEGVsignal handling



proc
i

: virtual processori
Mi : message queue of virtual processori

pagesn

i
: nth page of virtual processori

p.state : state of pagep (invalid , read only , or read write )
p.content : content of pagep
p.owner : processor that own the latest content of pagep

p.copyset : a collection of processors that have a replica of pagep

p.busy : flag which istrue while pagep is being updated

Figure 6. Variables for algorithm description

4. Memory Consistency Algorithm

This section explains the virtualization of the
memory coherence mechanism in detail. First, we
describe the IA-32 memory model. The VMM
need satisfy this memory model to allow existing
programs for the IA-32 architecture to run inside
a virtual machine without modification. Then, we
present a simple memory consistency algorithm
that satisfies the IA-32 memory model. Note that
the memory model that our algorithm targets dif-
fers from most of existing memory consistency al-
gorithms for distributed shared memory systems
designed for other memory models such as re-
lease consistency [5, 15].

4.1. IA-32 Memory Model

The IA-32 memory model specifies the order
in which processors see updates to memory so
that the processors. According to its specifica-
tion [12], the IA-32 memory model guarantees
that the following ordering rules apply in multi-
processor machines:

• Individual processors use the same ordering
rules as in a single-processor machine.

• Writes by a single processor are observed in
the same order by all processors.

• Writes from the individual processors arenot
ordered with respect to each other.

Added to the above ordering rules, the IA-
32 architecture provides several mechanisms for

strengthening or weakening the memory order-
ing model to handle special programming situa-
tions. These mechanisms include the I/O instruc-
tions, locking instructions, the LOCK prefix, and
serializing instructions that force stronger order-
ing on processors. For instance,mfence is one
the serializing instructions. It ensures that every
load-from-memory and store-to-memory instruc-
tions that precede themfence instruction in ma-
chine code is globally visible when themfence
instruction is issued.

4.2. Algorithm Description

We explain a simple memory consistency al-
gorithm that satisfies the IA-32 memory model.
This algorithm is based on a simple sequentially
consistent, multiple-reader/single-write protocol
used in Ivy [14]. The machine pages of the vir-
tual machine are distributed over nodes such that
each node manages a subset of the pages. Fig-
ure 6 and Figure 7 describe the algorithm in more
detail. Figure 6 shows variables used in the algo-
rithm description. Figure 7 describes actions of
virtual processori. When one of the conditions
listed on the left side of the figure holds, a cor-
responding action listed on the right side of the
figure is took.

We plan to optimize the algorithm by relaxing
memory consistency as far as the IA-32 memory
model can be satisfied. This optimization plan is
discussed in Section 6.2.



Guard Action

access(i, a, n) =⇒ begin
∧ stop the execution of the VM process ;

violation(pagesn

i
, a) send 〈fetch, n, a, i〉 to manager(n);

end
〈fetch, n, a, s〉 ∈ Mi =⇒ begin

∧ remove 〈fetch, n, a, s〉 from Mi;
pagesn

i
.busy = false let p be pagesn

i
;

p.busy := true ;
match a with
read ⇒

send 〈invalidate, n, a, s, p.owner〉 to p.owner ;
write ⇒
forall x ∈ p.copyset such that x 6= procs ∨ x = p.owner do

send 〈invalidate, n, a, s, p.owner〉 to x;
end

end
〈invalidate, n, a, s, o〉 ∈ Mi =⇒ begin

remove 〈invalidate, n, a, s, o〉 from Mi;
let p be pagesn

i
;

match a with
read ⇒ p.state := read only ;
write ⇒ p.state := invalid ;
end;
if o = proci then send 〈ack, n, a, p.content〉 to procs;

end
〈ack, n, a, c〉 ∈ Mi =⇒ begin

remove 〈ack, n, a, c〉 from Mi;
let p be pagesn

i
;

p.content := c;
match a with
read ⇒ p.state := read only ;
write ⇒ p.state := read write ;
end;
send 〈finish, n, a, i〉 to manager (n);
restart the execution of the VM process ;

end
〈finish, n, a, s〉 ∈ Mi =⇒ begin

remove 〈finish, n, a, s〉 from Mi;
let p be pagesn

i
;

match a with
read ⇒ p.copyset := p.copyset ∪ { procs };
write ⇒ p.copyset := { procs }; p.owner := procs;
end;
p.busy := false ;

end

where
manager(n) : manager ofnth page

(e.g.,manager(n) = proc
n mod N

where the number of processors isN )
access(i, a, n) : This predicate holds when processori accesses witha (read or write ) to nth page
violation(p, a) ≡ p.state = invalid∨ (p.state = read only ∧ a = write)

Figure 7. Simple memory consistency algorithm (for virtual processor i)



Name Descripton Execution time Execution time Overhead
(physical) (virtual) ratio

fib Calculate a fibonacci number 22.6 22.1 0.97
getpid Issuegetpid 100, 000 times 0.05 18.1 354
ls List information about hundreds of files0.03 6.64 255
gcc Compile a C program 0.14 0.98 6.81

Table 1. Sequential benchmark programs and their execution time on a physical and a virtual single-
processor machine (unit: seconds)

5. Experiments

We implemented a prototype of Virtual Multi-
processor and conducted several experiments to
demonstrate the feasibility of our system from a
performance perspective. This prototype system
builds a virtual 8-way multi-processor machine
on top of eight physical machines. The virtual
machine can host the Linux kernel for SMP and
allows various applications (e.g.,gcc , make) to
run on Linux.

Specifically, we conducted the following exper-
iments. First, we ran several sequential programs
on a virtual single-processor machine to measure
the overhead of hardware virtualization except the
memory coherence mechanism. The hardware
virtualization involves emulation of sensitive in-
structions, access to I/O devices and so on. Sec-
ond, we ran parallel coarse-grain tasks on a vir-
tual multi-processor machine to solely measure
the overhead of the memory coherence mecha-
nism.

All the experiments were conducted on 2.4
GHz Intel Xeon machines with 2GB RAM, a
1 Gigabit Ethernet NIC. Linux 2.4 was used
throughout for both a host operating system and
a guest operating system.

5.1. Execution of Sequential Programs on a Virtual
Single-processor Machine

We ran several sequential programs on a virtual
single-processor machine to measure the over-
head of hardware virtualization except the mem-
ory coherence mechanism.

Table 1 shows description of benchmark pro-
grams and their execution time on a physical ma-
chine and a virtual machine. Although the experi-
mental result indicates that overheads incurred by
the execution ofgetpid , ls , andgcc are large,
the overheads can be reduced as indicated by
the performance of existing IA-32 VMMs (e.g.,
VMware [29], Xen [4]). Section 6.1 discusses
several techniques for reducing the overheads.

5.2. Execution of Parallel Coarse-grain Tasks on a
Virtual Multi-processor Machine

We measured the execution time of parallel
coarse-grain tasks on a virtual multi-processor
machine to evaluate the overhead of the memory
coherence mechanism. Specifically, we ran eight
processes that calculate a fibonacci number simul-
taneously on a 1-way,. . . , 8-way virtual multi-
processor machine built on top of 1,. . . , 8 phys-
ical machines respectively. The overheads of this
program are mainly due to emulation of the fol-
lowing hardware mechanism:

• System calls such asfork used for creating
processes.

• Access to a hard disk for loading the exe-
cutable file and shared libraries.

• The memory coherence mechanism (espe-
cially required for processes running in ker-
nel mode).

Figure 8 shows the speedup of this program.
fib(n) denotes the calculation ofnth fibonacci
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Figure 8. Speedup of parallel fibonacci

# of procs. Total Native Shmem Misc Idle

1 180.0 177.8 0.0 2.2 0.0
2 90.3 87.9 1.0 1.1 0.3
4 52.4 43.7 3.0 0.4 5.3
8 27.9 22.1 3.7 0.1 2.0

Table 2. Breakdown of execution time of
fib(44) (unit: seconds)

number. As shown in this figure, the program
achieved better speedup as tasks were coarser.
The execution offib(46) on an 8-way multi-
processor machine is about 6.6 times faster than
on a 1-way processor machine.

Table 2 gives the breakdown of the execution
of fib(44) . ’Total’ denotes the total execu-
tion time of fib(44) . ’Native’ denotes a time
how long the virtual machines ran in native mode.
’Shmem’ denotes a time spent for the virtualiza-
tion of the memory coherence mechanism. ’Misc’
denotes a time spent for the hardware virtual-
ization other than the memory coherence mech-
anism. ’Idle’ denotes a time how long the vir-
tual machines executed the ’hlt’ instruction. For
more than one processor, the table shows the av-
erage of the execution times of individual proces-
sors. Table 2 indicates that the overhead is mainly
caused by the virtualization of the memory co-
herence mechanism, which becomes larger as the
number of processes increases.

We further investigate the overhead incurred by
the virtualization of the memory coherence mech-
anism forfib(44) . We measured the distribu-
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Figure 9. Distribution of virtual addresses
fetched by the monitor processes for mem-
ory sharing (for fib(44) )

tion of virtual addresses fetched by the monitor
processes for memory sharing (Figure 9) and the
distribution of times which individual page fetch
requests took to complete (Figure 10). Figure 9
indicates that page fetch requests frequently oc-
curred at the beginning and the end offib(44)
(in both user and kernel mode). Note that the
base address of the kernel space of the guest op-
erating system is changed to0xa0000000 as
mentioned in Section 3.3. Figure 10 shows that
some of fetch requests took tens of milliseconds
to complete whereas most of page fetches were
completed in less than ten milliseconds. These
experimental results indicate that the overhead of
the parallel coarse-grain tasks is due to frequent
page fetches caused by false sharing.

6. Discussion

In this Section, we discuss limitations of the
current implementation of Virtual Multiprocessor
and propose several solutions for overcoming the
limitations.

6.1. Optimization of Hardware Virtualization

Currently, our VMM is placed on top of a host
operating system and is implemented solely in
user mode without any modifications to the host
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operating system. Although this architecture re-
quires only small amounts of implementation ef-
forts, the virtualization of IA-32 architecture (e.g.,
issues of system calls, access to I/O devices) in-
curs a larger overhead as shown in Section 5.1.

To reduce these overheads, we plan to apply ex-
isting optimization techniques developed by nu-
merous IA-32 VMMs (e.g., Xen [4], CoVirt [16])
to our VMM. For example, the number of con-
text switches caused by theptrace system call
can be reduced by placing the VMM directly on
bare hardware like Xen. We also plan to port the
VMM to other architectures of which design is
more suitable for hardware virtualization [1, 13].

6.2. Optimization of Memory Consistency Algo-
rithm

Since the memory consistency algorithm de-
scribed in Section 4.2 is simple sequentially con-
sistent, we plan to develop an algorithm that re-
laxes memory consistency as far as the IA-32
memory model can be satisfied.

An example of optimization techniques that we
are planning is to allow multiple nodes to write
to the same page simultaneously. The sequen-
tially consistent algorithm does not allow multiple
nodes to write to the same page at the same time
since writes updates need to become globally vis-
ible immediately. In contrast, our optimized algo-

rithm delays write updates until a synchronous in-
struction or an atomic instruction is issued. Note
that this relaxation of memory ordering does not
violate the IA-32 memory model according to the
specification [12].

6.3. Fault Tolerance

A machine crash is a frequent event in com-
modity clusters, in which a large number of ma-
chines involve. Hence we require that the system
can continue to run even if some machines fail.
We plan to implement the fault tolerance mech-
anism using techniques such as the checkpoint-
ing/recovery [9] and replication for VMMs [26].

7. Related Work

7.1. Virtual Machine Monitors

Recently several VMMs that build a vir-
tual multi-processor machine have been devel-
oped. These VMMs include vNUMA [7], Vir-
tual Iron [28], Disco [6], and VMware ESX
Server [30].

vNUMA virtualizes a cc-NUMA machine on
top of physical machines with the Itanium archi-
tecture. Whereas the memory coherence mecha-
nism of vNUMA invalidates memory pages syn-
chronously, pages are invalidated asynchronously
in Virtual Multiprocessor. This asynchronous
page update reduces downtime when a guest oper-
ating system is not running though the total num-
ber of messages required for each page fetch in-
creases.

Virtual Iron [28] builds a virtual multi-
processor machine on top of clusters. The basic
mechanism of Virtual Iron is similar to that of our
system. A comparison between Virtual Iron and
our system has not been made yet since details of
Virtual Iron are not public (2005/10/14).

Disco and VMware ESX Server require a phys-
ical machine that has an equal or greater number
of processors as they are attempting to virtualize.



In contrast, our VMM can build a virtual multi-
processor machine regardless of the number of
physical processors and the number of machines
on which these processors reside. This function-
ality of our VMM allows users to harness dis-
tributed resources efficiently and transparently.

7.2. Middlewares and Operating Systems for Pro-
viding a SSI

Middleware systems for clusters (e.g.,
SCore [23] and Condor [17]) provide a sin-
gle software image for high-performance parallel
programming environments. However, an inter-
face provided by these systems differs from that
of commodity operating systems. In contrast, our
system’s interface is same as that of commodity
operating systems. This functionality greatly
simplifies the utilization of distributed resources.

There are several systems (e.g., MOSIX [3]
and Kerrighed [19]) that enhance the Linux kernel
with cluster computing capabilities. Drawbacks
that these systems suffer include large implemen-
tation costs for kernel modification and difficulty
in supporting numerous operating systems.

7.3. Software Distributed Shared Memory Systems

Shasta [22] and cJVM [2] are software dis-
tributed shared memory systems that transpar-
ently support a shared address space across a clus-
ter of workstations. Shasta implements the shared
address space by transparently rewriting the ap-
plication executable to intercept loads and stores.
cJVM implemented the shared memory space by
modifying Java Virtual Machine.

While Shasta and cJVM support only user pro-
grams, our system allows an entire operating sys-
tem for SMP to run on clusters. Furthermore,
our system is targeted at the IA-32 architecture
whereas Shasta is targeted at the MIPS architec-
ture and cJVM at Java Virtual Machine.

8. Conclusion and Future Work

We have presented Virtual Multiprocessor, a
software layer that virtualizes a multi-processor
machine on a commodity cluster. The experimen-
tal results show that our system achieved good
performance for embarrassingly parallel coarse-
grain tasks. Since this kind of parallel programs
include various useful applications such as pa-
rameter sweep applications and parallelmake,
our system facilitates the wide deployment of
commodity clusters.

As mentioned in Section 6, we plan a num-
ber of extensions and improvements to our sys-
tem. Furthermore, we plan to evaluate our system
using real-world applications such as SPLASH-2
and Apache.

The prototype implementation of Virtual Mul-
tiprocessor is available athttp://www.yl.
is.s.u-tokyo.ac.jp/˜kaneda/vmp .
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